

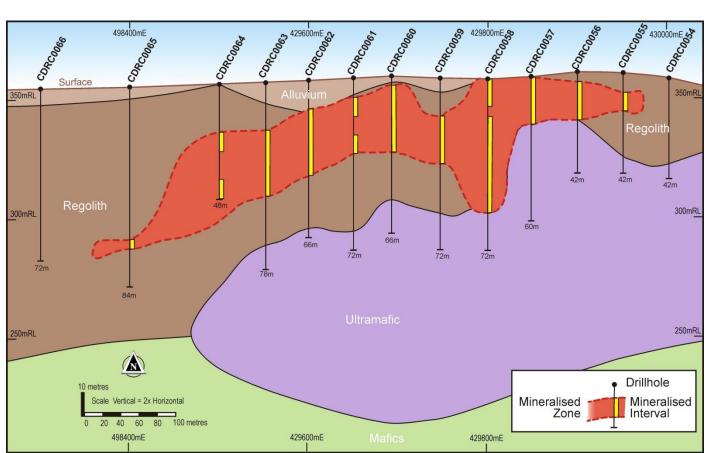
25 July 2018

ASX Code: WCN

Cobalt Nickel Discovery at Coronation Dam

Highlights

- Initial assays received from Coronation Dam, results include:
 - 40 metres at 0.11% cobalt and 1.04% nickel from 16 metres
 - 15 metres at 0.20% cobalt and 1.1% nickel from 29 metres
 - o 20 metres at 0.27% cobalt and 0.66% nickel from 28 metres including:
 - 1 metre at 0.95% cobalt and 0.97% nickel from 31 metres and:
 - 1 metre at 0.63% cobalt and 0.70% nickel from 35 metres
 - 12 metres at 0.06% cobalt at 0.93% nickel from 8 metres
 - $_{\odot}$ 12 metres at 0.05% cobalt and 0.85% nickel from 36 metres
 - Mineralisation up to 550 metres wide and 40 metres thick
- Further assays expected within two weeks

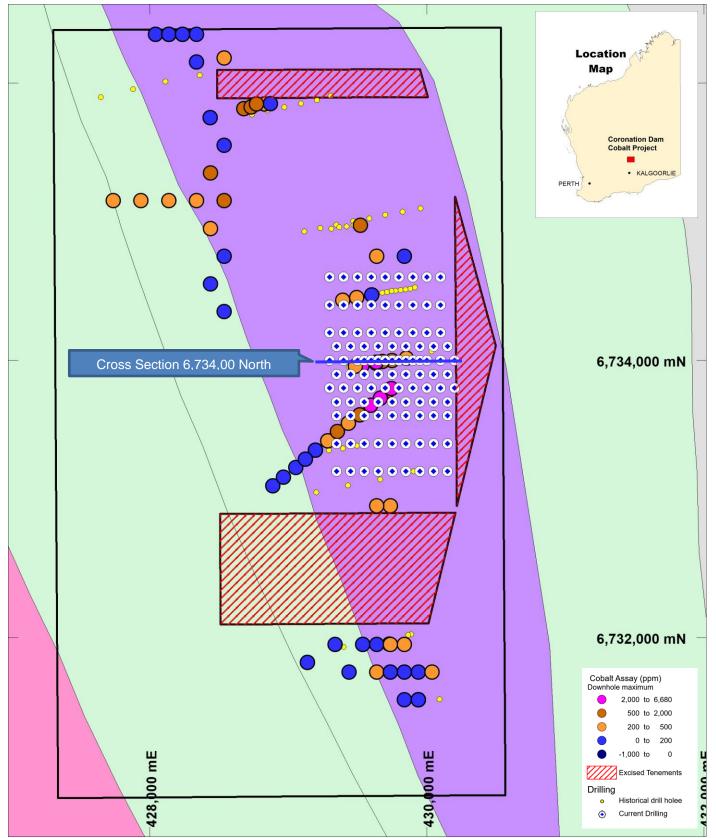

White Cliff Minerals Limited ("White Cliff" or the "Company") is pleased to report initial assays from a 5,000 metre RC drilling campaign completed at its 100% owned Coronation Dam cobalt project 90km Southeast of Glencore's Murrin Murrin Nickel refinery in Western Australia's north-eastern goldfields.

Initial drilling results are from one of the first cross sections drilled in the central part of the deposit to confirm the historical drilling results. Extensive cobalt mineralisation was identified from surface, extends up to a depth of 65 metres and is approximately 550 metres wide. The orebody dips at a shallow angle to the west. Better results include:

- 40 metres at 0.11% cobalt and 1.04% nickel from 16 metres including;
 - 15 metres at 0.20% cobalt and 1.1% nickel from 29 metres
 - 8 metres at 0.06% cobalt and 0.84% nickel from 8 metres and;
- 9 metres at 0.05% cobalt and 0.70% nickel from 24 metres
- 20 metres at 0.27% cobalt and 0.66% nickel from 20 metres including;
 - 1 metre at 0.95% cobalt and 0.97% nickel from 31 metres and;
 - o 1 metre at 0.63% cobalt and 0.70% nickel from 35 metres
- 12 metres at 0.07% cobalt and 0.85% nickel from 36 metres

The mineralisation has developed in the regolith profile above an intensely weathered ultramafic unit which was originally a peridotite. The peridotite is approximately 1 kilometre wide and 5.7 kilometres long within the mining tenement which covers 16km². Drilling was conducted on a 100 metre by 100 metre grid with extensions on a 200 by 100 metre grid. Once all assay results have been received the Company will undertake metallurgical testing to further advance the development of this project

White Cliff Managing Director Todd Hibberd said: "Initial assays at Coronation Dam validate the historical drilling and demonstrate the high grade nature of the mineralisation. We were surprised at the 550 metres wide zone of cobalt mineralisation and at the thickness of some of the intervals which are better than anticipated. Further assay results should be available shortly and on receipt of the final drilling results the Company will be in a position to select samples for metallurgical testing".


Figure 1: Cross Section 6,734,000 north showing extensive and think intervals of cobalt and nickel mineralisation. See figure 2 for section location.

Cobalt and nickel assays are summarised below rather than annotating the cross section due to number a results.

CDRC0054: CDRC0055: CDRC0056: CDRC0057:	No significant assay 9 metres at 0.04% cobalt and 0.71% nickel from 7 metres 12 metres at 0.05% cobalt and 0.93% nickel from 8 metres 12 metres at 0.03% cobalt and 0.76% nickel from surface
CDRC0058:	40 metres at 0.11% cobalt and 1.04% nickel from 16 metres including;
	15 metres at 0.20% cobalt and 1.1% nickel from 29 metres
CDRC0059:	6 metres at 0.04% cobalt and 0.41% nickel from 19 metres
CDRC0060:	24 metres at 0.04% cobalt and 0.76% nickel from 20 metres
CDRC0061:	8 metres at 0.06% cobalt and 0.84% nickel from 8 metres and;
	9 metres at 0.05% cobalt and 0.70% nickel from 24 metres
CDRC0062:	27 metres at 0.04% cobalt and 0.0% nickel from 13 metres
CDRC0063:	20 metres at 0.27% cobalt and 0.66% nickel from 20 metres including;
	1 metre at 0.95% cobalt and 0.97% nickel from 31 metres and;
	1 metre at 0.63% cobalt and 0.70% nickel from 35 metres
CDRC0064:	12 metres at 0.07% cobalt and 0.85% nickel from 36 metres
CDRC0065:	3 metres at 0.03% cobalt and 0.63% nickel from 66 metres

Geologically the mineralisation is occurring in extremely weathered clays which are derived from the underlying ultramafic rocks. The host rocks are rich in nickel with a background concentration of around 0.2% nickel. The deposit occurs on the side of a low hill and dips shallowly to the West.

