

MULTIPLE GRAPHITE ZONES FUTHER DEFINED AND EXPANDED AT NICANDA HILL

HIGHLIGHTS:

- Selected significant interesections of weighted average graphite carbon (GrC), include:
 - GBNC0004: 24m at 13.2% GrC within 90m at 9.34% GrC
 - **o** GBNC0011 : 12m at 12.9% GrC and 18m at 13.5% GrC within 70m at 10.1% GrC
 - GBNC0016 : 18m at 11% GrC within 36m at 9.9% GrC
- Phase 1 of drilling program (N1, N2 & S1) has clearly delineated the overall width of graphite mineralisation and has identified several high grade zones.
- Phase 2 drilling program now focused on testing the continuity of the multitude of interpreted high grade zones along the entire strike length
- Drilling tests mineralisation over 3.2km strike length
- Drilling to date has continued to demonstrated the continutity and consistency of graphite mineralisation

Triton Minerals Limited (ASX: TON, "Triton", "the Company") is pleased to confirm the next batch of assay results from the RC drilling program, has helped to better define and expand multiple high grade zones of the graphite mineralisation at Nicanda Hill.

Triton Minerals Managing Director Brad Boyle said "With the completion of the Phase 1 drilling program which was focused on drill sections N1, N2 and S1, the Company now has better understanding of the overall composition and structure of the very large, 1km wide, graphite mineralisation zone.

The results of the Phase 1 drilling program have helped Triton to refine the drilling program which is now structured to concentrate on intersecting the various high grade zones along the entire length of the strike zone at Nicanda Hill.

Further, the closed spaced drilling of the Phase 1 program continues to support the strategy of testing the full stratigraphic width and downdip extensions. In addition, this phase of drilling program is expected to provide the basis for an indicated component within an overall larger inferred JORC resource at Nicanda Hill to be estimated later this year.

These are very exciting results for Triton and they continue to show the world class potential of the Balama North project."

SIGNIFICANT ASSAY RESULTS

GBNC0011

GBNC0016

66

63

As of 25 July 2014, Triton has completed thirty six (36) RC drill holes and thirteen (13) diamond holes in the current drilling program on the Nicanda Hill prospect that has been designed to test the width and potential continuity of the interpreted graphitic zone as suggested by the conductive zones identified in VTEM data (Figure 4 below).

The additional assay results for RC drill holes, including the remainder of GBNC0004, GBNC0010 to GBNC0016 have been received and are shown in Figures 1, 2 and 3 and Tables 1 and 2.

Significantly, at a 5%GrC cut off, GBNC0004 has returned **90m** at **9.34%**GrC. Within this 90m intersection is a high grade interval at a 10%GrC cut off, which include **24m** at **13.18**%GrC.

At a 5%GrC cut off, GBNC0011 has returned **70m** at **10.1%** GrC. Within this 70m intersection are high intervals at 10%GrC cut off, which includes **12m** at **12.9%** and **18m** at **13.5%**.

Hole Id	From (m)	To (m)	Interval (m)	%GrC	Cut Off (%GrC)
GBNC0004	3	93	90	9.34	5
GBNC0010	64	148	84	9.62	5
GBNC0011	8	78	70	10.11	5
GBNC0014	17	36	19	9.57	5
GBNC0015	65	141	76	9.10	5
GBNC0016	57	93	36	9.85	5
GBNC0004	9	33	24	13.18	10
GBNC0011	16	34	18	13.50	10

