ASX Announcement

31 March 2021 ASX: WMX

HIGH-GRADE ZONES DISCOVERED UNDER THE HEADFRAME AT WILUNA

More high-grade drilling results at Starlight and Essex discovered close to existing mine workings, expected to enhance early years of the underground mine plan:

Essex Zone

• WURD0116A: 2.35m @ 61.05g/t including 0.37m @ 313g/t (visible gold logged)

• WURD0124: 2.00m @ 43.23g/t including 0.52m @ 159g/t (visible gold logged)

WURD0118: 5.00m @ 2.39g/t including 0.60m @ 6.03g/t and 0.45m @ 11.85g/t; and

2.77m @ 5.59g/t; and 0.30m @ 7.28g/t (visible gold logged)

Starlight Zone

• WUDD0069: 5.04m @ 6.09g/t; and 2.17m @ 9.45g/t

Calvert and East Lode Zones

Resource development drilling at East Lode and Calvert zones, all less than 400m below surface and part of initial mining areas:

WUDD0068: 5.00m @ 12.21g/t including 1.00m @ 55.10g/t

• WURD0075: 13.90m @ 3.29g/t including 2.66m @ 7.04g/t and 1.28m @ 7.46g/t; and

16.02m @ 5.41g/t; and 4.64m @ 12.62g/t

Golden Age Zone

Exceptional high-grade extensions continue to be defined at Golden Age, expected to enhance head grade at the current operation as large open pit stockpiles continue to contribute the major portion of processing feed ahead of sulphides production:

GAGC0336: 6.87m @ 30.61g/t

GAGC0331: 1.67m @ 17.95g/t including 0.60m @ 45.66g/t; and 1.55m @ 42.72g/t

GAGC0332: 1.58m @ 11.91g/t

GAGC0343: 6.58m @ 2.44g/t including 0.50m @ 15.50g/t

Wiluna Mining Corporation Limited (ASX: WMX) (Wiluna Mining, WMC or the Company) is pleased to provide an update on further wide, high-grade intersections from an additional 30 holes and 8,218m of drilling at the Wiluna Mining Centre.

The Company's major drilling program is focused on defining additional reserves in the highest-value zones scheduled for mining in the next five years to further enhance the mine plan. The Company is also undertaking structural interpretation to predict the location of further high-grade discoveries, and processing the results of a seismic survey recently undertaken to identify new exploration targets, with results to be communicated in due course. Drilling results reported here are from Starlight, Essex, Calvert, East Lode South and Golden Age (Figure 1).

The program continues to define high-grade intervals at shallow levels, close to multiple previously mined zones with existing access which allows rapid low-cost of development per mined ounce. These results confirm the Company's strong view that the Wiluna Operation will develop into a larger-scale, high-grade, and long-life gold mine.

Golden Age continues to deliver very high grade free-milling quartz reef intercepts in resource extensional drillholes, and these results are expected to materially enhance grade and production during the transition to, and in parallel with, the addition of sulphide production in the two-staged development at the Wiluna Mining Centre.

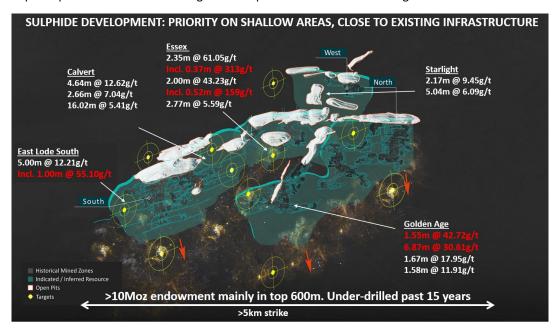


Figure 1: Wiluna Mining Centre shallow targets for resource growth, selected intercepts with >1oz per tonne highlights.

About Wiluna Mining

Wiluna Mining Corporation (ASX: WMX) is a Perth based, ASX listed gold mining company that controls over 1,600 square kilometres of the Yilgarn Region in the Northern Goldfields of Western Australia.

The Yilgarn Region has a historic and current gold endowment of over 380 million ounces, making it one of most prolific gold regions in the world. The Company owns 100% of the Wiluna Gold Operation which is the 7th largest gold district in Australia under single ownership based on overall JORC Mineral Resource.

BOARD OF DIRECTORS

Milan Jerkovic – Executive Chair Neil Meadows- Operations Director Sara Kelly – Non-Executive Director Greg Fitzgerald – Non-Executive Director Tony James – Non-Executive Director

CORPORATE INFORMATION

118.7 M Ordinary Shares 2.7M Unquoted Options/ZEPO's Level 3, 1 Altona Street, West Perth, WA 6005 PO Box 1412 West Perth WA 6872

T +61 8 9322 6418 F +61 8 9322 6429

info@wilunamining.com.au wilunamining.com.au

DRILLING HIGHLIGHTS- NEW HIGH-GRADE ZONES AT STARLIGHT AND ESSEX

Essex Zone

Essex is a high-grade, high-priority mining zone in the Wiluna Central Mine area, which continues to deliver visible gold intersections in numerous holes down-plunge of the current resource limits (Figures 2 and 3). The success of the Company's drilling and resource development activity at Essex, validates the Company's strategy to focus on shallow, high-grade sulphide ore bodies for development early in the mine plan. Access to the Essex orebody installed by previous operators is currently being dewatered and rehabilitated to facilitate infill drilling around the deeper visible gold intersections with the view to delineating additional resources and reserves.

WURD0116A and WURD0124 intersected bonanza grades with visible gold mineralisation over narrow intervals, reflected in the ultrahigh-grade assays of **2.35m** @ **61.05g/t** from 293.95m including **0.37m** @ **313g/t**, and **2.00m** @ **43.23g/t** from 437.00m including **0.52m** @ **159g/t**, respectively. This result follows up previously released intersections shown on Figures 2 and 3 of **2.45m** @ **31.30g/t** and **1.75m** @ **19.55g/t** (see ASX releases dated 27 January and 10 March 2020). Further drilling is planned to close-off and complete the infill of this high-grade lode discovery with a view to defining an ore reserve to enhance the front end of the underground mine plan at the Wiluna Mining Centre.