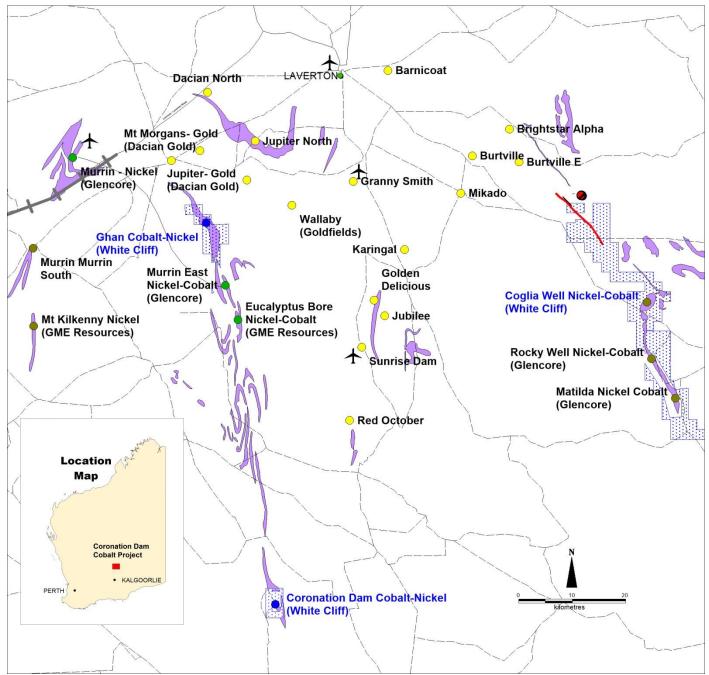

The current interpretation is that additional ultramafic rock has weathered and shed from the hill and been incorporated in the deposit increasing the thickness of the mineralisation. Cobalt and nickel mineralisation are variable for hole to hole which reflects the variable composition and layering of the underlying ultramafic unit. It is thought that the ultramafic unit is sub vertical and tightly folded. Weathering of the unit and mobilisation of the soluble minerals has resulted in mass concentration of immobile elements such and nickel, cobalt and chrome.

Figure 2: Location map of drilling and cobalt mineralisation at Coronation Dam near Kookynie in Western Australia. Coloured dots represent maximum down hole cobalt grades from historical drilling.

The Coronation Dam Cobalt Project

The Coronation Dam Cobalt Project is located 90km south of Glencore's Murrin Murrin mining operation and 45km south of GME Resources' proposed Mt Kilkenny nickel-cobalt processing facility in WA's north-eastern goldfields (Figure 2). The project is surrounded by world class mining infrastructure and multiple operating mines. Glencore is currently mining cobalt and nickel from the Murrin East open pit which contained an initial resource of 66 million tonnes at 1.1% nickel and **0.09% Cobalt**.

Figure 3: Location and infrastructure map of the Coronation Dam, Coglia Well and Ghan Well cobalt projects. The area is serviced by rail, roads, towns, airports and Glencore's nickel processing facility at Murrin Murrin

The Coronation Dam project area covers 16km² and contains an outcropping ultramafic unit that is approximately 1 kilometre wide and 5.7 kilometres long within the tenement.

Cobalt-nickel mineralisation occurs as a shallow layer of cobalt-enriched manganiferous oxides that form between the smectite clays and the overlying ferruginous clays. High grade cobalt mineralisation typically occurs between the surface and 50 metres depth and is associated with nickel mineralisation.

Existing drilling has only partly tested the mapped ultramafic unit, indicating there is potential to identify significant additional mineralisation.

The proximity of Coronation Dam to the Murrin Murrin nickel refinery is likely to have a strong, positive impact on the possibility of economic development of both the cobalt and nickel mineralisation. While the Company has not yet calculated a mineral resource, it is clear that the potential exists for the project to host one of substantial size.

Hole ID	From (m)	To (m)	Nickel %	Cobalt (%)	Magnesium (%)	Iron %	Manganese (ppm)	Aluminium (%)	Chrome (ppm)	Silica %
CDRC0055	6	7	0.41	0.022	10.1	5.34	840	0.56	5090	30.7
CDRC0055	7	8	0.75	0.037	14.9	7.06	1130	0.79	6830	24.5
CDRC0055	8	9	0.67	0.028	13.8	6.39	780	0.8	5920	26.3
CDRC0055	9	10	0.73	0.034	12.1	6.99	1050	0.77	6510	27.3
CDRC0055	10	11	0.72	0.036	12.8	7	1270	0.81	6850	25
CDRC0055	11	12	0.80	0.037	13.5	8.93	1500	0.95	8650	22.9
CDRC0055	12	13	0.69	0.027	16.4	9.11	1300	1.02	8670	19.7
CDRC0055	13	14	0.81	0.038	15	10.4	1880	1.08	9990	19.8
CDRC0055	14	15	0.66	0.024	13.7	10.1	1610	1.04	9170	21.1
CDRC0055	15	16	0.61	0.025	13	9.17	1500	0.96	8750	22.8
CDRC0056	0	1	0.42	0.019	15.5	4.48	460	0.86	4010	17.9
CDRC0056	1	2	0.52	0.020	16.6	5.32	470	0.79	4730	17.4
CDRC0056	2	3	0.60	0.020	18.8	6.35	450	0.76	5750	17.3
CDRC0056	3	4	0.64	0.019	19.9	7.26	450	0.78	6730	19.2
CDRC0056	4	5	0.65	0.019	20.1	7.02	430	0.81	7300	19.6
CDRC0056	5	6	0.60	0.022	20.4	7.15	460	0.78	6670	19.2
CDRC0056	6	7	0.58	0.023	20.4	7.23	490	0.79	6720	19.2
CDRC0056	7	8	0.57	0.023	20.8	6.52	450	0.85	5100	19.4
CDRC0056	8	9	0.70	0.029	19.9	7.19	550	0.94	6090	19.4
CDRC0056	9	10	0.94	0.056	18.5	8.2	1100	1.09	6420	19.3
CDRC0056	10	11	1.28	0.094	17.7	8.6	1810	0.98	4110	18.9
CDRC0056	11	12	1.52	0.089	16.1	9.66	1840	1.02	4100	19.8
CDRC0056	12	13	1.14	0.033	18.1	9.25	690	0.93	2720	18.9
CDRC0056	13	14	0.97	0.023	17.9	8.22	490	0.85	2560	20.1
CDRC0056	14	15	0.91	0.022	19.7	7.68	500	0.77	2640	18.8
CDRC0056	15	16	0.83	0.024	19.3	8.06	750	1.01	2050	18.8
CDRC0056	16	17	0.74	0.022	19.5	7.45	1070	0.9	2000	19.1
CDRC0056	17	18	0.71	0.018	19.5	7.1	670	0.81	2000	19.5
CDRC0056	18	19	0.63	0.017	19.1	7.86	520	0.95	1650	19.1
CDRC0056	19	20	0.63	0.020	18.9	7.31	1860	0.8	2020	19.9
CDRC0056	20	20	0.64	0.020	19	7.66	2310	0.75	1840	19.5
CDRC0056	20	22	0.66	0.024	18.7	8.3	1760	0.85	1710	19.3
CDRC0056	22	23	0.56	0.023	19.7	6.89	1030	0.82	1890	19.5
CDRC0056	22	23 24	0.50	0.017	19.7	7.24	960	0.82	1750	19.5
CDRC0056	23	24	0.57	0.018	20.3	7.24	1230	0.91	1480	19.4
CDRC0056	24 25	25 26	0.50	0.020	20.3	8.3	2150	0.85	1460	19
CDRC0056										
	26	27	0.55	0.025	19.4	8.84	2060	0.89	1370	17.9
CDRC0057	0	1	0.59	0.030	13	7.34	1790	0.92	12000	19.3
CDRC0057	1	2	0.96	0.047	14.1	10.3	7790	0.74	17100	21.6
CDRC0057	2	3	1.09	0.040	15.5	12.2	5870	0.85	16500	18.7
CDRC0057	3	4	0.82	0.032	17.9	9.84	4680	0.72	15100	18.7
CDRC0057	4	5	0.74	0.020	15.5	10.1	1770	0.74	16900	21.3
CDRC0057	5	6	0.90	0.020	12.1	9.55	1850	0.85	15600	24.9
CDRC0057	6	7	0.59	0.017	20.8	7.79	660	0.62	11200	18.7
CDRC0057	7	8	0.62	0.017	21.8	7.24	500	0.67	9680	18.2
CDRC0057	8	9	0.51	0.015	22.2	6.37	430	0.5	9120	18.4
CDRC0057	9	10	0.78	0.018	20.6	8.04	460	0.68	10300	18.4

