Rum Jungle Resources Limited

TRANSITIONING FROM EXPLORER TO FERTILISER MINERAL PRODUCER

ANNUAL GENERAL MEETING 28TH NOVEMBER 2013

DAVID MULLER- MANAGING DIRECTOR

Disclaimer and competent persons statements

This presentation has been prepared by Rum Jungle Resources Limited ("RUM" or the "Company"). Nothing in this presentation should be construed as either an offer to sell or a solicitation of an offer to buy or sell Rum Jungle Resources' shares in any jurisdiction.

This announcement contains forward looking statements. Forward looking statements are not based on historical facts, but are based on current expectations of future results or events. These forward looking statements are subject to risks, uncertainties and assumptions which could cause actual results or events to differ materially from the expectations described in such forward looking statements. Although Rum Jungle Resources believes that the expectations reflected in the forward looking statements in this presentation are reasonable, no assurance can be given (and Rum Jungle Resources does not give any assurance) that such expectations will prove to be correct. Undue reliance should not be placed on any forward looking statements in this presentation, particularly given that Rum Jungle Resources has not yet made a decision to proceed to develop the Barrow Creek 1 Phosphate Project or any other project, and Rum Jungle Resources does not yet know whether it will be able to finance the Barrow Creek 1 Phosphate Project.

The information in this presentation that relates to Mineral Resources in respect of Rum Jungle Resources' Barrow Creek 1 deposit is based on information compiled by Mr Jonathon Abbott, a full-time employee of MPR Geological Consultants Pty Ltd and a member of the Australian Institute of Geoscientists. Mr Abbott has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Abbott consents to the inclusion in this presentation of the matters based on his information in the form and context in which it appears.

The information in this presentation that relates to Exploration Results, Mineral Resources or Ore Reserves in respect of Rum Jungle Resources' potash resources is based on information compiled by Mr Ben Jeuken, a full-time employee of Groundwater Science Pty Ltd who is a member of the Australasian Institute of Mining and Metallurgy, and the International Association of Hydrogeologists. Mr Jeuken has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Jeuken consents to the inclusion in this presentation of the matters based on his information in the form and context in which it appears

The information in this presentation that relates to Rum Jungle Resources' projects and future work, comments on the resources estimates and economic potential of the estimated resources is based on information compiled by Mr David Muller, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Muller is Managing Director of Rum Jungle Resources and an employee of it. Mr Muller has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity to which he is undertaking to qualify as a Competent Person as defined in the 2004 edition of the "Australasian Code for Reporting of Exploration results, Mineral Resources and Ore Reserves". Mr Muller consents to the inclusion in this presentation of the matters based on his information in the form and context in which it appears.

The views expressed in this presentation contain information that has been derived from publicly available sources that have not been independently verified. No representation or warranty is made as to the accuracy, completeness or reliability of the information.

Introduction Rum Jungle Resources Ltd

- Fertiliser mineral fundamentals
- Barrow Creek and Arganara Phosphate overview
- Karinga Creek Potash overview
- Conclusion

Board and Management

Non-Executive Chairman – Mr Robert Annells, CPA, FFin

• A former member of the ASX with over 40 years experience in the securities industry, and as a qualified accountant. Mr Annells has been involved in the provision of corporate and investment advice to business and the resource industry and has served on the Rum Jungle Resources Board since 2006. He is currently the Chairman of Lakes Oil NL and Greenearth Energy Limited

Managing Director – Mr David Muller, BSc, MSc, MBA, FAusIMM

Over 40 years' experience in the Australian exploration and mining industries. Mr Muller has been involved in a number of successful exploration programs, the financing and restructuring of junior mining companies and he oversaw as Managing Director the floating of Samantha Mines, Samson Exploration and Cape Range Oil and subsequently served as Chairman of all 3 companies. He subsequently listed Julia Mines which was in full gold production by 1987.

Non-Executive Director – Mr Jeff Landels, BSc (Hons)

 Over 30 years of operational leadership experience in the fertiliser and pulp and paper industries in Australia and New Zealand. Mr Landels was the General Manager of the (then) Western Mining Corporation's fertiliser operations at Phosphate Hill. He has also been the Group General Manager for PaperlinX at its Gippsland operation and General Manager of AMCOR's Maryvale operations.