WURD0116A: 2.35m @ 61.05g/t from 293.95m including 0.37m @ 313g/t (visible gold logged)
WURD0124: 2.00m @ 43.23g/t from 437.00m including 0.52m @ 159g/t (visible gold logged)

WURD0118: 5.00m @ 2.39g/t from 317.70m including 0.60m @ 6.03g/t and 0.45m @ 11.85g/t; and

2.77m @ 5.59g/t from 330.40m; and

0.30m @ 7.28g/t from 371.55m (visible gold logged)

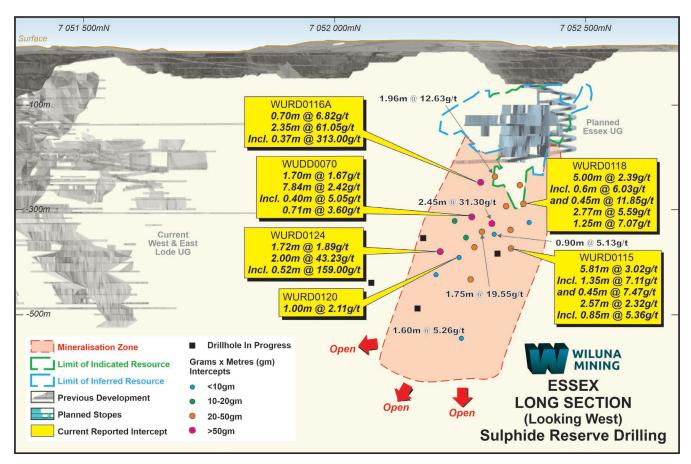


Figure 2: Essex long section showing high grade results and drilling aimed at converting the Inferred Resource area to Indicated category and defining mineralisation at greater depth.

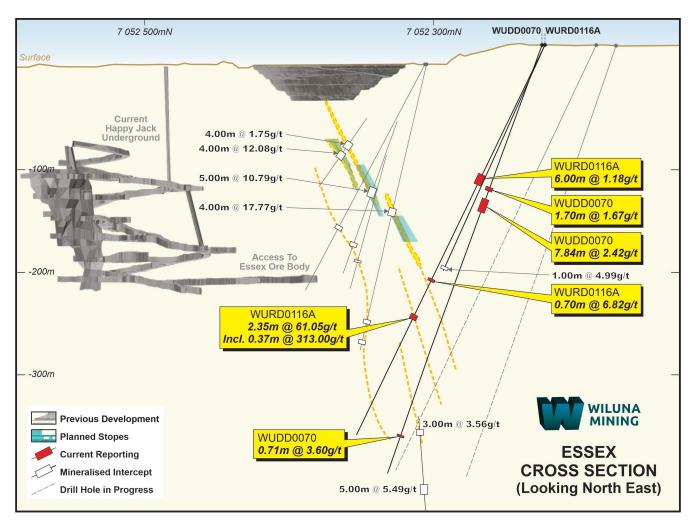


Figure 3: Essex cross section showing latest results, selected previously reported results and planned holes.

Starlight Zone

The Starlight zone in the Wiluna North Mine area continues to take shape, with further high-grade sulphide intersections located at shallow depths and open down-plunge. Starlight is significant in that it is located only 200m away from the existing underground mine development activity and could be rapidly brought into production at low capital cost if further drilling demonstrates economic reserves.

Multiple subparallel wide sulphide zones in the central portion of the deposit remain open down-plunge (5.00m @ 5.74g/t, 6.00m @ 6.64g/t, 4.00m @ 6.59g/t; see ASX release 10 March 2021) and further assays are awaited (Figure 4). In addition to WUDD0069, numerous additional significant results shown on Figure 4 and reported in Table 3 assist in understanding the geological controls on mineralisation to guide planned follow-up drilling.

WUDD0069: 5.04m @ 6.09g/t from 64.49m and 2.17m @ 9.45g/t from 153.83m

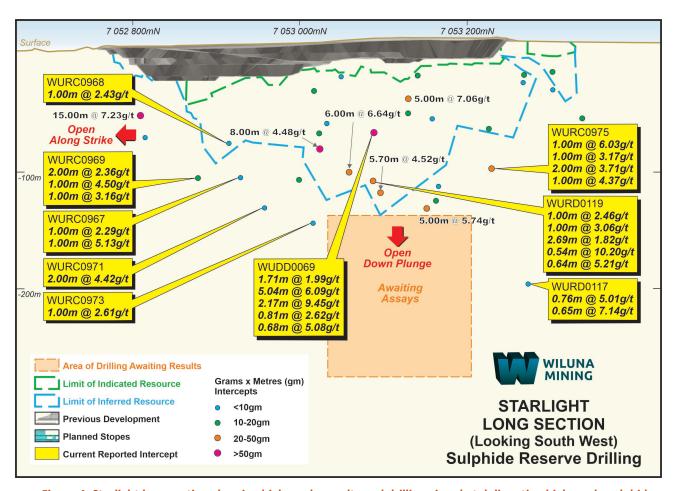


Figure 4: Starlight long section showing high grade results and drilling aimed at delineating high grade sulphide mineralisation below the open pit mine.

DRILLING HIGHLIGHTS- MUTIPLE SHALLOW HIGH-GRADE HITS ACROSS WILUNA MINING CENTRE

Calvert and East Lode Zones

East Lode and Calvert zones are high-priority targets owing to their proximity to surface and existing decline access that is now being dewatered to install underground drilling positions. The program continues to generate excellent results, demonstrating the potential to add to mine life and improve the head grade based on the thick high-grade mineralisation intersected in the current program and Wiluna Mining's previously reported drillholes (Figure 5, and ASX releases 27 January 2021, 10 March 2021).

Calvert is an un-mined ore shoot located on the West Lode structure immediately north of the historical underground workings (Figure 5). West Lode was historically mined via underground between 1932 and 1946 and produced 691,000oz @ 8.6g/t, which demonstrates the scale and high-grade nature of this target zone. West Lode remains open and sparsely drilled in the northern Inferred Resource area and at depth, with potential to delineate resource extensions and to make a new shoot discovery from the planned underground drilling positions. At Calvert, WURD0075 intersected multiple broad sulphide intersections including:

WURD0075: 13.90m @ 3.29g/t from 398.57m including 2.66m @ 7.04g/t and 1.28m @ 7.46g/t; and

16.02m @ 5.41g/t from 470.00m; and

4.64m @ 12.62g/t from 492.00m

These high-tenor results follow on from previously reported intersections from Calvert (ASX 10 March 2021) including 3.00m @ 5.18 g/t, 11.00m @ 6.91g/t, 3.00m @ 7.29g/t, 10.00m @ 8.92g/t, 4.00m @ 12.46g/t, 3.00m @ 5.62g/t, and 5.76m @ 5.35g/t.