Hole ID	From (m)	To (m)	Nickel %	Cobalt (%)	Magnesium (%)	Iron %	Manganese (ppm)	Aluminium (%)	Chrome (ppm)	Silica %
CDRC0057	10	11	0.91	0.021	20	9.1	880	0.85	12000	17.6
CDRC0057	11	12	0.87	0.021	19.5	8.4	2270	0.75	10500	18.7
CDRC0057	12	13	0.58	0.019	18.5	7.49	1630	0.53	9370	20.9
CDRC0057	13	14	0.57	0.020	16.2	7.34	2080	0.54	9350	23.2
CDRC0057	14	15	0.65	0.020	12.8	8.9	1480	0.63	12000	24.9
CDRC0057	15	16	0.51	0.015	15.3	6.97	980	0.56	8310	23.8
CDRC0057	16	17	0.58	0.018	18.9	6.93	1160	0.53	7950	20.7
CDRC0057	17	18	0.55	0.015	20.3	6.22	1660	0.53	4540	19.7
CDRC0057	18	19	0.50	0.017	18.8	6.82	1750	0.51	8290	20.7
CDRC0058	0	1	0.40	0.022	1.09	20.5	550	12.5	10500	12.6
CDRC0058	1	2	0.84	0.028	0.81	33	810	9.74	21300	5.05
CDRC0058	2	3	0.76	0.025	0.92	43.1	890	5.93	19500	3.67
CDRC0058	3	4	1.06	0.026	0.96	38.1	890	6.24	26500	3.54
CDRC0058	4	5	1.00	0.029	1.41	36.5	830	6.83	25300	4.39
CDRC0058	5	6	0.81	0.028	1.16	40	870	5.93	21400	4.18
CDRC0058	6	7	0.84	0.020	0.43	49.2	470	3.21	25000	1.81
CDRC0058	7	8	0.57	0.020	0.35	46	380	5.17	16700	1.66
CDRC0058	8	9	0.50	0.022	0.42	49.1	400	3.81	18200	1.39
CDRC0058	9	10	0.61	0.016	0.6	51.7	480	2.14	23400	1.28
CDRC0058	15	16	0.51	0.045	1.12	50.3	2320	1.78	16800	2
CDRC0058	16	17	0.68	0.070	0.84	50.3	3590	1.7	14000	2.04
CDRC0058	17	18	0.72	0.049	3.58	43.3	2430	1.76	11300	4.35
CDRC0058	18	19	1.16	0.104	0.78	48.8	4850	2.2	11800	2.58
CDRC0058	19	20	1.04	0.095	0.69	48.1	4960	2.41	12700	2.51
CDRC0058	20	21	1.18	0.120	1.01	45.7	7350	2.72	13500	3.06
CDRC0058	21	22	1.06	0.094	1.21	41.8	7700	3.97	14500	4.29
CDRC0058	22	23	1.06	0.084	1.25	42.5	7170	3.9	17100	4.12
CDRC0058	23	24	1.00	0.079	3.04	40.4	5720	2.92	15600	4.65
CDRC0058	24	25	1.11	0.074	1.21	42.5	6010	3.2	20700	3.26
CDRC0058	25	26	1.14	0.075	1.11	42.9	6050	3.28	21400	3.21
CDRC0058	26	27	1.14	0.077	1.11	43.7	6240	3.21	21400	3.16
CDRC0058	27	28	1.14	0.077	1.15	43.4	6210	3.31	21200	3.28
CDRC0058	28	29	1.12	0.080	1.24	43.1	6370	3.18	20900	3.24
CDRC0058	29	30	1.11	0.084	1.77	42.4	6510	3.16	20700	3.52
CDRC0058	30	31	1.17	0.110	1.21	43.6	8280	3.23	21200	3.23
CDRC0058	31	32	1.23	0.285	3.44	36.5	17800	2.94	15200	5.28
CDRC0058	32	33	1.35	0.346	1.73	38.3	20200	3.54	14700	5.14
CDRC0058	33	34	1.32	0.306	1.48	38	16700	3.81	14300	5.47
CDRC0058	34	35	1.19	0.252	0.92	35.3	13200	5.19	14100	6.78
CDRC0058	35	36	1.06	0.195	0.88	34.3	10100	5.26	14600	7.2
CDRC0058	36	37	1.01	0.189	0.86	33.9	9710	5.29	16200	7.57
CDRC0058	37	38	0.99	0.218	0.8	33.2	10600	5.5	19200	7.9
CDRC0058	38	39	1.01	0.223	1.24	33.8	11100	5.13	18900	7.48
CDRC0058	39	40	1.01	0.239	0.75	32.7	11100	5.45	19500	8.88
CDRC0058	40	41	1.00	0.237	0.87	32.1	11100	5.15	19300	9.44
CDRC0058	41	42	0.91	0.169	5.8	25.6	7720	3.66	15800	11.6
CDRC0058	42	43	0.79	0.093	7.3	19.7	4440	2.5	13600	15.6
CDRC0058	43	44	0.82	0.086	7.48	18.1	4020	2.38	14000	16.9
CDRC0058	44	45	0.83	0.048	12.4	13	2430	2.05	10800	17.7
CDRC0058	45	46	0.99	0.045	12.7	12.7	3530	1.74	9950	17.3
CDRC0058	46	47	1.00	0.044	14.4	11.9	3340	1.58	15600	16.3