Table 1. Significant Intersections

12

18

12.90

11.00

10

10

78

81

28 July 2014

Drill Section	Drill Type	Hole Id	Northing	Easting	RL	Total Depth (m)	Azimuth/Dip	Cut Off Graphite C%	From (m)	To (m)	Interval (m)	%GrC
N2	RC	GBNC0004	477719.15	8543151	505.9	124	120/-60	5	3	93	90	9.34
		GBNC0004						5	97	105	8	7.65
		GBNC0004						5	111	117	6	11.13
S1	RC/DD	GBNC0010	477431.1	8542854	501.8	290.66	120/-60	5	10	16	6	7.56
		GBNC0010						5	38	60	22	8.19
		GBNC0010						5	64	148	84	9.62
S1	RC	GBNC0011	477345.78	8542902	498	118	120/-60	5	8	78	70	10.11
		GBNC0011						5	97	107	10	5.66
S1	RC	GBNC0012	477259.05	8542957	496.6	90	120/-60	5	7	17	10	8.97
		GBNC0012						5	25	35	10	8.26
		GBNC0012						5	53	71	18	8.29
N1	RC	GBNC0013	477446.56	8543077	498.8	150	120/-60	5	2	14	12	9.17
		GBNC0013						5	23	35	12	9.28
		GBNC0013						5	39	55	16	7.34
		GBNC0013						5	69	101	32	7.98
		GBNC0013						5	118	136	18	6.34
		GBNC0013						5	144	150	6	5.36
N1	RC	GBNC0014	477358.33	8543125	495.4	150	120/-60	5	17	36	19	9.57
		GBNC0014						5	40	92	52	7.59
		GBNC0014						5	99	111	12	7.92
		GBNC0014						5	115	150	35	8.91
N1	RC	GBNC0015	477274.03	8543183	492.4	150	120/-60	5	6	14	8	8.97
		GBNC0015						5	30	52	22	8.65
		GBNC0015						5	65	141	76	9.10
N1	RC	GBNC0016	477289.74	8543413	489	150	120/-60	5	7	15	8	7.24
		GBNC0016						5	19	51	32	7.83
		GBNC0016						5	57	93	36	9.85
		GBNC0016						5	100	114	14	8.05
		GBNC0016						5	117	126	9	6.50
		GBNC0016						5	134	146	12	6.77
N1		GBNC0017	477980.2	8543001	535.1	125	120/-60	5	10	28	18	6.99
N2	RC	GBNC0004	477719.15	8543151	505.9	124	120/-60	10	9	33	24	13.18
		GBNC0004						10	53	61	8	11.39
S1	RC	GBNC0010	477431.1	8542854	501.8	290.66	120/-60	10	44	50	6	11.30
		GBNC0010						10	76	82	6	10.87
		GBNC0010						10	110	116	6	10.30
		GBNC0010						10	130	138	8	12.50
S1	RC	GBNC0011	477345.78	8542902	498	118	120/-60	10	16	34	18	13.50
		GBNC0011						10	66	78	12	12.90
N1	RC	GBNC0014	477358.33	8543125	495.4	150	120/-60	10	17	23	6	11.80
		GBNC0014						10	76	84	8	10.41
		GBNC0014						10	123	131	8	11.38
N1	RC	GBNC0015	477274.03	8543183	492.4	150	120/-60	10	113	121	8	12.28
N1	RC	GBNC0016	477289.74	8543413	489	150	120/-60	10	63	81	18	11.00

Table 2. Significant Intersections

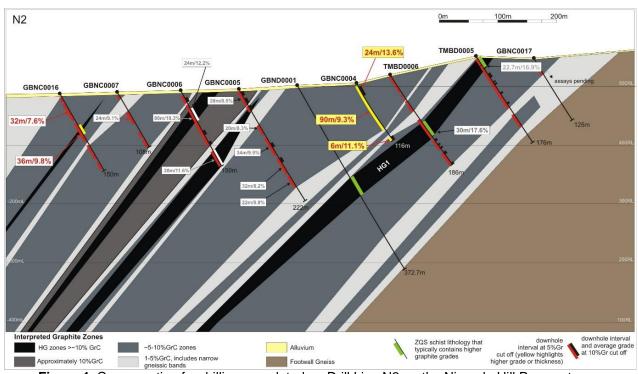


Figure 1. Cross section for drilling completed on Drill Line N2 on the Nicanda Hill Prospect