East Lode was originally mined via underground between 1931 and 1946 and produced 720,000oz @ 6.7g/t, with further resource and reserve additions to the south and at depth along the extent of the East Lode structure targeted in the current program. Latest results include WUDD0068:

WUDD0068: 5.00m @ 12.21g/t from 126m including 1.00m @ 55.10g/t

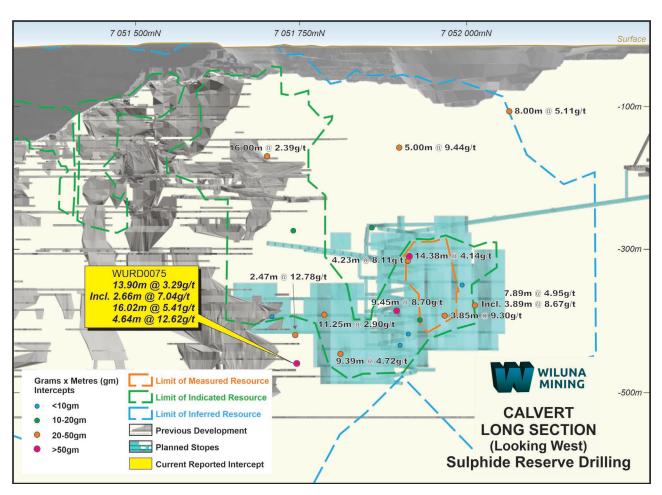


Figure 5: Calvert long section showing high grade results and drilling aimed at converting the Inferred resource area to Indicated category.

HIGH GRADE EXTENSIONS AT GOLDEN AGE

Grade control and extensional drilling at Golden Age has intersected exceptionally high-tenor mineralisation with the potential to materially improve free-milling production over the coming months. Further resource extensional drilling is planned as the high-grade mineralisation remains open for a considerable distance along-strike and down-plunge of the current workings. These exceptional results, along with results reported from Golden Age over the past 12 months (ASX releases 10 March 2021, 2 September 2020, 8 July 2020) suggest the tenor of mineralisation improves to the East and at depth (Figure 6).

GAGC0336: 6.87m @ 30.61g/t from 106.13m

GAGC0331: 1.67m @ 17.95g/t from 107.33m including 0.60m @ 45.66g/t; and

1.55m @ 42.72g/t from 111.43m

GAGC0332: 1.58m @ 11.91g/t from 91.00m

GAGC0343: 6.58m @ 2.44g/t from 132.22m including 0.50m @ 15.50g/t

Golden Age currently supplements the baseload free-milling feed from Williamson pit stockpiles and is an important source of cashflow for the next 12 months and beyond. Golden Age will also continue to provide mill feed following commissioning of the sulphide concentrator, with the processing configuration providing the ability to produce both gold concentrate and gold doré (through the existing CIL plant and gravity circuit), to improve and optimise operating margins.

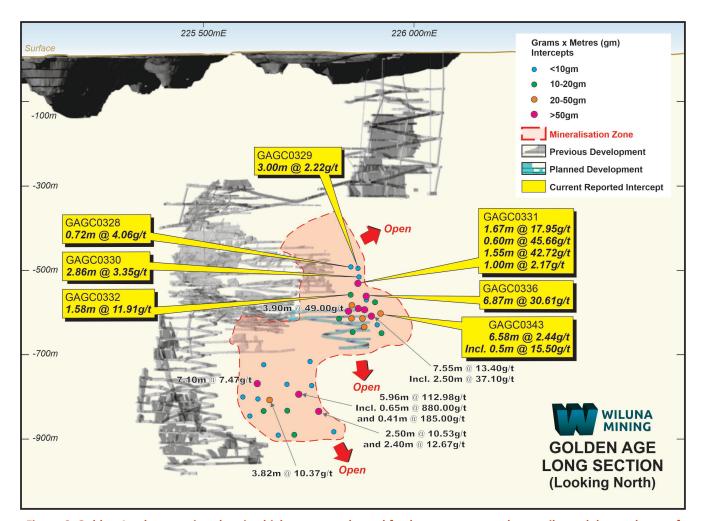


Figure 6: Golden Age long section showing high-tenor results and further target areas along strike and down-plunge of current workings.

WILUNA MINING CENTRE- RESOURCE AND RESERVE DRILLING PROGRAM

Following the 93,000m of resource and reserve development drilling completed in 2020, the Wiluna Mining Centre Mineral Resource Estimate has increased to 60.2Mt @ 2.99g/t for 5.78Moz (above 1.0g/t cut-off), including a high-grade component of 26.9Mt @ 4.89g/t for 4.24Moz above 2.5g/t cut-off (see ASX release dated 5 November 2020). Approximately 50% of the Mineral Resource is in the Measured and Indicated categories and 50% in the Inferred category. On 16 March 2021, the Company published updated underground Ore Reserve at Wiluna of 4.33Mt @ 4.74g/t for 661koz, an increase of 142% on the previous estimate.

The 2021 drilling program is of similar scale, with six to eight rigs operating for the next six months, with the aim to grow reserves at new high-grade shoot discoveries "under-the headframe" and progressive infill drilling to convert the current Inferred Resource of 2.10Moz @ 4.57g/t (above 2.5g/t cut-off) to Indicated category.

Including historical production of over 4Moz, Wiluna's total endowment is over 10Moz which ranks Wiluna alongside an exclusive peer group of large-scale, long-life mining centres in the Western Australian gold fields. Most historical production and existing resources occur in the upper 600m at Wiluna, with limited drilling during the past 15 years at depth on Wiluna

Mining's exploration targets (Figure 1), which Wiluna Mining will systematically drill out to complete the resource and reserve development program over the next three to five years.

At Wiluna, the bulk of the ounces are hosted within high grade shoots within steeply dipping gold shear zones, with the two most prominent shears being the East and West structures and a third sub-parallel structure called Adelaide-Moonlight shear, with a combined strike length of over 10km. In addition, numerous linking structures and splays are also mineralised, and free-milling high grade quartz reefs continue to be drilled at the Golden Age area.

The lodes that comprise the two main structures within the Wiluna deposit have very limited drilling below the deepest levels of production (only 1,000m below surface), but the drilling that has been completed shows the same mineralisation style as observed within the past production envelopes. This gives confidence that mineralisation extends well beneath the currently known extents of each lode. Prior to Wiluna Mining's ownership, a limited number of historical intercepts drilled over 1,000m below surface confirmed that high grade extensions continue below the deepest mine workings.

END

This announcement has been approved for release by the Executive Chair of Wiluna Mining Corporation Limited.