Executive Director - Mr Chris Tziolis, BSc, MA, MBA, MAICD

 Over 20 years of operational, strategic and commercial leadership experience in various industries both in Australia and overseas. Mr Tziolis had previously held senior management roles at Rio Tinto in the coal and uranium businesses, was a consultant with McKinsey and Company primarily serving the global mining industry in strategy and operational performance improvement projects and commenced his career as an operations officer in the Royal Australian Navy.

Rum Jungle Resources – Strategic Overview

- RJR's strategic intent is to find, develop and operate phosphate and potash fertiliser minerals projects, located in proximity to existing transport infrastructure, with a geographical focus in the Northern Territory, Australia.
 - The only company in Australia with both phosphate and potash resources that are both essential for efficient agriculture
 - Strategically located to leverage growing demand for fertilisers in Asia and Australia. Opportunity for regional fertiliser producers to diversify supply
 - Potential to create a significant fertiliser minerals business in the NT enabling regional economic development and employment opportunities for local indigenous communities and population centres of Alice Springs and Tennant Creek
 - ✓ Institutional shareholder base with a demonstrated history of support
 - ✓ Track record of achieving exploration and project development milestones

Corporate overview

ASX Code	RUM
Market Can	۵\$48m^
Shares on Issue	278 million
52 week price range	A\$0.30 – A\$0.11
Current	A\$0.17
MAJOR SHAREHOLDERS	
Washington H Soul Pattinson & Company Ltd	15.75%
Farjoy Pty Ltd	5.7%

Lion Selection Group Ltd	4.9%
Acorn Investments	4.3%

Key achievements in the last 18 months

- LUM JUNGLE REJ R ĸ Completed extensive RC and diamond drilling program \checkmark NT MINERALS EXPLORE Defined a Measured, Indicated and Inferred JORC resource of 238 million tonnes of \checkmark phosphate at an average grade of 14.7% at a cut-off of 10% $P_2O_5^*$ **Barrow Creek 1** Measured resource 136 million tonnes at an average grade of 15.7% at a cut-off 10% P_2O_5 **Phosphate** project Completed significant laboratory scale baseline metallurgical test work \checkmark Completed a scoping study outlining three potentially economic and technically viable development options Commenced pre-feasibility study Completed an initial drilling program and laboratory test work program \checkmark Karinga Creek Potash project Defined an Inferred Brine Resource of between 2.4 and 5.5 million tonnes of sulfate of potash (SOP) at an average aquifer thickness of 15 m and an average depth to the water table of 1 m Completed two equity placements to institutional investors raising \$18.6 million
 - Initiated an off-market takeover for Central Australian Phosphate Limited. Currently hold \checkmark more than 90% of CEN shares now proceeding to compulsory acquisition.

* Measured JORC resource of 136 Mt, Indicated JORC resource of 42 Mt and Inferred JORC resource of 60 Mt at 10% cut off, 14.6% P₂ O₅

Corporate

Contents

- Introduction Rum Jungle Resources Ltd
- Fertiliser mineral fundamentals
- Barrow Creek and Arganara Phosphate overview
- Karinga Creek Potash overview
- Conclusion

PHOSPHATE VS. NO PHOSPHATE

Global food security is an emerging issue that should underpin the future value of fertiliser minerals

Four primary drivers of fertiliser demand growth

- Global population growth and increasing GDPs enabling a growing global middle class population will increase demand for higher value food
- 2. The change in harvested and other agricultural areas required to meet that demand against a decreasing supply of arable land
- 3. Crop yield and production
- 4. Fertiliser application rates

The rise of the global middle class population, particularly in Asia, will increase demand for food

Numbers of Global Middle Class*

Global GDP growth translates to pressure to expand harvested areas

R J R NT MINERALE EXPLORER

Application rates are expected to increase in line with the necessity for increasing crop yields