White Cliff Minerals Limited 6

Hole ID	From (m)	To (m)	Nickel %	Cobalt (%)	Magnesium (%)	Iron %	Manganese (ppm)	Aluminium (%)	Chrome (ppm)	Silica %
CDRC0058	47	48	1.39	0.043	5.25	15.5	3140	2.04	20700	18.7
CDRC0058	48	49	1.37	0.043	5.53	15.2	3280	2.23	16200	18.6
CDRC0058	49	50	1.32	0.035	7	14.7	3150	2.47	15400	17.9
CDRC0058	50	51	1.16	0.042	7.66	14.5	3380	2.02	14000	18.4
CDRC0058	51	52	1.03	0.042	10.7	13	3300	1.62	10400	18
CDRC0058	52	53	1.00	0.034	13.3	10.8	2510	2.16	8270	18.5
CDRC0058	53	54	1.17	0.036	13	11.8	2050	2.58	10200	17.3
CDRC0058	54	55	1.11	0.033	13.1	13.1	1470	2.02	10100	16
CDRC0058	55	56	1.27	0.030	7.84	18.3	1900	2.38	13200	15.1
CDRC0058	56	57	0.36	0.010	1.8	6.45	1060	0.51	3280	36.9
CDRC0059	18	19	0.46	0.028	0.54	44.8	560	2.77	13000	4.57
CDRC0059	19	20	0.63	0.033	0.9	46.8	2120	2.34	16900	2.99
CDRC0059	20	24	0.34	0.043	0.46	14.8	3180	0.86	8250	31.4
CDRC0059	24	25	0.35	0.032	0.44	16.3	1890	0.87	8490	30.2
CDRC0059	25	26	0.37	0.051	0.39	13.9	2930	0.63	7790	32.3
CDRC0059	26	27	0.39	0.027	2.25	11.6	1540	0.44	6110	33.8
CDRC0060	0	4	0.29	0.023	0.54	37.4	480	6.35	25800	8.46
CDRC0060	4	5	0.50	0.057	0.48	44.6	830	3.56	19000	5.94
CDRC0060	5	6	0.60	0.057	0.63	33.7	1130	6.56	13700	9.91
CDRC0060	6	7	0.68	0.053	0.56	37.1	620	5.34	17000	8.88
CDRC0060	7	8	0.81	0.048	0.5	39.9	720	4.26	25600	7.15
CDRC0060	8	9	0.95	0.051	0.6	34	990	5.5	23500	9.77
CDRC0060	9	10	1.04	0.038	0.7	27	510	8.41	27000	10.8
CDRC0060	10	11	1.01	0.054	0.77	32	840	5.82	31600	9.72
CDRC0060	11	12	0.91	0.048	0.98	24.2	650	8.62	24800	13.6
CDRC0060	12	13	1.00	0.043	0.81	29.4	750	6.72	28900	10.6
CDRC0060	13	14	0.90	0.042	0.73	26.6	590	8.2	27900	11.2
CDRC0060	14	15	0.71	0.045	0.96	36.8	580	5.26	19900	7.48
CDRC0060	15	16	0.53	0.046	0.68	43.6	500	3.65	17700	5.98
CDRC0060	16	17	0.65	0.044	0.57	47	550	2.35	12900	4.77
CDRC0060	17	18	0.58	0.042	0.43	49.9	530	1.89	11700	3.54
CDRC0060	18	19	0.43	0.034	0.39	52.5	570	1.52	11100	2.7
CDRC0060	19	20	0.51	0.037	0.47	48.7	620	2.39	9850	3.18
CDRC0060	20	21	0.61	0.046	0.58	47.4	1530	2.37	15900	3.23
CDRC0060	21	22	0.64	0.046	0.64	44.9	1470	2.62	17600	4.16
CDRC0060	22	23	0.65	0.039	0.95	46.2	1750	2.05	18900	3.29
CDRC0060	23	24	0.70	0.036	0.74	48.1	1760	1.44	16600	2.38
CDRC0060	24	25	0.78	0.067	1.16	42.9	3100	1.8	19500	4.91
CDRC0060	25	26	0.81	0.053	1	42.9	2600	1.58	18300	5.56
CDRC0060	26	27	0.75	0.060	0.81	43.9	2370	2.11	18500	5.33
CDRC0060	27	28	0.83	0.083	0.89	35.3	4610	1.31	14900	11.8
CDRC0060	28	29	0.99	0.099	1.15	33.9	5480	1.4	15500	11.8
CDRC0060	29	30	1.10	0.057	3.1	34.9	2850	1.15	18200	8.98
CDRC0060	30	31	0.63	0.035	2.97	19.4	1680	0.76	10200	24.8
CDRC0060	31	32	0.48	0.024	2.36	14.1	1280	0.67	7030	29.9
CDRC0061	0	4	0.30	0.020	1	37.8	330	5.45	12400	9.16
CDRC0061	4	5	0.42	0.040	0.57	44.1	450	5.07	14700	7.9
CDRC0061	5	6	0.41	0.039	0.75	44.6	370	4.52	16900	7.53
CDRC0061	6	7	0.37	0.033	0.34	44.7	290	5.29	21000	7.11
CDRC0061	7	8	0.42	0.036	0.34	47.4	400	4.5	24200	6.08
CDRC0061	8	9	0.74	0.046	0.48	40.8	450	3.51	13800	9.26

White Cliff Minerals Limited 7

Hole ID	From (m)	To (m)	Nickel %	Cobalt (%)	Magnesium (%)	Iron %	Manganese (ppm)	Aluminium (%)	Chrome (ppm)	Silica %
CDRC0061	9	10	0.92	0.057	0.46	42.4	890	2.71	12000	8.46
CDRC0061	10	11	1.18	0.090	0.54	46.1	2060	2.33	14400	5.7
CDRC0061	11	12	0.87	0.059	0.51	40.8	1520	1.58	13900	11.3
CDRC0061	12	13	0.90	0.069	0.62	49	1230	2.01	15700	4.57
CDRC0061	13	14	0.77	0.050	0.65	49.6	920	2.34	16100	3.77
CDRC0061	14	15	0.66	0.034	0.51	52.6	580	2.04	12900	2.93
CDRC0061	15	16	0.67	0.036	0.59	48.2	660	2.8	14100	3.69
CDRC0061	16	17	0.62	0.029	0.66	47.1	520	2.83	15200	3.83
CDRC0061	21	22	0.33	0.043	0.24	54.5	1110	1.28	5730	1.87
CDRC0061	22	23	0.45	0.043	0.28	52.5	780	1.69	6680	2.54
CDRC0061	23	24	0.42	0.039	0.25	52.9	630	1.71	5720	2.64
CDRC0061	24	25	0.56	0.042	0.44	50.3	770	1.98	8540	2.84
CDRC0061	25	26	0.54	0.043	0.64	50.1	780	1.94	10900	2.82
CDRC0061	26	27	0.54	0.044	0.47	52.1	1460	1.2	17400	1.64
CDRC0061	27	28	0.69	0.063	0.6	49.4	2110	1.51	16500	1.95
CDRC0061	28	29	0.82	0.054	0.68	48.2	1550	1.4	26200	2.75
CDRC0061	29	30	0.96	0.051	0.6	42.7	1320	1.31	15200	8.32
CDRC0061	30	31	0.89	0.052	0.89	38.3	1460	1.49	14200	10.7
CDRC0061	31	32	0.76	0.057	0.86	45.6	2030	1.56	16900	5.33
CDRC0061	32	33	0.55	0.043	1.54	26	1840	0.98	8560	21.5
CDRC0062	12	13	0.48	0.038	0.42	46.6	360	4.5	22300	6.64
CDRC0062	13	14	0.56	0.038	0.59	47.4	320	3.47	18800	6.03
CDRC0062	14	15	0.75	0.040	0.42	46.6	260	2.65	14300	6.45
CDRC0062	15	16	0.81	0.049	0.45	49	360	2.05	15800	4.77
CDRC0062	16	17	0.59	0.036	0.33	53.7	350	1.44	12800	2.68
CDRC0062	17	18	0.47	0.017	0.22	57.2	160	0.57	9170	1.23
CDRC0062	18	19	0.54	0.027	0.26	55.5	270	0.92	7560	1.83
CDRC0062	19	20	0.51	0.025	0.23	55.3	270	1.05	5300	2
CDRC0062	20	20	0.52	0.023	0.19	57.5	260	0.5	5850	1.28
CDRC0062	21	22	0.65	0.020	0.25	56.1	350	0.55	6070	1.46
CDRC0062	22	23	0.66	0.024	0.31	53.6	360	1.31	7600	2.62
CDRC0062	23	23	0.57	0.024	0.33	52.9	390	1.38	9580	2.36
CDRC0062	24	25	0.39	0.037	0.36	52.3	530	1.62	6710	2.49
CDRC0062	25	26	0.43	0.040	0.34	51.6	570	2.07	6140	2.97
CDRC0062	26	27	0.35	0.031	0.31	52.4	580	1.77	5390	2.84
CDRC0062	27	28	0.33	0.067	0.27	51	1310	2.37	4670	3.22
CDRC0062	28	29	0.47	0.077	0.42	49.7	1790	2.04	6980	3.37
CDRC0062	29	30	0.47	0.060	0.42	52.9	1090	1.44	3250	2.8
CDRC0062	29 30	30	0.58	0.080	0.3	52.9 50.4	1850	1.44	5580	3.5
CDRC0062	31	32	0.59	0.070	0.47	46.4	2500	2.29	8350	4.53
CDRC0062	32	32	0.39	0.081	0.8	40.4	1080	2.29	14300	4.55 5.1
CDRC0062	33	33	0.74	0.058	0.62	45.9	1120	2.65	14300	3.9
CDRC0062	33 34	34 35	0.74	0.053	0.62	45.9 46.4	1500	2.56	20800	3.9 3.88
CDRC0062	35	36	1.01	0.032	0.05	40.4	1220	1.96	20800	5.75
CDRC0062	36	30 37	0.72	0.044	0.78	43.9 27.7	700	2.31	24200	5.75 16.8
CDRC0062	37	38	0.66	0.028	0.89	23.5	640	2.31	23100	20.4
CDRC0062	38	39	0.81	0.039	3.42	20.6	900	3.17	22300	17.3
CDRC0062	39	40	0.61	0.027	2.84	14.8	620	2.7	16500	23.1
CDRC0062	40	41	0.53	0.028	9.77	13.2	980	1.7	9020	16.3
CDRC0062	41	42	0.52	0.027	9.89	15	940	1.76	6830	15.4
CDRC0063	12	13	0.34	0.033	0.56	48.9	300	3.79	15800	5.94