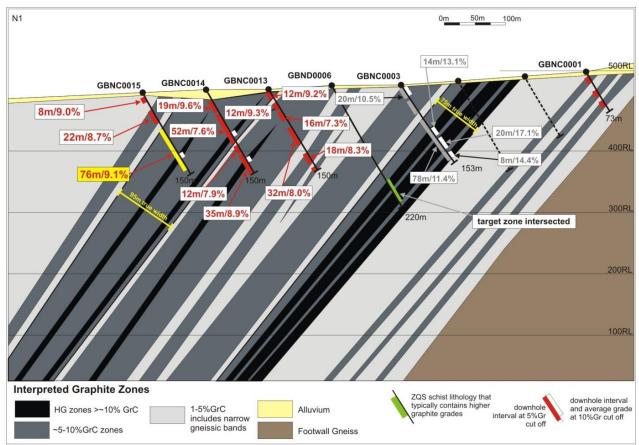


Figure 2. Cross section for drilling completed on Drill Line N2 on the Nicanda Hill Prospect

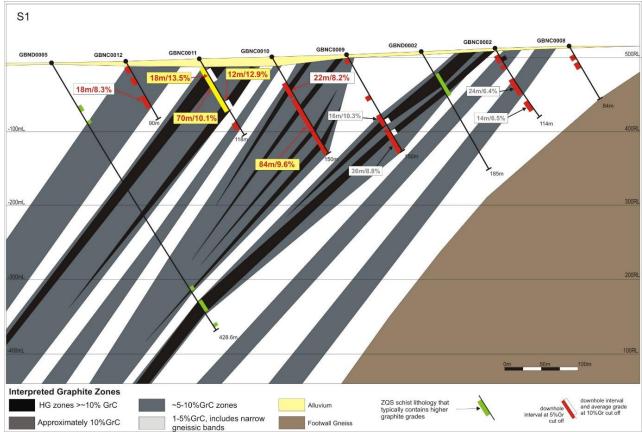
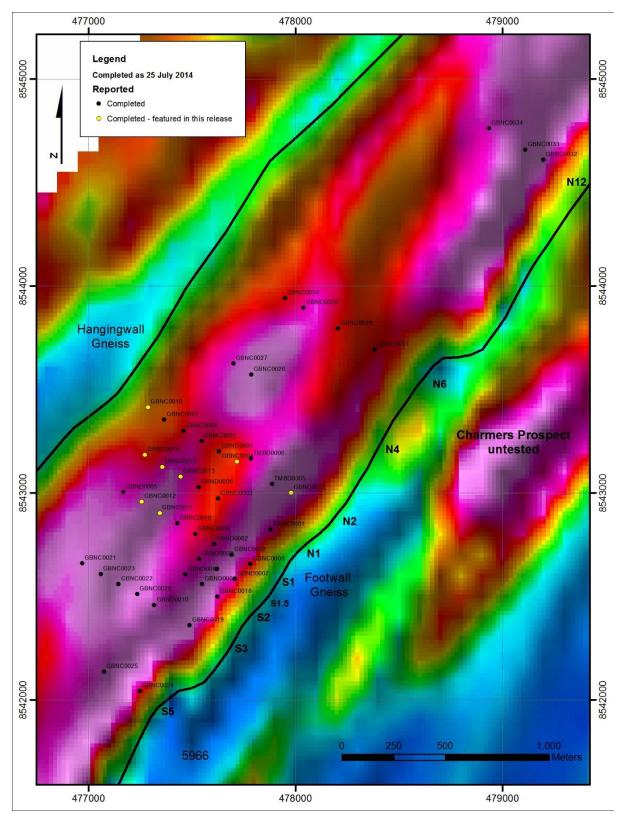


Figure 3. Cross section for drilling completed on Drill Line S1 on the Nicanda Hill Prospect

Phase 1 of the drilling program was focused on drill sections N1, N2 & S1, which has now clearly delineated the overall size of graphite mineralisation area, whilst identifying the multiple high grade zones including HG1.


The completion of the Phase 1 drilling program, has provided Triton a more thorough understanding of the composition and structure of the graphite mineralisation zone.

This knowledge has allowed the Company to better refine Phase 2 of the drilling program, to focus on the continuity and intersection the various high grade zones along the entire length of the graphite mineralisation strike zone at the Nicanda Hill prospect, which is up to 5kms in length.