Comparison of application rates and crop yields

NPK Application rate (Kg/Ha) 150

RUM JUNGLE RESO

NT MINERALS EXPLORE

7.0

R

R

Ave crop yield (Tonne/Ha)

Demand for Phosphate and Potash is forecast to grow significantly between 2010 and 2030

Forecast demand for Phosphate and Potash to 2030

RUN JUNGLE RESOL

NT MINERALS EXPLORE

R

R

Phosphate and Potash demand growth summary

Phosphate

- Forecast increase in demand of 18 million nutrient tonnes in the period 2010 to 2030
- This equates to approximately 48 million tonnes of phosphate rock beneficiated to 30% or approximately 100 million tonnes of mined 15% rock
- Required new supply equivalent to nearly 2 times current Moroccan production of 25 million tonnes per year
- China, India, Brazil and the US will remain the leading consumers with demand growth in other parts of Asia expected to be significant
- Grains, oilseeds, fruits, vegetables and sugar cane will drive most of the phosphate demand growth

Potash

- Forecast increase in demand of 21 million nutrient tonnes in the period 2010 to 2030
- This is close to double 2010 demand
- Sulphate of Potash (potassium sulphate) historically trades at a premium to Muriate of Potash (potassium chloride) and is used in high chloride soils and in chloride sensitive crops
- China, India, Brazil and the US will remain the leading consumers with demand growth in other parts of Asia expected to be significant
- Grains, oilseeds, fruit and vegetables and sugarcane will drive most of the potash demand growth

Contents

- Introduction Rum Jungle Resources Ltd
- Fertiliser mineral fundamentals
- Barrow Creek and Arganara Phosphate overview
- Karinga Creek Potash overview
- Conclusion

Phosphate project overview

Flag ship project is the combined Barrow Creek 1 and Arganara resources

AUM JUNGLE RESO.