Hole ID	From (m)	To (m)	Nickel %	Cobalt (%)	Magnesium (%)	Iron %	Manganese (ppm)	Aluminium (%)	Chrome (ppm)	Silica %
CDRC0063	13	14	0.60	0.066	0.79	39.9	320	4.42	12300	10.4
CDRC0063	14	15	0.58	0.060	0.58	43.1	390	4.62	13100	8.7
CDRC0063	15	16	0.58	0.053	0.54	43.1	520	4.81	14300	8.46
CDRC0063	16	17	0.49	0.044	0.33	44.9	450	5.19	16200	7.53
CDRC0063	17	18	0.43	0.035	0.28	46	400	5.26	16600	6.54
CDRC0063	18	19	0.38	0.033	0.28	48.3	500	4.77	19000	5.42
CDRC0063	19	20	0.37	0.040	0.24	51.8	450	3.87	21500	4.17
CDRC0063	20	21	0.52	0.060	0.34	47.1	510	4.23	27200	4.07
CDRC0063	21	22	0.45	0.124	0.27	53	1130	1.64	10700	2.51
CDRC0063	22	23	0.50	0.092	0.3	50.4	860	2.57	11400	3.48
CDRC0063	23	24	0.45	0.080	0.36	48.1	1010	3.23	10800	4.14
CDRC0063	24	25	0.44	0.069	0.6	46.8	770	3.61	12400	4.68
CDRC0063	25	26	0.45	0.064	0.88	45.4	700	3.64	11900	5.1
CDRC0063	26	27	0.42	0.052	0.79	39.8	510	5.12	8890	6.64
CDRC0063	27	28	0.40	0.066	0.44	32.9	820	7.88	7320	7.34
CDRC0063	28	29	0.61	0.304	0.42	39.3	9500	5.71	6460	5.66
CDRC0063	29	30	0.61	0.283	0.67	38.7	9610	5.56	7340	5.89
CDRC0063	30	31	0.62	0.323	0.66	32.8	9910	6.46	6260	8.65
CDRC0063	31	32	0.97	0.952	0.46	35	83700	3.83	6130	4.91
CDRC0063	32	33	0.57	0.320	0.19	52.8	29500	0.97	5010	1.55
CDRC0063	33	34	0.41	0.314	0.17	51.8	23800	1.65	2430	2.02
CDRC0063	34	35	0.41	0.216	0.17	54.2	16000	0.99	3100	1.53
CDRC0063	35	36	0.70	0.623	0.32	43.7	50000	2.59	4350	3.36
CDRC0063	36	37	0.53	0.194	0.51	46.7	13300	2.92	9520	4.01
CDRC0063	37	38	0.51	0.159	0.52	47.8	9530	2.92	12100	3.62
CDRC0063	38	39	0.57	0.110	0.43	49.6	5480	2.3	14500	2.92
CDRC0063	39	40	0.71	0.099	0.39	53.2	4250	1.28	11500	2.24
CDRC0063	40	41	0.66	0.106	0.6	47.8	4910	1.7	13600	3.49
CDRC0063	41	42	0.60	0.110	1.73	44.4	5190	1.84	11000	4.16
CDRC0063	42	43	0.72	0.078	0.63	47.1	4380	1.65	11200	5
CDRC0063	43	44	1.00	0.079	0.72	45.3	3630	1.1	9510	5.47
CDRC0063	44	45	0.94	0.067	0.62	40.7	2860	0.95	8300	10
CDRC0063	45	46	0.58	0.038	0.74	21	1130	0.47	3910	26
CDRC0063	46	47	0.87	0.064	1.62	28.2	2200	0.65	5850	16.6
CDRC0063	47	48	0.84	0.099	3.72	23.3	4530	0.62	5160	14.5
CDRC0063	48	49	1.04	0.061	5.14	26.2	2580	0.43	7950	15.8
CDRC0063	49	50	0.50	0.031	2.18	12.5	1530	0.23	2910	31.4
CDRC0063	50	51	0.36	0.018	2.03	8.52	830	0.15	1910	36
CDRC0063	51	52	0.36	0.018	2.71	8.43	1160	0.14	1870	32.8
CDRC0063	52	53	0.49	0.023	3.7	12	1070	0.21	3150	29.7
CDRC0063	53	54	0.84	0.043	4.58	20.8	1830	0.47	6240	19.2
CDRC0063	54	55	0.48	0.019	4.26	12.1	880	0.21	3260	29
CDRC0063	55	56	0.47	0.022	7.9	10.9	950	0.2	2840	27.3
CDRC0063	56	57	0.62	0.026	13.8	13.9	840	0.26	3690	17.9
CDRC0063	57	58	0.59	0.024	9.59	13.2	1270	0.22	3620	19.5
CDRC0063	58	59	0.53	0.025	12.5	9.86	1970	0.16	2650	11.5
CDRC0063	59	60	0.49	0.025	14	8.11	2430	0.13	2110	7.71
CDRC0064	18	19	0.40	0.034	0.3	45.8	480	5.12	14600	7.29
CDRC0064	19	20	0.42	0.040	0.32	41.9	480	5.66	12900	8.46
CDRC0064	20	20	0.56	0.040	0.32	43.2	640	4.7	13300	8.51
CDRC0064	21	22	0.59	0.058	0.31	45.4	820	4.26	14500	7.76
00100004	21	22	0.59	0.056	0.51	40.4	020	4.20	14300	1.10