The drilling has now confirmed and extended the known graphite minerlisation strike length to **3.2kms** between drill sections N12 and S5 (Figure 4). This is supported by the encouraging graphitic returns being logged in RC holes GBNC0024 to GBNC0036 (Appendix 3) and extensive graphitic outcropping sighted near drill section N12.

Once again the drilling to date has continued to demonstrate the continuity and consistency of graphite mineralisation and the strong correlation with the VTEM survey data.

Figure 4. Location of completed RC and Diamond drill holes on the Nicanda Hill Prospect. Base image is the 50m conductivity depth slice from the VTEM survey overlain by elevation contours highlighting the topographic high of Nicanda Hill and the ridge east of Cobra Plains. The drill lines N1, N2 and S1 are presented in Figures 1, 2 and 3.

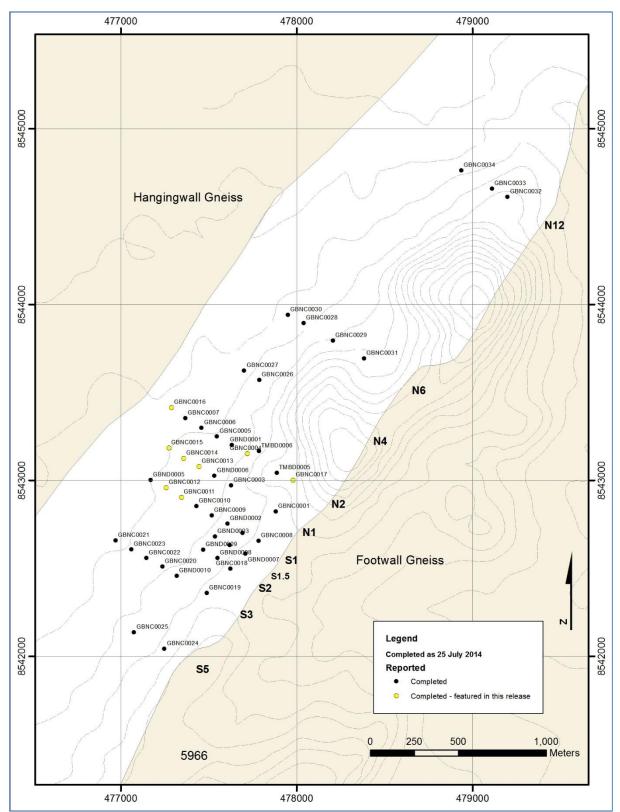


Figure 5. Nicanda Hill prospect drill hole location plan

KEY POINTS

- The reported results reaffirm the multiple high grade graphite zones of substantial widths along the entire length of all drill holes completed to date.
- Further, these results continue to verify the continuity and consistency of previously identified high grade zones.
- These latest observations demonstrates good continuity and consistency in the graphite mineralisation over a considerable distance of 3.2km.
- Several individual zones form true widths of up to 95m.
- Phase 2 drilling now focused on intersecting the high grade zones.
- The drilled graphite mineralization intersections correlate strongly with the zone of high electrical conductivity defined by the VTEM survey data.

ONGOING EXPLORATION

Presently the drilling has demonstrated a width of over 1,000m of graphite mineralisation at surface (extended with GBNC0016) and over 400m vertically. Additional holes are planned to the northwest of hole GBNC0016, to close off the zone of graphite mineralisation on drill line N2.

The Company is yet to drill on of the peaks of the western slopes of Nicanda Hill, which appears to give rise to an intense VTEM response. Recent survey data confirms that the peaks of the Nicanda Hill has an elevation of more than 90m above the height of collars of the current drilled holes.

These drilling results continue to expand the depths and width of the defined graphite mineralization zone on the Nicanda Hill prospect, with the zone still remaining open to the north, south and west.

A systematic multi-element assaying program is now underway to assess the potential for economic concentrations of vanadium as is suggested by the multiple occurrences of vanadium hosting roscoelite (K(V3+,AI,Mg)2AISi3O10(OH)2) mineralization in the drill samples returned to date.