For further information on Wiluna Mining please contact:

Milan Jerkovic	Jim Malone	Dannika Warburton
Executive Chair	General Manager Investor Relations	Media & Communications
+61 8 9322 6418	+61 419 537 714	+61 401 094 261

Wiluna at 1.0g/t

		Wil	una Mini	ng Corp	oration	Mineral I	Resource	e Summ	ary			
					TOTA	L MINER	RAL RESC	OURCES				
Mining Centre		Measur	ed	, I	ndicate	d		Inferred	l	To	otal 100	%
	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au
Wiluna	0.14	5.2	24	22.69	3.59	2,618	37.34	2.62	3,141	60.17	2.99	5,782
Matilda	-	-	-	3.51	1.51	170	1.41	2.43	110	4.93	1.77	281
Lake Way	1.93	1.28	80	0.94	1.61	48	3.53	1.19	135	6.40	1.28	263
Galaxy	-	-	-	0.13	3.08	12	0.16	2.98	15	0.28	3.02	28
SUB TOTAL	2.08	1.55	103	27.27	3.25	2,849	42.44	2.49	3,401	71.78	2.75	6,354
				TAILI	NGS ANI	STOCKE	PILES					
Tailings	-	-	-	33.16	0.57	611	-	-	-	33.16	0.57	611
Stockpiles	0.51	0.9	15	2.16	0.51	35	-	-	-	2.67	0.58	50
SUB TOTAL	0.51	0.89	15	35.32	0.57	646			-	35.83	0.57	661
GLOBAL TOTAL	2.59	1.42	118	62.59	1.74	3,495	42.44	2.49	3,401	107.61	2.03	7,015

	Wiluna Mining Corporation Mineral Resource Summary											
			TC	OTAL MIN	NERAL R	ESOURC	ES (WILU	INA DEP	OSITS O	NLY)		
Reporting Cut-Off		Measur	ed	1	ndicate	d		Inferred		To	otal 100	%
g/t Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au
0.4	0.3	3.0	27	39.01	2.37	2,970	66.77	1.77	3,808	106.06	2.00	6,805
1.0	0.1	5.2	24	22.69	3.59	2,618	37.34	2.62	3,141	60.17	2.99	5,782
2.5	0.1	6.5	22	12.53	5.25	2,114	14.29	4.57	2,100	26.93	4.89	4,237

Table 1: Mineral Resources -October 2020, Wiluna > 1.0 g/t cut-off.

Notes Table 1:

- 1. See ASX releases dated 30 September and 5 November for further details.
- 2. Mineral Resources are reported inclusive of Ore Reserves.
- 3. Tonnes are reported as million tonnes (Mt) and rounded to the nearest 10,000; gold (Au) ounces are reported as thousands rounded to the nearest 1,000.
- 4. Data is rounded to reflect appropriate precision in the estimate which may result in apparent summation differences between tonnes, grade, and contained metal content.
- 5. Wiluna Mineral Resource includes deposits within the Wiluna Mining Centre and the Regent deposit and are reported at a 1.0g/t Au cut-off.
- 6. Matilda Mineral Resource is a summation of 8 separate Matilda deposits each reported at 0.4g/t Au cut-off within an A\$2,900/oz shell and at 2.5g/t below the pit shell, and the shallow Coles Find deposit which has been reported at a 0.4g/t Au cut-off.
- 7. Lake Way Mineral Resource includes the Carrol, Prior, Williamson South deposits, and the operating Williamson deposit. Each deposit has been reported at 0.4g/t Au cut-off within an A\$2,900/oz shell and at 2.5g/t below the pit shell
- 8. Tailings Mineral Resource includes material in Dam C, Dam H, and backfilled pits at Adelaide, Golden Age, Moonlight, and Squib.
- 9. Competent Persons: Graham de la Mare, Marcus Osiejak (refer to Competent Persons statement).

	Wi	iluna Mini	ng Corpora	tion 2020	Ore Rese	rve Summ	ary		
	OPEN PIT RESERVES								
Mining Centre		Proved			Probable			Total	
9	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au
Williamson	0.41	1.60	21.0	-	-	-	0.41	1.60	21.0
Wiluna ³	0.20	1.80	11.8	0.24	2.28	17.4	0.44	2.06	29.2
Stockpiles	0.77	1.19	29.7	-	-	-	0.77	1.19	29.7
Wiltails ⁴	-	-	-	31.64	0.57	578.9	31.64	0.57	578.9
SUB TOTAL	1.39	1.40	62.4	31.88	0.58	596.3	33.27	0.62	658.7
	UNDERGROUND RESERVES								
		Proved			Probable			Total	
Mining Centre	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au
Golden Age	-	-	-	-	-	-	-	-	-
East West 5	0.13	5.12	20.7	0.51	4.47	72.9	0.63	4.60	93.6
Bulletin ⁶	-	-	-	1.98	4.50	286.4	1.98	4.50	286.4
Happy Jack ⁷	-	-	-	0.80	4.59	117.9	0.80	4.59	117.9
Burgundy ⁸	-	-	-	0.92	5.50	162.8	0.92	5.50	162.8
SUB TOTAL	0.13	5.12	20.7	4.21	4.73	640.0	4.33	4.74	660.7
			TOTAL	L ORE RES	ERVES				
		Proved			Probable			Total	
	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au
Total	1.52	1.71	83.1	36.09	1.07	1,236.3	37.60	1.09	1,319.5

Table 2: Ore Reserve as at 31 October 2020.

Explanatory Notes:

- 1. The reported Mineral Resources are inclusive of the Ore Reserves.
- 2. Tonnes are reported as million tonnes (Mt) and rounded to the nearest 10,000; grade reported in grams per tonne (g/t) to the nearest hundredth; gold (Au) ounces are reported as thousands rounded to the nearest 100.
- 3. Wiluna open pit mining centre includes reserves from Golden Age and Squib open pit mining areas.
- 4. Wiltails Ore Reserve includes reclaimed tailings material in Tailings Storage Facilities C, H and Western Extension and backfilled pits at Adelaide, Golden Age, Moonlight and Squib
- 5. East West underground mining centre includes reserves from East West and Calvert underground mining areas.
- 6. Bulletin underground mining centre includes reserves from Bulletin Upper/Lower, Woodley and Henry V underground mining areas.
- 7. Happy Jack underground mining centre includes reserves from Happy Jack North/Central and Essex underground mining areas.
- 8. Burgundy underground mining centre includes reserves from Burgundy and Baldrick underground mining areas.
- 9. Competent Persons: Andrew Hutson and Glenn Van Vlemen of Mining Plus Pty Ltd (refer to Competent Persons statement and ASX release dated 16 March 2021)

Table 3. Significant intercepts Wiluna Mining Centre. NSI = No significant intercept. Results >5g/t highlighted red. Rows highlighted in blue show bulked intersection with greater than 2m internal dilution.