R

R

2013 DRILL PROGRAM APPROVED TO DOUBLE RESOURCE SIZE

350 holes for 15000 meters RC

00 7,823,200 mb5 7,823,200 mb5	526,40 526,40	527,20	527,60	528,00	528,40	529,20	529,60	530,00	530,40	530,80 531,20	531,60	532,00	532,40	532,80	533,20	533,60	534,40	534,80	535,20	535,60	536,00	536,40	536,80	537,20 537,60	538,00	538,40	538,80 539,20
7,622,800 mN														<u> </u>	• • • •)	.				4			
7,622,400 mN					н 1911 г. н. н.		T	-							, \				1			0		_		2.00	00
7,622,000 mN						1	CA082	2 CA096				// · · · /	<u>/ :</u> .						\					kilome	etres		, , ,
7,621,600 mN				40	5	CADE	59 CA083	CA097	CA114 C	CA127 CA	139 CA1	51			· · · · ·			/	\.				40	.		!-	
7,621,200 mN					C/	A053 CA07	70 CA084	CA098	CA.115 C	CA.128 CA	140 CA1	52	CA.162	2 CA173			Y					i Line		.). 			, , , , , , , , , , , , , , , , , , ,
7,620,800 mN					GA	A054 CA07	71 CA085	5 CA099	CA116 C	CA129 CA	141 CA1	53	CA163	3 CA174	CA185 (CA200	/			N:		1					
7,620,400 mN				c	A043 CA	4055 CA07	72 GA086	CA100	CA'117 C	CA130 CA	142 CA1	54	CA'164	CA'175	CA186 0	CA201/CA	211 CA	221 CA23	31 CA24	12 CA253	3	a da a		45	; ;		
7,620,000 mN		-	CA030	c	A044 CA	A056 CA07	73 CA087	CA101	CA118 C	CA131 CA	143 CA1	55	CA165	5 CA176	CA187 (202 CA	212 CA	222 CA23	32 CA24	13 CA254	4	CA272	CA282	CA292 C/	A301		
7,619,600 mN		CA022	CA031	c	A045 CA	A057 CA07	74 CA088	CA102	CA119 C	CA132 CA	144 CA1	56	CA166	CA177	CA188	CA203 CA	A213 CA	223 CA23	33 CA24	14 CA255	5 CA263	CA273	CA283	CA293 C/	302	CA318	8
7,619,200 mN	· · · · · · · · · · · ·	A015 CA023	CA032	c	CA046 CA	4058 CA07	75 CA089	CA103	CA120 C	CA133 CA	145 CA1	57	CA 167	CA178	CA189 0	CA204 CA	↓ ↓ · · ↓	224 CA23	34 CA24	15 CA256	6 CA264	CA274	CA284	CA294	CA3	10 CA319	9 CA327
7,618,800 mb	CA005 C/	A016 CA024	CA033		A047 CA	A059 CA07	76 CA090	CA104	CA121 C	CA134 CA	146 CA1	58	CA168	3 CA179	CA190 (CA205 CA	A215 CA	225 CA23	35 CA24	46 CA257	7 CA265	CA275	CA285	:	A303 CA3	11 CA320	0 CA328
7,618,400 mR	001 CA006 C/	A017 CA025	CA034	C	CA048 CA	4060 CA07	77 CA091	CA105	CA122 C	CA135 CA	147 CA1	59	CA16	CA180	CA191 0	CA206 CA	A216 CA2	226 CA23	36 CA24	47 CA258	B CA266	CA276	CA286	/:	A304 CA3	12 CA321	1 CA329
7,618,000 mR	02 CA007 C	A018 CA026	CA035	c	CA049 CA	A061 CA07	78 CA092	2 CA106	CA123 C	CA136 CA	148 CA10	50	CA170	CA181	CA192 0	CA207 CA	4217 CA	227 CA23	37 CA24	18 CA259	9 CA267	CA277	/	CA295 C/	305 CA3	13 CA322	2 CA330
7,617,600 mN	03 CA008 C	A019 CA027	CA036	c	A050 C	4062 CA07	79 CA093	CA107	CA124 C	CA137 CA	149 CA16	61	CA171	CA182	CA193 (CA208 CA	A218 CA	228 CA23	38 CA24	19 CA260	0 CA268	·	CA287	CA296 C/	A306 CA3	14 CA323	3
7,617,200 m KAC	004 CA009 C	A020 CA028	CA037	c	A051 CA	4063 CA08	30 CA094	CA108	CA125 C	CA138 CA	150		CA172	2 CA183	CA194 (CA209 CA	219 CA	229 CA23	39 CA25	50 CA261	1. :/.	CA278	CA288	CA297 C/	4307 CA3	15 CA32	re i
7,616,800 mN	CA010 C/	A021 CA029	CA038		CA052 CA		B1 CA095	5 CA109	CA126		T			CA184	CA195 (CA210 CA	220 CA	230 CA24	40 CA25	51 CA262	2 CA269	CA279	CA289	CA298 C	309 64	an	
7,616,400 mN	CA011		CA039		CA	A065		CA110		.	1 1 1 1 1 2 1 1 1 1	1.	Ş./		CA196		· · · · ·	CA24	41 CA25	52 /	CA270	CA280	CA290	CA299 CA	A309	CA325	5 CA332
7,616,000 mN	CA012		CA040	fr.	CA	4066		CATHL		/.	· · · ·	. /	1.		CA197						CA271	CA281	CA291	СА300	CA3	17 CA326	6 CA333
7 615 600 mM	CA013		CA041		CA	4067		CA112	V.	\sim		$\left \right\rangle$	× :		CA.198			:	27								minimumi

CURRENT DRILL PROGRESS NOVEMBER 2013 ARGANARA EAST

Comparison of selected undeveloped land based phosphate resources

In comparison, the combined Barrow Creek and Arganara resource is potentially of global scale

EUM JUNGLE RESOURCES

NT MINERALS EXPLORER

R

R

The Barrow Creek 1 Resource is relatively shallow and should enable free digging of run of mine ore

WOODY DAM IS A LARGE DAM WITHIN PHOSPHATE ROCK IN THE MIDDLE OF THE ARGANARA RESOURCE

ARGANARA 15% P2O5 AT SURFACE

Proposed 97 kilometre transport corridor from mine site to rail head

Darwin is well located to service Asian customers and has a significant shipping cost advantage