28 July 2014

IMPLICATIONS

These drilling results continue to demonstrate that the Balama North project can potentially host a market leading and world class high grade graphite deposit and could become one of the **largest high-grade graphite projects in the world**.

Regards

Brad Boyle Managing Director Triton Minerals Ltd

For further information, please contact:

Brad Boyle Managing Director Tel: + 61 8 6489 2555 Email: bboyle@tritonmineralsltd.com.au Michael Brady General Counsel & Company Secretary Tel: + 61 8 6489 2555 Email: mbrady@tritonmineralsltd.com.au

Competent Person's Statement

The information in this report that relates to Exploration Results on Balama North project is based on, and fairly represents, information and supporting documentation prepared by Mr. Alfred Gillman, who is a Fellow of Australian Institute of Mining and Metallurgy (CP Geol). Mr. Gillman is a Non-Executive Director of the Company. Mr. Gillman has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Mineral Resources and Ore Reserves (the JORC Code)'. Mr. Gillman consents to the inclusion in this report the exploration results and the supporting information in the form and context as it appears.

The information in this announcement that relates to Exploration Results on Balama North project is extracted from the reports entitled ASX Release "High Grade Graphite Discovery at Nicanda Hill" created 22 January 2014 and ASX Release "Exceptional Graphite Interceptions At Nicanda Hill" created 19 May 2014, ASX Release "Significant High-Grade Graphite Intersected At Nicanda Hill" created 23 June 2014 and are available to view on www.tritonmineralsltd.com.au The reports were issued in accordance with the 2012 Edition of the JORC Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not necessarily limited to, statements concerning Triton Minerals Limited's planned exploration program and other statements that are not historic facts. When used in this document, the words such as "could", "plan", "estimate" "expect", "intend", "may", "potential", "should" and similar expressions are forward-looking statements. Although Triton Minerals Limited believes that its expectations reflected in these are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.

TRITON MINERALS LTD

28 July 2014

Appendix 1

Table 1. Drill holes information GBNC0001 to GBNC00036, GBND0001 to GBND0013 andTMBD0005 and TMBD0006.

Hole_ID	Drill Type	North	East	RL	Total Depth (m)	Dip	Azimuth
GBNC0001	RC	8542823.7	477881.9	522.6	72.0	-60	150
GBNC0002	RC	8542701.2	477693.8	513.8	114.0	-60	150
GBNC0003	RC	8542972.8	477628.1	506.5	153.0	-60	150
GBNC0004	RC	8543151.2	477719.2	505.9	124.0	-60	150
GBNC0005	RC	8543251.1	477547.6	496.5	222.0	-60	150
GBNC0006	RC	8543298.3	477460.4	493.9	150.0	-60	150
GBNC0007	RC	8543353.8	477367.4	490.9	108.0	-60	150
GBNC0008	RC	8542656.6	477784.2	517.3	84.0	-60	150
GBNC0009	RC	8542800.8	477518.0	504.7	150.0	-60	134
GBNC0010	RC/DD	8542853.6	477431.1	501.8	290.7	-60	150
GBNC0011	RC	8542902.2	477345.8	498.0	118.0	-60	150
GBNC0012	RC	8542957.0	477259.1	496.6	90.0	-60	150
GBNC0013	RC	8543077.4	477446.6	498.8	150.0	-60	120
GBNC0014	RC	8543124.7	477358.3	495.4	150.0	-60	120
GBNC0015	RC	8543183.1	477274.0	492.4	150.0	-60	120
GBNC0016	RC	8543413.3	477289.7	489.0	150.0	-60	120
GBNC0017	RC	8543000.5	477980.2	535.1	125.0	-60	120
GBNC0018	RC	8542498.7	477625.1	518.5	90.0	-60	120
GBNC0019	RC	8542361.2	477490.3	518.0	100.0	-60	120
GBNC0020	RC	8542511.2	477237.6	505.5	150.0	-60	120
GBNC0021	RC	8542659.7	476971.8	496.3	150.0	-60	120
GBNC0022	RC	8542559.6	477146.7	502.3	150.0	-60	120
GBNC0023	RC	8542608.4	477061.4	498.0	108.0	-60	120
GBNC0024	RC	8542043.9	477249.3	521.6	82.0	-60	120
GBNC0025	RC	8542137.7	477076.3	510.4	84.0	-60	120
GBNC0026	RC	8543571.9	477788.1	495.0	150.0	-60	120
GBNC0027	RC	8543624.5	477702.0	489.1	114.0	-60	120
GBNC0028	RC	8543893.9	478041.0	490.6	150.0	-60	120
GBNC0029	RC	8543794.4	478207.1	499.5	150.0	-60	120
GBNC0030	RC	8543940.7	477950.6	486.6	150.0	-60	120
GBNC0031	RC	8543692.6	478383.4	506.8	150.0	-60	120
GBNC0032	RC	8544610.3	479199.2	499.0	102.0	-60	120
GBNC0033	RC	8544658.2	479111.5	493.7	150.0	-60	120
GBNC0034	RC	8544761.2	478935.9	479.1	186.0	-60	120
GBNC0035	RC	collar survey pending			200.0	-60	120
GBNC0036	RC	collar survey pending			150.0	-60	120