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	Est True Width (m)
Bulletin	WURC0964	225454	7053179	508	42.00	-55	134	8.00	12.00	4.00	1.28	2.7
Calvert	WURD0074	225352	7051660	500	300.00	-51.5	279	121.00	129.00	8.00	1.42	5.3
Calvert	WURD0075	225183	7051756	499	594.70	-72.2	277	284.00	286.00	2.00	1.48	1.3
Calvert	WURD0075							353.39	354.61	1.22	1.70	0.8
Calvert	WURD0075							398.57	412.47	13.90	3.29	9.3
Calvert	WURD0075						incl.	399.34	402.00	2.66	7.04	1.8
Calvert	WURD0075						and	405.45	406.73	1.28	7.46	0.9
Calvert	WURD0075							442.91	453.11	10.20	2.84	6.8
Calvert	WURD0075						incl.	452.20	453.11	0.91	9.78	0.6
Calvert	WURD0075							470.00	486.02	16.02	5.41	10.7
Calvert	WURD0075							492.00	496.64	4.64	12.62	3.1
East Lode	WUDD0068	225319	7050883	497	308.60	-63	269	126.00	131.00	5.00	12.21	3.3
East Lode	WUDD0068						incl.	126.00	127.00	1.00	55.10	0.7
Essex	WUDD0070	225519	7052223	522	490.00	-70	313	149.00	150.70	1.70	1.67	1.1
Essex	WUDD0070							164.40	172.24	7.84	2.42	5.2
Essex	WUDD0070						incl.	165.10	165.50	0.40	5.05	0.3
Essex	WUDD0070							407.00	407.71	0.71	3.60	0.5
Essex	WURD0115	225564	7052289	515	492.70	-73.2	314	391.11	396.92	5.81	3.02	3.9
Essex	WURD0115						incl.	391.63	392.98	1.35	7.11	0.9
Essex	WURD0115						and	395.77	396.22	0.45	7.47	0.3
Essex	WURD0115							405.55	408.12	2.57	2.32	1.7
Essex	WURD0115						incl.	405.55	406.40	0.85	5.36	0.6
Essex	WURD0116A	225522	7052221	522	424.40	-65	313	255.00	255.70	0.70	6.82	0.5
Essex	WURD0116A							293.95	296.30	2.35	61.05	1.6
Essex	WURD0116A						incl.	294.45	294.82	0.37	313.00	0.2
Essex	WURD0118	225580	7052303	514	426.00	-65.2	314	317.70	322.70	5.00	2.39	3.3
Essex	WURD0118						incl.	317.70	318.30	0.60	6.03	0.4
Essex	WURD0118						and	319.55	320.00	0.45	11.85	0.3
Essex	WURD0118							330.40	333.17	2.77	5.59	1.8
Essex	WURD0118							336.75	338.00	1.25	7.07	0.8
Essex	WURD0118							346.00	347.10	1.10	2.87	0.7
Essex	WURD0118							371.55	372.15	0.60	4.32	0.4
Essex	WURD0118						incl.	371.55	371.85	0.30	7.28	0.2
Essex	WURD0118							374.50	375.25	0.75	2.88	0.5

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	Est True Width (m)
Essex	WURD0118							420.00	420.85	0.85	2.53	0.6
Essex	WURD0120	225519	7052152	522	480.95	-60	314	433.00	434.00	1.00	2.11	0.7
Essex	WURD0124	225576	7052089	521	579.95	-59.8	315	426.00	427.72	1.72	1.89	1.1
Essex	WURD0124							437.00	439.00	2.00	43.23	1.3
Essex	WURD0124						incl.	437.00	437.52	0.52	159.00	0.3
Golden Age	GAGC0328	225783	7052469	-47	223.5	10	314	136.78	137.50	0.72	4.06	0.5
Golden Age	GAGC0329	225785	7052467	-47	155.7	20	34	126.00	129.00	3.00	2.22	2.0
Golden Age	GAGC0330	225785	7052467	-47	152.7	10	35	118.60	121.46	2.86	3.35	1.9
Golden Age	GAGC0331	225785	7052467	-47	130.1	1	35	107.33	109.00	1.67	17.95	1.1
Golden Age	GAGC0331						incl.	107.70	108.30	0.60	45.66	0.4
Golden Age	GAGC0331							111.43	112.98	1.55	42.72	1.0
Golden Age	GAGC0331							120.00	121.00	1.00	2.17	0.7
Golden Age	GAGC0332	225785	7052467	-48	120.3	-14	34	91.00	92.58	1.58	11.91	1.1
Golden Age	GAGC0333	225785	7052467	-48	119.7	-24	35	NSI				
Golden Age	GAGC0336	225789	7052464	-47	131.8	-14	52	106.13	113.00	6.87	30.61	4.6
Golden Age	GAGC0337	225789	7052464	-47	124.3	-25	52	NSI				
Golden Age	GAGC0343	225790	7052462	-47	154	-30	82	132.22	138.80	6.58	2.44	4.4
Golden Age	GAGC0343						incl.	137.50	138.00	0.50	15.50	0.3
Happy Jack	HJRD00029	226689	7051677	112	310.20	25.8	304	152.00	153.00	1.00	2.02	0.7
Happy Jack	HJRD00029							179.00	183.00	4.00	1.28	2.7
Happy Jack	HJRD00044	226689	7051677	111	269.90	3.7	303	134.93	136.50	1.57	4.20	1.0
Happy Jack	HJRD00044						incl.	134.93	136.00	1.07	5.22	0.7
Starlight	WUDD0069	225031	7053327	510	244.00	-60	224	57.29	59.00	1.71	1.99	1.1
Starlight	WUDD0069							64.49	69.53	5.04	6.09	3.4
Starlight	WUDD0069							153.83	156.00	2.17	9.45	1.4
Starlight	WUDD0069							187.00	187.81	0.81	2.62	0.5
Starlight	WUDD0069							220.27	220.95	0.68	5.08	0.5
Starlight	WURC0967	225116	7053233	504	175.00	-54.1	224	79.00	80.00	1.00	2.29	0.7
Starlight	WURC0967							143.00	144.00	1.00	5.13	0.7
Starlight	WURC0968	225060	7053174	480	80.00	-61	222	64.00	65.00	1.00	2.43	0.7
Starlight	WURC0969	225136	7053218	503	205.00	-54	222	62.00	64.00	2.00	2.36	1.3
Starlight	WURC0969							113.00	114.00	1.00	4.50	0.7