Hole ID	From (m)	To (m)	Nickel %	Cobalt (%)	Magnesium (%)	Iron %	Manganese (ppm)	Aluminium (%)	Chrome (ppm)	Silica %
CDRC0064	22	23	0.53	0.051	0.27	46.8	640	4.42	16500	6.97
CDRC0064	23	24	0.44	0.036	0.25	45.6	430	5.19	19300	6.54
CDRC0064	35	36	0.44	0.047	0.56	31	2840	2.9	13600	16.2
CDRC0064	36	37	0.60	0.058	0.7	33.8	2410	3.24	10300	12.4
CDRC0064	37	38	0.60	0.051	0.46	37.4	2460	3.99	10500	9.77
CDRC0064	38	39	0.68	0.058	0.79	32.7	2510	4.69	9340	11.4
CDRC0064	39	40	1.11	0.071	0.66	41.7	2400	2.41	11400	5.42
CDRC0064	40	41	0.79	0.060	0.74	30.3	2320	3.68	9790	12.7
CDRC0064	41	42	0.71	0.057	0.78	28.2	2410	3.43	10100	15.1
CDRC0064	42	43	1.16	0.097	0.78	39.2	3150	2.24	10700	6.73
CDRC0064	43	44	1.06	0.091	0.75	38.3	3070	2.41	10600	8.27
CDRC0064	44	45	1.02	0.086	0.77	36	2870	2.13	9590	9.21
CDRC0064	45	46	0.90	0.076	0.75	36.2	2530	2.69	11100	9.12
CDRC0064	46	47	0.89	0.085	1.34	31.6	2980	2.06	8550	13.1
CDRC0064	47	48	0.67	0.083	1.04	22.9	3200	1.37	5900	22.4
CDRC0065	0	4	0.13	0.010	3.22	15	490	4.76	4400	20.2
CDRC0065	32	33	0.19	0.014	1.03	11.9	320	10.3	8090	19.9
CDRC0065	33	34	0.28	0.051	4.37	16.7	4130	5.4	7150	11
CDRC0065	34	35	0.36	0.057	0.87	27.1	3980	6.03	9660	15
CDRC0065	35	36	0.41	0.079	0.68	26.6	4880	6.03	9090	15.5
CDRC0065	36	37	0.46	0.081	0.71	27.2	4280	6.51	12600	13.6
CDRC0065	37	38	0.45	0.046	0.62	31.6	1550	5.93	13600	12.4
CDRC0065	38	39	0.45	0.041	0.62	28.3	1270	6.4	13800	14.1
CDRC0065	39	40	0.24	0.019	0.52	18	550	7.2	8280	21.1
CDRC0065	65	66	0.32	0.021	1.41	12.6	790	2.47	4990	27.7
CDRC0065	66	67	0.57	0.030	5.02	16	520	2.62	3950	20.8
CDRC0065	67	68	0.65	0.024	13	9.58	350	2.02	2620	19.8
CDRC0065	68	69	0.67	0.021	12.4	10.9	350	1.11	2820	20.5
CDRC0065	69	70	0.49	0.026	10.8	8.26	1860	0.57	2200	16.2

Table 2: Drill hole collar table

Hole_ID	Easting	Northing	RL	Total Depth	Azimuth	Dip
CDRC0001	429303.1	6733799	354.139	84	0	-90
CDRC0002	429408.2	6733802	354.699	98	0	-90
CDRC0003	429500.2	6733800	355.398	78	0	-90
CDRC0004	429599.3	6733796	356.779	79	0	-90
CDRC0005	429698.8	6733797	358.983	78	0	-90
CDRC0006	429797.6	6733796	361.399	66	0	-90
CDRC0007	429901.1	6733794	356.38	48	0	-90
CDRC0008	430002.8	6733794	350.795	36	0	-90
CDRC0009	430145.9	6733719	348.43	24	0	-90
CDRC0010	430045.6	6733700	350.436	36	0	-90
CDRC0011	429952.3	6733701	353.625	36	0	-90
CDRC0012	429853.4	6733720	359.407	42	0	-90
CDRC0013	429747.5	6733701	358.665	66	0	-90
CDRC0014	429649.2	6733702	356.718	72	0	-90
CDRC0015	429542.8	6733700	355.261	78	0	-90
CDRC0016	429444.7	6733696	354.536	78	0	-90
CDRC0017	429355	6733692	354.172	84	0	-90
CDRC0018	429351.8	6733598	353.57	84	0	-90
CDRC0019	429448.1	6733598	353.789	84	0	-90

Hole_ID	Easting	Northing	RL	Total Depth	Azimuth	Dip
CDRC0020	429549.5	6733591	354.171	78	0	-90
CDRC0021	429648.4	6733595	355.475	60	0	-90
CDRC0022	429748.6	6733596	356.108	54	0	-90
CDRC0023	429849.3	6733595	355.048	48	0	-90
CDRC0024	429946.6	6733596	352.132	36	0	-90
CDRC0025	430046.8	6733595	351.195	18	0	-90
CDRC0026	430146.4	6733596	354.346	12	0	-90
CDRC0027	430245	6733601	350.976	36	0	-90
CDRC0028	430096.7	6733799	348.551	24	0	-90
CDRC0029	429349.5	6733902	354.862	84	0	-90
CDRC0030	429452.4	6733898	355.52	72	0	-90
CDRC0031	429553	6733899	356.905	72	0	-90
CDRC0032	429645.6	6733899	358.836	66	0	-90
CDRC0033	429753.3	6733901	361.084	60	0	-90
CDRC0034	429852.6	6733899	359.664	66	0	-90
CDRC0035	429950.1	6733902	355.126	24	0	-90
CDRC0036	430046.3	6733899	350.744	24	0	-90
CDRC0037	430248.7	6733377	349.847	50	0	-90
CDRC0038	430151.2	6733396	352.338	6	0	-90
CDRC0039	430022.3	6734093	363.972	30	0	-90
CDRC0040	429956.4	6734100	359.888	48	0	-90
CDRC0041	429856.4	6734099	356.653	48	0	-90
CDRC0042	429752.2	6734100	354.943	48	0	-90
CDRC0042	429651.5	6734100	357.614	72	0	-90
CDRC0043	429548.6	6734101	357.614	84	0	-90 -90
CDRC0045	429450.4	6734100	356.423	84	0	-90
CDRC0046	430053.4	6733397	350.595	42	0	-90
CDRC0047	429954.7	6733396	350.936	42	0	-90
CDRC0048	429850.4	6733395	352.248	30	0	-90
CDRC0049	429753.2	6733399	352.799	42	0	-90
CDRC0050	430173.1	6734006	345.399	36	0	-90
CDRC0051	430145.6	6734098	345.553	18	0	-90
CDRC0052	430148.9	6733901	350.472	18	0	-90
CDRC0053	430101.7	6733999	349.079	24	0	-90
CDRC0054	430002.8	6734003	358.426	42	0	-90
CDRC0055	429951.6	6734000	360.581	42	0	-90
CDRC0056	429899	6733999	360.939	42	0	-90
CDRC0057	429848.1	6733999	359.122	60	0	-90
CDRC0058	429798.9	6733999	358.449	72	0	-90
CDRC0059	429746.4	6733999	358.877	72	0	-90
CDRC0060	429692.4	6733986	359.695	66	0	-90
CDRC0061	429650.1	6734003	358.837	72	0	-90
CDRC0062	429600.6	6733999	358.001	66	0	-90
CDRC0063	429550.4	6734000	357.201	78	0	-90
CDRC0064	429499.3	6734000	356.399	48	0	-90
CDRC0065	429397.4	6733995	355.404	84	0	-90
CDRC0066	429298.4	6734000	354.795	72	0	-90
CDRC0067	429348.3	6734097	355.614	90	0	-90
CDRC0068	429301	6734202	355.961	84	0	-90
CDRC0069	429401.8	6734200	357.155	90	0	-90
CDRC0070	429499.5	6734199	358.033	78	0	-90