Appendix 1 (Cont.)

GBND0001	DD	8543201.0	477632.0	501.2	372.7	-60	120
GBND0002	DD	8542753.5	477608.3	508.8	184.8	-60	120
GBND0003	DD	8542680.7	477536.3	515.0	155.6	-60	120
GBND0004	DD	8542631.7	477620.9	512.9	161.7	-60	120
GBND0005	DD	8543003.1	477170.5	493.9	428.6	-60	120
GBND0006	DD	8543027.6	477533.9	501.6	242.5	-60	120
GBND0007	DD	8542583.4	477708.9	518.9	113.4	-60	120
GBND0008	DD	8542559.2	477550.4	512.6	134.5	-60	120
GBND0009	DD	8542606.2	477469.4	508.5	200.4	-60	120
GBND0010	DD	8542457.7	477319.2	509.6	185.5	-60	120
GBND0011	DD	collar survey pending			152.5	-60	120
GBND0012	DD	collar survey pending			152.6	-60	120
GBND0013	DD	collar survey pending			220	-60	120
TMBD0005	DD	8543043.0	477889.0	552.0	176.5	-55	136
TMBD0006	DD	8543166.0	477787.0	542.0	185.6	-55	134

Appendix 2

Balama North Project (Licence 5966 & 5365) Operated under Agreement between Triton Minerals and Grafex Lda. Information pertaining to drill data.

JORC Table 1 - Section 1 Sampling Techniques and Date	J	ORC	Table 1	- Section	1 Samp	oling Te	echniques	and Data
---	---	-----	---------	-----------	--------	----------	-----------	----------

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	The Nicanda Hill prospect is located on the Balama North Project. The new drill results included in this report were obtained from Reverse Circulation (RC) and Diamond drilling. The nominal hole spacing of the current program is 100m x 400m. Diamond drill holes will be interspersed within the planned drill grid to provide qualitative information on structure and physical properties of the mineralization. Holes were drilled -60 degrees towards UTM south east to optimally intersect the mineralised zones.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Drillhole locations were picked up by differential GPS (with nominal error of +- 0.5 metres) and reported using the World Geodetic System (1984 Spheroid and Datum; Zone 37 South). Downhole surveys of the RC and Diamond holes were measured using a Reflex single shot downhole survey tool. The collar surveys were validated with the use of a compass and inclinometer. RC samples have been collected using a riffle splitter to obtain a 1/8 th sample, which is split and combined to produce 2m composite samples. Efforts are taken to keep the RC drill sample material dry during drilling to avoid any bias. Wet samples are dried before riffle splitting and recorded to monitored results for bias.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	Reverse circulation drilling was used to obtain 1m samples collected in a large bag and passed through a 3-tier riffle splitter to generate 1/8 th samples (approximately 3kg) contained in a labelled calico bag and the residual 7/8 th is retained at the drill site in the large bag. Where wet samples are encountered, the 3kg sample is allowed to dry before passing through the second stage (50:50) riffle splitter described below. The 3kg RC samples are split using a 50:50 splitter with one half combined with the half split of the next consecutive 1m sample to produce a 2m composite sample. This sample will be pulverised (total prep) by the lab to produce a sub sample for assaying. In addition, select RC samples will be submitted for multi-element analysis (55 elements) by sodium peroxide fusion with an ICP-AES finish. The diamond drill core samples are prepared as quarter core using diamond impregnated blade core saw. Samples general are defined on the basis of geological contacts and range in drill hole intersections of 1.5 to 3m, with most approximately 2m.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	The reverse circulation drill rig uses a 5.5 inch size hammer. Hole depths range up to a maximum depth of 222m (rig capability limit). The diamond drill holes are drilled with a PQ core size collar (typically around 30m deep) and HQ3 (61.1mm diameter) core size to the end of hole. Core is oriented using the Reflex ACTII tool.