Zone	Hole ID	East	North	RL	EOH (m)	Dip	Azi	From	То	Width (m)	Au g/t	Est True Width (m)
Starlight	WURC0969							153.00	154.00	1.00	3.16	0.7
Starlight	WURC0971	225105	7053256	504	222.00	-64.9	220	156.00	158.00	2.00	4.42	1.3
Starlight	WURC0973	225071	7053296	507	210.00	-62	221	177.00	178.00	1.00	2.61	0.7
Starlight	WURC0975	224967	7053402	509	274.00	-53	222	28.00	29.00	1.00	6.03	0.7
Starlight	WURC0975							78.00	79.00	1.00	3.17	0.7
Starlight	WURC0975							122.00	124.00	2.00	3.71	1.3
Starlight	WURC0975							211.00	212.00	1.00	4.37	0.7
Starlight	WURD0117	224996	7053433	507	436.20	-54	254	243.00	243.76	0.76	5.01	0.5
Starlight	WURD0117							280.90	281.55	0.65	7.14	0.4
Starlight	WURD0119	225054	7053350	507	340.02	-68	221	109.00	110.00	1.00	2.46	0.7
Starlight	WURD0119							122.00	123.00	1.00	3.06	0.7
Starlight	WURD0119							215.31	218.00	2.69	1.82	1.8
Starlight	WURD0119							302.38	302.92	0.54	10.20	0.4
Starlight	WURD0119							318.15	318.79	0.64	5.21	0.4

^{*}Grid MGA94_Zone51S with RL in Australian Height Datum (surface level is approx. 500m AHD; "Mine RL" is AHD + 1,000m). Minimum significant intercept is 2m @ 1.0g/t or 2.0gm (gram x metres), maximum 2m contiguous internal dilution.

Forward Looking Statements

This announcement includes certain statements that may be deemed 'forward looking statements'. All statements that refer to any future production, resources or reserves, exploration results and events or production that Wiluna Mining Corporation Ltd expects to occur are forward looking statements. Although the Company believes that the expectations in those forward looking statements are based upon reasonable assumptions, such statements are not a guarantee of future performance and actual results or developments may differ materially from the outcomes. This may be due to several factors, including market prices, exploration and exploitation success, and the continued availability of capital and financing, plus general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance, and actual results or performance may differ materially from those projected in the forward looking statements. The Company does not assume any obligation to update or revise its forward looking statements, whether as a result of new information, future events or otherwise.

Competent Persons Statement

The information contained in the report that relates to Exploration Targets and Exploration Results at the Matilda Wiluna Gold Operation ("Operation") is based on information compiled or reviewed by Mr Cain Fogarty, who is a fulltime employee of the Company. Mr Fogarty is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Fogarty has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information in the report to which this statement is attached that relates to Mineral Resources for the Wiluna, Lake Way and Regent Mining Centres is based on information compiled or reviewed by Mr Graham de la Mare, a Competent Person who is a Fellow of the Australian Institute of Geoscientists. Graham de la Mare was a fulltime employee of Wiluna Mining Corporation and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Graham de la Mare consents to the inclusion in this announcement of statements based on this information in the form and context in which it appears.

The information in the report to which this statement is attached that relates to Mineral Resources for the Matilda, Galaxy and WilTails Mining Centres is based on information compiled or reviewed by Mr Marcus Osiejak, a Competent Person who is a Member of the Australian Institute of Mining and Metallurgy. Marcus Osiejak was a fulltime employee of Wiluna Mining Corporation and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Marcus Osiejak consents to the inclusion in this announcement of statements based on this information in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the information in the relevant ASX releases and the form and context of the announcement has not materially changed. The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

Table 1 JORC Code, 2012 Edition.

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

riteria	JORC Code explanation	Commentary
mpling chniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Wiluna Mining has used i) reverse circulation drillin to obtain 1m samples from which ~3kg samples wer collected using a cone splitter connected to the rig, i HQ, NQ2 or LTK60 with ½ core sampling, or iii) LTK6 with full core sampling. Full analysis and discussion of the entire historical drilling database of over 80,000 holes is not feasible nor considered material to the understanding of the current results. Historical core in this report is either NQ2 or LTK60, predominantly drilled in the mid to late 2000's by Agincourt Resources and Ape Minerals. Apex Minerals alone drilled 1,024 diamon holes for 222,170m with selective sampling. Wiluna Mining's sampling procedures are in line with standard industry practice to ensure sample representivity. Core samples are routinely take using an automatic core saw from the righthand side of the cut line. For Wiluna Mining's RC drilling, the drill rig (and cone splitter) is always jacked up so the it is level with the earth to ensure even splitting of the sample. Face samples are taken across the face, with sample intervals matched to varying intensity of mineralisation as indicated by shearing an sulphides. Historically (pre-Wiluna Mining), drill samples were taken at predominantly 1m intervals in RC holes, cas 2m or 4m composites in AC holes. Historical core sampling is at various intervals and it appears the sampling was based on geological observations as intervals determined by the logging geologist. Wiluna Mining analysed RC and DD samples using AL laboratories in Perth, where the analytical metho was Fire Assay with a 50g charge and AAS finish Golden Age grade control holes were analysed at the Wiluna Mine site laboratory. At the ALS laboratory, samples are weighed and the jaw crushed to 70% passing 6mm. Samples up to 3k

ASX: WMX | wilunamining.com.au Page 15

riffle split 50:50 with one half pulverised and the other half retained. Samples are pulverised to better than 85% passing 75 μ m. A 50g charge is taken for a fire assay dissolution with AAS finish. Historical

		assays were obtained using either aqua regia digest or fire assay, with AAS readings.
		 At the Wiluna Mine site laboratory, samples >3kg were 50:50 riffle split to become <3kg. The <3kg splits were pulverized via LM5 to 85% passing 75μm to produce a 30g charge for fire assay with AAS finish.
		Historical core samples were assayed at independent external laboratories Genalysis and ALS in Perth, using the same preparation method described above with either 30g or 50g charge. Analytical procedures associated with data generated by Apex and Agincourt are consistent with current industry practise and are considered acceptable for the style of mineralisation identified at Wiluna.
Drilling techniques	 Drill type (eg core, reverse circulation, open hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of 	Wiluna Mining data reported herein is RC 5.5" diameter holes. Diamond drilling is oriented HQ, NQ2 or LTK60 core.
	diamond tails, face sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Historical drilling data contained in this report includes RC, AC, RAB and DD core samples. RC sampling utilized face sampling hammer of 4.5" to 5.5" diameter, AC and RAB sampling utilized open hole blade or hammer sampling, and DD sampling utilized NQ2 and LTK60 half core samples. It is unknown if all historical core was orientated, though it is not material to this report. All Wiluna Mining RC drilling used a face-sampling bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For Wiluna Mining RC drilling, chip sample recovery is visually estimated by volume for each 1m bulk sample bag and recorded digitally in the sample database. For DD drilling, recovery is measured by the drillers and Wiluna Mining geotechnicians and recorded into the digital database. Recoveries were typically 100% except for the non-mineralised upper 3 or 4m in RC holes, and the weathered upper 50 to 80m of DD holes that is generally more broken and fractured. For historical drilling, most core is in fresh competent rock and recoveries appear to be generally excellent. Database compilation is ongoing. For DD drilling, sample recovery is maximised in weathered and broken zones by the use of short drill runs (typically 1.5m).
		For Wiluna Mining RC drilling sample recovery is maximized by pulling back the drill hammer and blowing the entire sample through the rod string at the end of each metre. Where composite samples are taken, the sample spear is inserted diagonally through the sample bag from top to bottom to ensure