RUNJUNGLE RESOL

R

R

The Barrow Creek 1 Scoping Study was completed in April 2013

- 3 options have been identified as potentially viable to develop the Barrow Creek 1 project as a standalone project
 - Rock export 1 Mechanically beneficiated ore start up followed by full flotation beneficiation up to 1.8 mtpa
 - Rock Export 2 Commence with full flotation beneficiation up to 1.8 mtpa
 - Phosphoric acid Wet acid production up to 540,000 tonnes merchant grade phosphoric acid
- Potential operating life in excess of 25 years (WITH INCLUSION OF ARGANARA OVER 100 YEARS)
- Indicative project NPV range of \$320M \$450M
- ✓ Project IRR range of 14.0% 18.7%
- Conservative assumptions used
- Potential for significant upside
- Results warrant the commencement of a pre-feasibility study

Barrow Creek 1 Scoping Study – Program of Work

- The Scoping Study commenced in November 2012 and completed in April 2013.
- Arccon Mining Services, a wholly owned subsidiary of the Allmine Group (ASX code: AZG); acted as Study Manager
- Specialist input provided by the following consultants:
 - **Resource modelling MPR** Geological Services **Conceptual Mine Planning** Coffey Mining **Baseline Metallurgical testing ALS Global** Beneficiation and market analysis Pegasus TSI Hydrological consultants **Ground Water Sciences Origin Capital**
 - **Preliminary Economic Assessment**
- Genesee & Wyoming and the Ports Corporation of Darwin engaged on transport logistics options and preliminary pricing

Key study assumptions

- R J R NT MINERALS EXPLORER
- The total Measured, Indicated and Inferred Resource is 238 million tonnes at an average grade of 14.6% at a cut off of 10% P₂O₅*
- Market specifications for export beneficiated rock are 30%-33% P₂O₅
- Rail and port export capacity for rock products assumed to be 1,800,000 tonnes per annum which determines a target rock product output rate
- Target phosphoric acid output rate circa 540,000 tonnes per annum
- Mining and processing rates determined by product output rate to maximise utilisation of transport infrastructure
- Chemical composition of the phosphate ore indicates very low levels of Uranium and Cadmium but higher than normal levels of Lead, which is common to the Georgina Basin phosphate occurrences, in comparison to the Moroccan benchmark standard for export phosphate rock
- Scoping study CAPEX and OPEX estimates are ±35%
- WACC of 8.5%
- Long term AUD/USD: \$1
- Further assumptions are provided on individual slides later in this presentation

^{*} Measured JORC resource of 136 Mt, Indicated JORC resource of 42 Mt and Inferred JORC resource of 60 Mt at 10% cut off, 14.6% P2 O5

Summary of scoping study outcomes

Three production and associated transport options identified as potentially economically and technically viable for the development of Barrow Creek 1 as a standalone operation with an operating life in excess of 25 years:

- Option 1 Rock Export MBO start-up (up to 4 years) followed by beneficiation through floatation. MBO transported to rail head by road and beneficiated rock transported by slurry pipeline to rail head
- Option 2 Rock Export Beneficiation through floatation from start-up. Beneficiated rock transported by slurry pipeline to rail head
- Option 3 Phosphoric Acid Export Production of Merchant Grade Phosphoric Acid through either a 'Wet Process' or a 'Thermal Process'. Acid transported to railhead by pipeline. Could underpin further investment in MAP/DAP production capacity in the NT

Rock Export Option 1 DSO/Beneficiation – key parameters

Parameter	Outcome
Construction start-up	Q1 2015
Production commencement	Q2 2016 for MBO, Q4 2019 for beneficiated rock
CAPEX estimate	\$276.6m for MBO start-up and \$175m for beneficiation
Product specifications	Ramp-up to 1.8Mt pa MBO >27% P ₂ O ₅ 1.8Mtpa beneficiated rock 30%-32% P ₂ O ₅
Indicative waste to ore strip ratio	<3 to 1
Indicative average cash costs of production (not including Royalties) 25 yr LOM FOB Darwin*	\$86 per tonne of export product
	Year 2 - \$70 per tonne, Year 25 \$96
Average annual Royalties**	\$12 per product tonne
Long run phosphate price assumptions*	MBO - US\$120 per tonne, 30% Rock US\$140 per tonne increasing to \$150 per tonne in 2018 and \$160 in 2022
Indicative Project NPV (8.5% post tax nominal WACC)	Approximately \$340m
Project IRR	18.7%