Hole_ID	Easting	Northing	RL	Total Depth	Azimuth	Dip
CDRC0071	429600	6734198	359.246	50	0	-90
CDRC0072	429697.3	6734196	359.41	48	0	-90
CDRC0073	429798.3	6734200	360.531	42	0	-90
CDRC0074	429901.2	6734200	351.105	42	0	-90
CDRC0075	429998.9	6734201	351.055	36	0	-90
CDRC0076	430047.9	6734194	352.779	24	0	-90
CDRC0077	430090.7	6734603	348.113	6	0	-90
CDRC0078	429996.4	6734601	353.545	12	0	-90
CDRC0079	430074.3	6734398	350.073	24	0	-90
CDRC0080	429999.4	6734400	352.584	24	0	-90
CDRC0081	429698.2	6734400	376.388	30	0	-90
CDRC0082	429600.2	6734399	364.603	24	0	-90
CDRC0083	429498.2	6734397	361.501	27	0	-90
CDRC0084	429397.9	6734398	359.399	54	0	-90
CDRC0085	429301.1	6734404	357.318	84	0	-90
CDRC0086	429300.4	6734600	359.48	84	0	-90
CDRC0087	429398.4	6734600	361.639	77	0	-90
CDRC0088	429499.1	6734604	364.369	66	0	-90
CDRC0089	429599.3	6734602	367.522	48	0	-90
CDRC0090	429698.1	6734600	371.668	30	0	-90
CDRC0091	429792.2	6734583	370.146	24	0	-90
CDRC0092	429799.7	6734400	381.138	8	0	-90
CDRC0093	429448.7	6734397	360.371	78	0	-90
CDRC0094	429548.6	6734397	362.64	60	0	-90
CDRC0095	429648.4	6733397	353.804	54	0	-90
CDRC0096	429550.6	6733397	353.003	30	0	-90
CDRC0097	429454.6	6733394	352.504	48	0	-90
CDRC0098	429346.2	6733399	352.61	72	0	-90
CDRC0099	429353.5	6733200	350.941	60	0	-90
CDRC0100	429448.1	6733197	350.617	54	0	-90
CDRC0101	430334.3	6733395	360.596	24	0	-90
CDRC0102	430048.4	6733198	345.507	18	0	-90
CDRC0103	429948.5	6733197	346.677	36	0	-90
CDRC0104	429848.9	6733200	352.922	42	0	-90
CDRC0105	429746.4	6733198	351.068	48	0	-90
CDRC0106	429646.5	6733197	351.504	54	0	-90
CDRC0107	429549.4	6733197	351.123	42	0	-90

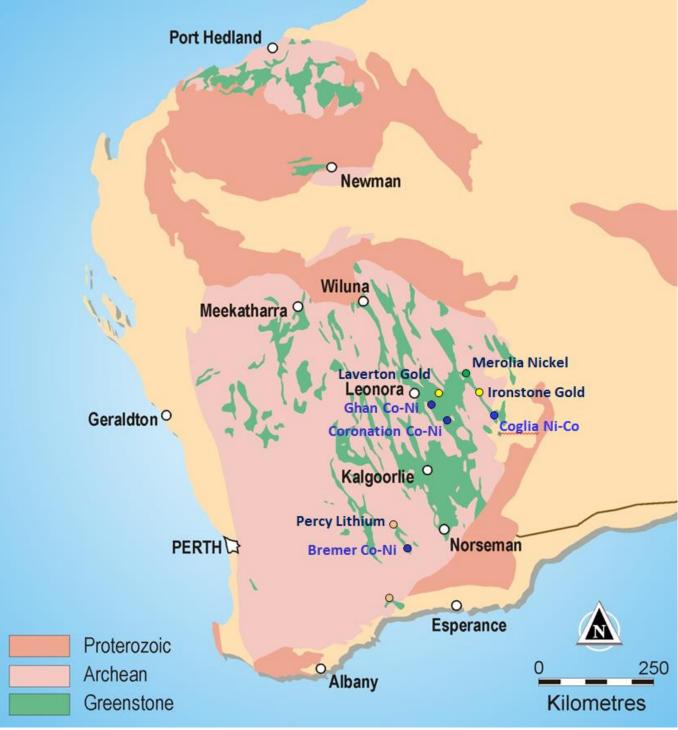


Figure 3: Western Australia project map

For further information please contact: www.wcminerals.com.au info@wcminerals.com.au

Todd Hibberd Managing Director +61 8 9321 2233 Suite 2, Level 1, 47 Havelock Street, West Perth WA 6872 White Cliff Minerals Limited is a Western Australian based exploration company with the following main projects:

Cobalt-Nickel Projects:

Coglia Well Cobalt Project (100%): The project consists of two tenements (238km²) in the Merolia greenstone belt 50km south east of Laverton, WA. The tenements contain extensive ultramafic units that host zones of cobalt mineralisation associated with nickel mineralisation. Historical drilling has identified Cobalt grades including 16 metres at **0.16% cobalt** and 0.65% nickel.

Coronation Dam Cobalt Project (100%): The project consists of one tenement (16km²) in the Wiluna-Norseman greenstone belt 90km south of the Murrin Murrin nickel-cobalt HPAL plant. The tenement contains an extensive ultramafic unit that contains zones of cobalt mineralisation associated with nickel mineralisation. The Cobalt grades range for 0.01% to 0.69% cobalt and occur within the regolith profile above the ultramafic units.

Ghan Well Cobalt Project (100%): The project consists of one tenement (39km²) in the Wiluna-Norseman greenstone belt 25km southeast of the Murrin Murrin nickel-cobalt HPAL plant. The tenement contains an extensive ultramafic unit that contains zones of cobalt mineralisation associated with nickel mineralisation. The Cobalt grades range for 0.01% to 0.75% cobalt and occur within a zone of manganiferous oxides that form in the regolith profile.

Bremer Range Cobalt Project (100%): The project covers 127km² in the Lake Johnson Greenstone Belt prospective for shallow cobalt-nickel mineralisation. Historical drilling has identified extensive cobalt and nickel mineralisation associated with ultramafic rocks extending 15 kilometres in length and up to 1500 metres wide. The tenements are only 130 kilometres from the Ravensthorpe cobalt and nickel processing facility.

Lake Percy Nickel Project (100%) The Lake Percy tenements (E63/1222i and E63/1793) contain substantial nickel and cobalt anomalism associated with outcropping ultramafic units.

Merolia Nickel Project (100%): The project consists of 325km² of the Merolia Greenstone belt and contains extensive ultramafic sequences including the Diorite Hill layered ultramafic complex, the Rotorua ultramafic complex, the Curara ultramafic complex and a 51 kilometre long zone of extrusive ultramafic lava's. The intrusive complexes are prospective for nickel-copper sulphide accumulations possibly with platinum group elements, and the extrusive ultramafic rocks are prospective for nickel sulphide and nickel-cobalt accumulations.

Gold Projects:

Kyrgyz Copper-Gold Project (90%): The Project contains extensive porphyry related gold and copper mineralisation starting at the surface and extending over several kilometres. Drilling during 2014-7 has defined a **gold deposit** currently containing an inferred resource of **3 Mt** at **5.1 g/t** containing **484,000 ounces** of gold. Drilling has also defined a significant **copper deposit** at surface consisting of **17.2 Mt** at **0.37%** copper containing **64,000** tonnes of copper.

Extensive mineralisation occurs around both deposits demonstrating significant expansion potential. The project is located in the Kyrgyz Republic, 350km west-southwest of the capital city of Bishkek and covers 57km². The Chanach project is located in the western part of the Tien Shan Belt, a highly mineralised zone that extending for over 2500 km, from western Uzbekistan, through Tajikistan, Kyrgyz Republic and southern Kazakhstan to western China.

Ironstone Gold Project (100%): The project consists of 175km² of the Merolia Greenstone belt consisting of the Ironstone, Comet Well and Burtville prospects. The project contains extensive basalt sequences that are prospective for gold mineralisation. including the Ironstone prospect where historical drilling has identified 24m at 8.6g/t gold.