		a full cross section of the sample is collected. To minimize contamination and ensure an even split, the cone splitter is cleaned with compressed air at the end of each rod, and the cyclone is cleaned every 50m and at the end of hole, and more often when wet samples are encountered. For historical drilling with dry samples it is unknown what methods were used to ensure sample recovery, though it is assumed that industry standard protocols were used to maximize the representative nature of the samples, including dust suppression and rod pullback after each drilled interval. For wet samples, it is noted these were collected in polyweave bags to allow excess water to escape; this is standard practice though can lead to biased loss of sample material into the suspended fine sample fraction. • For Wiluna Mining drilling, no such relationship was evaluated as sample recoveries were generally excellent.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill samples have been logged for geology, alteration, mineralisation, weathering, geotechnical properties and other features to a level of detail considered appropriate for geological and resource modelling. Logging of geology and colour for example are interpretative and qualitative, whereas logging of mineral percentages is quantitative. All holes were logged in full. Check-logging was completed on historical intervals retrieved, with only minor edits required to historical logs. Core photography was taken for WMC diamond drilling.
Subsampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If noncore, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. 	 For core samples, Wiluna Mining uses half core cut with an automatic core saw. Samples have a minimum sample length of 0.1m and maximum of 1.2m, though typically 1m intervals were selected. A cut line is routinely drawn at an angle 10 degrees to the right of the orientation line. Where no orientation line can be drawn, where possible samples are cut down the axis of planar features such as veins, such that the two halves of core are mirror images. Historical core has been selectively sampled, with a minimum sample width of 0.1m and maximum of 1.1m, though typically 1m intervals were selected. RC sampling with cone splitting with 1m samples collected, or in the hangingwall 4m scoop composites

- Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling.
- Whether sample sizes are appropriate to the grain size of the material being sampled.
- compiled from individual 1m samples. RC sampling with riffle or cone splitting and spear compositing is considered standard industry practice.
- For historical samples the method of splitting the RC samples is not known. However, there is no evidence of bias in the results.
- Wiluna Mining drilling, 1m RC samples were split using a cone splitter. Most samples were dry; the moisture content data was logged and digitally captured. Where it proved impossible to maintain dry samples, at most three consecutive wet samples were obtained before drilling was abandoned, as per procedure. AC samples were 4m composites.
- Jaw crushing and splitting is considered to be standard industry practice; each sample particle has an equal chance of entering the split chute to ensure representivity. At the laboratory, >3kg samples are split 50:50 using a riffle splitter so they can fit into a LM5 pulveriser bowl. Sample pulverising to better than 85% passing 75µm is standard industry practice to ensure representivity of the 50g charge for fire assay.
- Field duplicates were collected approximately every 20m down hole for Wiluna Mining holes. With a minimum of one duplicate sample per hole. Analysis of results indicated good correlation between primary and duplicate samples. RC duplicates are taken using the secondary sample chute on the cone splitter. AC duplicates were scooped in the field. It is not clear how the historical field duplicates were taken for RC drilling.
- Riffle splitting and half-core splitting are industry standard techniques and considered to be appropriate. Where sampling occurred through backfilled 'stope' intervals, these samples do not represent the pre-mined grade in localized areas.
- Sample sizes are considered appropriate for these rock types and style of mineralisation and are in line with standard industry practice.

Quality of assay data and laboratory tests

- The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
- For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis
- Fire assay is a total digestion method. The lower detection limits of 0.01ppm is considered fit for purpose. For Wiluna Mining Exploration drilling, ALS completed the analyses using industry best practice protocols described above. ALS is globally recognized and highly regarded in the industry. Historical assaying was undertaken at Genalysis, Amdel, SGS, and KalAssay laboratories, and by the Wiluna Mine

including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. laboratory. The predominant assay method was by Fire Assay with AAS finish. The lower detection limit of 0.01ppm Au used is considered fit for purpose. Samples analysed at ALS and with Au > 0.3g/t are also assayed for As, S and Sb using ICPAES analysis ("MEICP41").

- No geophysical tools were required as the assays directly measure gold mineralisation. For Wiluna Mining drilling, downhole survey tools were checked for calibration at the start of the drilling program and every two weeks.
- For Wiluna Mining, drilling certified reference material, blanks and field duplicates were submitted at 1:20 ratios. Check samples are routinely submitted to an umpire lab at 1:20 ratio. Analysis of results confirms the accuracy and precision of the assay data. Blanks and quartz flushes are inserted after logged high grade core samples to minimise and check for smearing, analyses of these results typically shows no smearing has occurred. Results for WMC and historical QAQC show good correlation between original and repeat analyses with very few samples plotting outside acceptable ranges.
- For the Minesite Laboratory, QA Procedures and QC data have been independently evaluated and found satisfactory for the purpose of Public Reporting of gold assay results. The available Quality Control results did not demonstrate any material bias or inappropriate repeatability results that would cause concern in the Public Reporting of assay results.
- For historical drilling, field duplicates, blank samples, umpire lab samples, and certified reference standards were collected and inserted from at least the early 2000's. Investigation of results revealed sufficient quality control performance for lab duplicates, field duplicates and external laboratory checks.

Verification of sampling and assaying

- The verification of significant intersections by either independent or alternative Company personnel.
- The use of twinned holes.
- Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.
- Discuss any adjustment to assay data.

- Wiluna Mining's significant intercepts have been verified by several Company personnel, including the database manager and geologists.
- Twinned holes were not drilled in this program, however, correlation between intercepts was generally poor when intercepts were greater than 20m apart reflecting the shortrange variability expected in gold deposits of this style.