* Real 2013 Australian dollars

** Incorporates estimated NT Government royalties and payments under Native Title Agreement

Rock Export Option 2 Beneficiation – key parameters

Parameter	Outcome
Construction start-up	Q3 2014
Production commencement	Q1 2016
CAPEX estimate	\$432m
Product specifications	1.8Mtpa beneficiated rock 30%-32% P_2O_5
Indicative waste to ore strip ratio	<3 to 1
Indicative average cash costs of production (not including Royalties) 25 yr I OM FOB Darwin*	\$88 per tonne of export product
	Year 2 - \$78 per tonne, Year 25 \$96
Average annual Royalties**	\$12 per product tonne
Long run phosphate price assumptions*	30% Rock US\$140 per tonne increasing to US\$150 per tonne in 2018 and US\$160 in 2022
Indicative Project NPV (8.5% post tax nominal WACC)	Approximately \$320m
Project IRR	16.6%

* Real 2013 Australian dollars

** Incorporates estimated NT Government royalties and payments under Native Title Agreement

Phosphoric Acid Export Option 3 – Key Parameters

Parameter	Outcome
Construction start-up	Q3 2014
Production commencement	Q3 2016
CAPEX estimate	\$830m
Product specifications	540ktpa Merchant grade phosphoric acid
Indicative waste to ore strip ratio	<3 to 1
Indicative average cash costs of production (not including Royalties) 25 vr LOM FOB Darwin*	\$ 510 per tonne of export product
	Year 2 \$470 per tonne – Year 25 \$523 per tonne
Average annual Royalties**	\$12 per product tonne
Long run phosphoric acid price assumptions*	US\$800 per tonne increasing to US\$860 per tonne in 2018 and US\$920 in 2022
Indicative Project NPV (8.5% post tax nominal WACC)	Approximately \$450m
Project IRR	14.0%

* Real 2013 Australian dollars

** Incorporates estimated NT Government royalties and payments under Native Title Agreement

Key focus areas for Pre-Feasibility

- R J R NT MINERALS EXPLORER
- Additional metallurgical test work and process flow sheet development to provide greater process certainty, improve recoveries and ensure marketable product qualities can be met on a commercial scale
- Engagement with global and Australian fertiliser producers to clearly define a market entry strategy, fully understand the value in use of potential products and attract off take partnerships
- Further development of the mine plan, optimisation of mining method and associated equipment
- Further definition of water requirements and ground water sources
- Optimisation of transport and logistics commercial outcomes with rail operators and the port
- Reduce the uncertainty over CAPEX and OPEX estimates from 35% to 20%
- Complete Native Title Agreement and granting of a minerals lease
- Commence environmental approvals process
- Engagement with potential development partners and financiers

The Barrow Creek 1 project is progressing toward development

RUNJUNGLE RESO,

R

RCES

R

COMBINED TENEMENT HOLDING

Contents

- Introduction Rum Jungle Resources Ltd
- Fertiliser mineral fundamentals
- Barrow Creek and Arganara Phosphate overview
- Karinga Creek Potash overview
- Conclusion

Karinga Creek Potash project overview

Potassium salts resource

- Potash minerals in subsurface brines under dry salt lakes. Ongoing accumulation of potassium salts occurs via groundwater recharge from Central Australian Discharge Zone.
- Inferred Brine Resource of between 2.4 and 5.5 million tonnes of sulfate of potash (SOP) at an average aquifer thickness of 15 m. This equates to a schoenite (potassium magnesium sulfate) resource of between 5.6 and 13 million tonnes
- Located adjacent to the bitumen Lasseter Highway and road access to Central Australian Railway line
- Could be low capital and low operating cost operation as evaporation primary processing route