Laverton Gold Project (100%): The project consists of one granted tenement (22km²) in the Laverton Greenstone belt. The Red Flag prospect is located 20km southwest of Laverton in the core of the structurally complex Laverton Tectonic zone immediately north of the Mt Morgan's Gold Mine (3.5 MOz) and 7 kilometres northwest of the Wallaby Gold Mine (7 MOz).

JORC Compliance

The Information in this update that relates to Exploration Results is based on information compiled by Mr Todd Hibberd, who is a member of the Australasian Institute of Mining and Metallurgy. Mr Hibberd is a full time employee of the Company. Mr Hibberd has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code)'. Mr Hibberd consents to the inclusion of this information in the form and context in which it appears in this report.

Appendix 1

The following information is provided to comply with the JORC Code (2012) requirements for the reporting of the Exploration Results and Mineral Resource

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under	This ASX Release reports on exploration results from of the Company's Coronation Dam project area.
	investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling	Soil Sampling: Where conducted, prospects are sampled by manual scoop sampling on nominal 200m x 100m grid spacing or at nominal 100 by 50m grid. Samples collected consist of 100-200 grams of soil.
		Soil Analysis: Where conducted, XRF analysis is conducted on the fines from RC chips using a hand-held Olympus Innov-X Spectrum Analyser. These results are only used for onsite interpretation and preliminary base metal assessment subject to final geochemical analysis by laboratory assays.
		AC/RC Sampling: <i>Where conducted,</i> All samples from the RC drilling are taken as 1m samples. Samples are sent to Bureau Veritas Laboratories for assaying. Appropriate QAQC samples (standards, blanks and duplicates) are inserted into the sequences as per industry best practice. Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	The sample collar locations are picked up by handheld GPS. Soil samples were logged for landform, and sample contamination. Sampling was carried out under standard industry protocols and QAQC procedures.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	All samples are analyzed for base metals by X-Ray Fluorescence Spectrometry at the Bureau Veritas laboratory in Perth, Australia
Drilling Techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Where conducted, Air Core Drilling is conducted with a 600CFM/450PSI compressor, with 90mm (3.5 inch) diameter blade or face sampling hammer bit. RC drilling is conducted with a 1100CFM/750PSI compressor with 135mm (5.25inch) diameter face sampling hammer bit using industry standard processes.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	Calculated volume of 1m AC sample is 12.6 – 16.5 kg, RC is 22.5-30kg based on rock densities of 2.0 and 2.6 g/cm3. Sample bags were visually inspected for volume to ensure minimal size variation. Were variability was observed, sample bags were weighed. Sampling was carried out under standard industry protocols and QAQC procedures.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	No measures have been deemed necessary.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No studies have been carried out.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Drill samples have been geologically logged and have been submitted for petrological studies. Samples have been retained and stored. The logging is considered sufficient for JORC compliant resource estimations.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) Photography The total length and percentage of the relevant	Logging is considered qualitative.
Sub-sampling	The total length and percentage of the relevant intersections logged. If core, whether cut or sawn and whether quarter, half or	Refer to text in the main body of the announcement. Not Applicable- no core drilling was carried out.
techniques and sample preparation	all core taken.	··· č

Criteria	JORC Code Explanation	Commentary
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Samples were riffle split from 30kg or 16kg down to 3kg. Where samples were too wet to riffle split, samples were tube sampled.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique	Samples were collected using a face sampling hammer which pulverises the rock to chips. The chips are transported up the inside of the drill rod to the surface cyclone where they are collected in one metre intervals. The one metres sample is riffle split to provide a 2.5-3kg sample for analysis. Industry standard protocols are used and deemed appropriate.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples	At this stage of the exploration no sub sampling is undertaken.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling	The whole sample collected is pulverised to 75um in a ring mill and a 200g sub-sample is collected. A 2-30 gram sub sample of the pulverised sample is analysed. Field duplicates are not routinely collected.
	Whether sample sizes are appropriate to the grain size of the material being sampled	The sample sizes are considered to be appropriate to correctly represent the sought after mineralisation style.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The samples have been cast using a 12:22 flux with added sodium nitrate, to form a glass bead which has been analysed by XRF.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Ni, Co, Mg, Fe, Mn, Zn, Cu, Al, Cr, As, Ca, Si, Cl have been determined by X-Ray Fluorescence Spectrometry
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established	Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in house procedures.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections in drill samples have been verified by an executive director of the Company.
accajing	The use of twinned holes	Not Applicable.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	Primary data was collected using a set of standard Excel templates on paper and re-entered into laptop computers. The information was sent to WCN in-house database manager for validation and compilation into an Access database.
	Discuss any adjustment to assay data	No adjustments or calibrations were made to any assay data used in this report.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Sample locations were recorded using handheld Garmin GPS. Elevation values were in AHD RL and values recorded within the database. Expected accuracy is + or – 5 m for easting, northing and 10m for elevation coordinates.
		No down hole surveying techniques were used due to the sampling methods used.
	Specification of the grid system used.	The grid system is MGA_GDA94 (zone 51).
	Quality and adequacy of topographic control.	Topographic surface uses handheld GPS elevation data, which is adequate at the current stage of the project.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal drill sample spacing is 1 metre down hole. Each drill hole targets a specific target so there is no nominal drill spacing.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The mineralised domains have not yet demonstrated sufficient continuity in both geological and grade continuity to support the definition of Mineral Resource and Reserves, and the classifications applied under the 2012 JORC Code.
Orientation of data is	Whether sample compositing has been applied.	Not applicable.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The soil sampling method is used to provide a surface sample only.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to	No orientation based sampling bias has been identified in the data at this point.

Criteria	JORC Code Explanation	Commentary
	have introduced a sampling bias, this should be assessed and reported if material	
Sample security	The measures taken to ensure sample security.	Sample security is managed by the Company. Since at this stage these are field analyses, no sample transit security has been necessary.
Audits of reviews	The results of any audits or reviews of sampling techniques and data.	The Company carries out its own internal data audits. No problems have been detected.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting	The sample positions occur is located within Exploration Licenses E31/1101 which is 100% owned by White Cliff Minerals Limited or a subsidiary. The tenements are in good standing and no known
	along with any known impediments to obtaining a licence to operate in the area.	impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Extensive historical exploration for platinum, gold and nickel mineralisation has been carried out by Placer Dome, WMC, Comet Resources and their predecessors. Occurrences of nickel laterite mineralisation were identified but was deemed uneconomic at the time
Geology	Deposit type, geological setting and style of mineralisation.	The geological setting is of Archaean aged mafic and ultramafic sequences intruded by mafic to felsic porphyries and granitoids. Mineralisation is mostly situated within the regolith profile of the ultramafic units. The rocks are strongly talc-carbonate altered. Metamorphism is mid-upper Greenschist facies. The target mineralisation has yet to be identified but is analogous to Kambalda or Sally Malay style or nickel sulphide deposits.
Drill Hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Drilling detailed in Tables 1-3 in the main body of the announcement.
	 easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not 	
Data Aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	No length weighting has been applied due to the nature of the sampling technique. No top-cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not applicable for the sampling methods used.
	The assumptions used for any reporting of metal equivalent values should be clearly stated	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results: If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The sampling technique used defines a surficial geochemical expression. No information is attainable relating to the geometry of any mineralisation based on these results.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views`	Refer to figs. in the body of text.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results	All results are reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical	Nil.

Criteria	Explanation	Commentary
	survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	RAB/AC drilling will be used to further define the nature and extent of the geochemical anomalism, and to gain lithological information.