Page 20

Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Wiluna data represents a portion of a large drilling database compiled since the 1930's by various project owners. Data is stored in Datashed SQL database. Internal Datashed validations and validations upon importing into Micromine were completed, as were checks on data location, logging and assay data completeness and downhole survey information. QAQC and data validation protocols are contained within Wiluna Mining's manual "Wiluna Mining Geology Manual 2020". Historical procedures are not documented. There has been no adjustment to lab assay data. All historical holes appear to have been accurately surveyed to centimetre accuracy. Wiluna Mining's drill collars are routinely surveyed using a DGPS with centimetre accuracy, though coordinates reported herein are GPS surveyed to metre-scale accuracy. Grid systems used in this report are GDA 94 Zone 51 S. Drilling collars were originally surveyed in either MGA grid or Mine Grid Wiluna 10 and converted in Datashed to MGA grid. An accurate topographical model covering the mine site has been obtained, drill collar surveys are closely aligned with this. Away from the mine infrastructure, drill hole collar surveys provide adequate topographical control. WMC drillholes are routinely surveyed using continuous north-seeking gyro at the end of hole, with 'sighter' surveys conducted while drilling. Historical diamond drill holes were surveyed downhole at close regular spacing using a Reflex or Eastman camera attached to a 6m aluminium extension to minimise magnetic interference, at 15m, 50m and every 50m thereafter. A selection of holes were subsequently gyro surveyed to confirm the single shot method has not been significantly affected by magnetic rocks.
		Survey tools are calibrated weekly.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve 	 Wiluna Mining's exploration holes are generally drilled 25m or 50m apart on sections spaced 25m apart along strike. Historical drill hole spacing is typically 50m x 25m of 25m x 25m in Indicated resource areas and 50m x 50m in Inferred areas.

	estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	 The mineralisation lodes show sufficient continuity of both geology and grade between holes to support the estimation of resources which comply with the 2012 JORC guidelines Samples have been composited only where mineralisation was not anticipated. Where composite samples returned significant gold values, the 1m samples were submitted for analysis and these results were prioritized over the 4m composite values.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Orientation of drilling to mineralisation ranges from 45 to 90 degrees to the strike of the lodes and 20 to 90 degrees to the dip of the lodes. RC drill holes were generally orientated perpendicular to targets to intersect predominantly steeply-dipping north-south or northeast-southwest striking mineralisation, though underground DD holes were in places drilled obliquely; true widths are shown in the significant intercepts table. The perpendicular orientation of the drill holes to the structures minimises the potential for sample bias.
Sample security	The measures taken to ensure sample security.	It is not known what measures were taken historically. For Wiluna Mining drilling, samples are stored in a gated yard until transported by truck to the laboratory in Perth. In Perth the samples are likewise held in a secure compound.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Wiluna Mining and historical drilling data have been validated in Datashed. Monthly validation checks are performed and minor adjustments made as required. Batches are re-assayed when out of range. QAQC results have been evaluated and found to be satisfactory.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites,	The drilling is located wholly within M53/6, M53/30, M53/40, M53/44, M53/95, M53/69, M53/468, M53/200 and M53/32. The tenements are owned 100% by Wiluna Operations Pty Ltd., a wholly owned subsidiary of Wiluna Mining Corporation Ltd, except for M53/30 which is owned 94/96 by Wiluna Operations Pty Ltd and 2/96 by James Murray Jackson.

	wilderness or national park and environmental settings.	The tenements are in good standing and no impediments exist.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. • The security of the tenure held at the time of the time and the time of time of the time of time	Franco Nevada have royalty rights over the Wiluna leases of 3.6% of net gold revenue.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Modern exploration has been conducted on the tenement intermittently since the mid1980's by various parties as tenure changed hands many times. This work has included mapping and rock chip sampling, geophysical surveys and extensive RAB, RC and core drilling for exploration, resource definition and grade control purposes. This exploration is considered to have been successful as it led to the eventual economic exploitation of several open pits during the late 1980's / early 1990's, and underground mining to the present day. The deposits remain 'open' in various locations and opportunities remain to find extensions to the known potentially economic mineralisation.
Geology	Deposit type, geological setting and style of mineralisation.	The gold deposits are categorized as orogenic gold deposits, with similarities to most other gold deposits in the Yilgarn region. The deposits are hosted within the Wiluna Domain of the Wiluna greenstone belt.
Drill hole Informatio n	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	See data table Appendix to this report.
	o easting and northing of the drill hole collar	
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	o dip and azimuth of the hole	
	 down hole length and interception depth 	
	o hole length.	
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the	

	Competent Person should clearly explain why this is the case.	
Data aggregatio n methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cutoff grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Significant intercepts are reported as length-weighted averages. For Wiluna: above a 1.0g/t cutoff and > 2.0 gram x metre cut off (to include narrow higher-grade zones) using a maximum 2m contiguous internal dilution. In places, broad widths of lower grade mineralisation are identified where the mineralised shear zone is wider and comprises multiple higher-grade zones within a broadly mineralised envelope, which may ultimately upon the completion of relevant mining studies (in progress) be amenable to bulk open pit or underground mining methods with lower cost and lower economic cutoff grades. Where this style of mineralisation exists, broad 'bulk' or 'halo' intercepts are calculated by allowing no limit to internal dilution and no internal lower cutoff grade. E.g. BUUD0102 = 62.54m @ 1.76g/t from 0m (broad intercept), comprising 7.11m @ 4.57g/t from 0m, 0.3m @ 6.32g/t from 10.28m, 14.05m @ 4.09g/t, and 6.81m @ 2.34g/t. High-grade internal zones are reported above a 5g/t envelope, e.g. BUUD0102 contains 7.11m @ 4.57g/t from 0m including 1.25m @ 15.08g/t and 0.68m @ 6.44g/t. Ultrahigh grades zones of >30g/t are additionally reported. No metal equivalent grades are reported because only Au is of economic interest.
Relationshi p between mineralisat ion widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Lode geometries at Wiluna are generally steeply east or steeply west dipping. Generally the lodes strike northnortheast to northwest-southeast. Historical drilling was oriented vertically or at 60° west, the latter being close to optimal for the predominant steeply east dipping orientation. At Golden Age, the lode strikes NWSE, with drilling from underground oriented at various angles depending on available drill sites. Drill holes reported herein have been drilled as closed to perpendicular to mineralisation as possible. In some cases due to the difficulty in positioning the rig close to remnant mineralisation around open pits this is not possible. True widths are always included in the significant intercepts table when results are reported for the first time.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See diagrams in the body of this report.

Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	For Wiluna Mining drilling, either all significant assay results are reported or the hole is listed as 'no significant intercepts'. Full reporting of the historical drill hole database of over 80,000 holes is not feasible.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples — size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Other exploration tests are not the subject of this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or largescale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow-up resource definition drilling is likely, as mineralisation is interpreted to remain open in various directions. Refer to diagrams and discussion in the body of this report.