Niche potash products

- SOP is different to the muriate of potash (MOP) primarily produced around the world (potassium Chloride)
- Used on crops and soils that react adversely to excessive chloride. Significant markets in SE Asia and all potash
 used in Australia in imported
- Trades at a significant price premium to MOP
- A number of brine lake operations carried out in US, China and South America

Project achieving development milestones

- Initial resource exploration completed and maiden JORC resource defined
- Baseline laboratory scale test work complete.
- On site evaporation trials and pump testing underway
- M.O.U. signed with C.I.C.C.C. for Pre Feasibility study

Karinga Lake Distribution

4. SITE DIAGRAM

WA

R

TRIAL PRODUCTION TEST 1 IN SILTSTONE

Second trench test

30 DAYS CONTINUOUS FLOW

30 Day Pump Test second lake

TRIAL SALT PRODUCTION ON SITE PICTURE TAKEN SEPTEMBER

SALT PRECIPITATION INCREASES: picture taken last week

15.11.2013 16:38

BITTERN BECOMES ENRICHED IN POTASSIUM IN FIELD TRIAL

Schoenite and sulphate of potash have been produced in laboratory scale trials

A number of operations in the US, China and Chile currently extract potash from salt lake brines

AUM JUNGLE RE

R

NT MINERALS EXPLORE

R

Lake Mackay 4000 Sq Km

FIRST MEETING WITH CHINA PETROLEUM AND CHEMICAL FEDERATION VISIT TO CHINA NOVEMBER 2013

MR PANG ; PRESIDENT

M.O.U SIGNED WITH C.I.C.C.C FOR PRE FEASIBILTY

Contents

- Introduction Rum Jungle Resources Ltd
- Fertiliser mineral fundamentals
- Barrow Creek and Arganara Phosphate overview
- Karinga Creek Potash overview
- Conclusion

Funding requirements and use of funds 2014

Project	Key initiatives	Timing end	
Corporate purposes and working capital		Jan- Dec	3.0
Ammaroo Phosphate Project	Complete PFS (technical, infrastructure, metallurgy, small scale pilot testing, hydrology, rail and port agreements, marketing, evaluation drilling, convert resources to reserves)	June	2.8
	Environmental/Government approvals, Native Title/Land use agreements	Dec	1.2
Regional Phosphate Exploration	Warrabri, Lucy Creek	Dec	1.0
Karinga Lakes Potash Project	Complete PFS (technical, infrastructure, metallurgy, small scale pilot testing, hydrology, rail and port agreements, marketing, evaluation drilling, convert resources to reserves)	August	1.8
	Environmental/Government approvals, Native Title/Land use agreements	Dec	1.2
Regional Potash Exploration	Lake Hopkins, Lake Mackay	Aug	1.0
TOTAL			12

RUM JUNGLE RESO.

R

RCES

In conclusion there are a number of reasons to invest in Rum Jungle Resources

- Large JORC phosphate resource
 - The combination of Barrow Creek 1 and Arganara with a combined Measured, Indicated and Inferred resource of approximately 550 million tonnes at an average grade of approximately 15% P₂ O₅ at a cut off of 10% P₂ O₅, makes it a globally significant phosphate resource
 - Further exploration down strike could lead to a resource in excess of 1 billion tonnes at 15% P₂ O₅
 - Potential for global fertiliser producer to develop this significant phosphate province to support multiple decades of phosphate fertiliser production
- Diversification
 - Rum Jungle Resources is the only company in Australia with both a JORC compliant phosphate resource and a JORC compliant potash resource
- Close to infrastructure and markets
 - Access to major roads and the Central Australian Railway
 - Proximity of Darwin to Asian markets offers a shipping advantage

Record of achieving project milestones

 Completed a Scoping Study on the Phosphate resource in April 2013. Commenced a pre-feasibility study and if appropriate, a bankable feasibility study will be conducted in 2014

✓ Well supported

Institutional shareholder base with a demonstrated history of support