Criteria	JORC Code explanation	Commentary		
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	The condition and a qualitative estimate of RC sample recovery was determined through visual inspection of the 1m sample bags and recorded at the time of sampling. A hard copy and digital copy of the sampling log is maintained for data verification. Generally drill core recovery is above 95% below the base of oxidation. Core recovery is measured and compared directly with drill depths to determine sample recoveries.		
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking. Depths are checke against the depth given on the core blocks and rod counts ar routinely carried out by the drillers. RC samples were visually checked for recovery, moisture and contamination. Water entrainment into the sample is minimized through the use of additional high pressure air supply down hole. Wet samples are recorded as these generally have lower sample recovery.		
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Comparisons of RC and Diamond drill sample material on the neighbouring Cobra Plains deposit showed no statistically significant bias associated with the RC drill technique. Extensive diamond drilling will be carried out as part of this program to confirm the QAQC paramters of the sample material. Similar statitistical assessments of the sample result bias will be undertaken for the current drill program.		
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Geological logging is carried out on holes for the full mineral assemblage that can be identified in hand specimen, in addition to texture, structure and estimates of graphite flake content and size. Geotechnical logging is carried out on all diamond drillholes fo recovery, RQD and number of defects (per interval). Information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material is stored in the structure table of the database. The mineralogy, textures and structures are recorded by the geologist into a digital data file at the drill site, which are regularly submitted to the Perth office for compilation and validation.		
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of RC and Diamond drill holes includes recording lithology, mineralogy, mineralisation, weathering, colour and other features of the samples. RC Chip trays and diamond core trays are photographed. Geological descriptions of the mineral volume abundances and assemblages are semi-quantitative.		
	The total length and percentage of the relevant intersections logged	All drillholes are logged in full.		
Sub-sampling techniques and sample preparation	lf core, whether cut or sawn and whether quarter, half or all core taken.	Diamond core (HQ3) will be cut into quarter core onsite using a diamond impregnated blade on a brick saw. Quarter core samples generally 2 metres or less in core length will be submitted to the lab labelled with a single sample name. Each approximately 2m sample will be crushed and a 300g split will be taken. For pulverisation. Samples are generally defined according to geological unit boundaries. A batch of duplicate samples to sampled quartered core will be submitted to the same lab to investigate if any statistical bias is associated with the quarter compared to half core. The results of this study will be used to determine the appropriate sample methodology for future drill holes.		

28 July 2014

Criteria	JORC Code explanation	Commentary
	lf non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples are collected on the rig using two riffle splitters. The majority of samples are dry. Two metre composite samples are generated by taking the 1m samples from the drill cyclone into a large bag and passing this material through a 3- tier riffle splitter to generate 1/8 th samples (approximately 3kg) contained in a labelled calico bag and the residual 7/8 th is retained at the drill site in the large bag. The 3kg RC samples will be split using a 50:50 splitter to and one half is to be combined with the half split of the consecutive 1m sample, producing a 2m composite sample. were generated for drilled intersections with visible graphite (>0.5% graphite). Where wet samples are encountered, the 3kg sample produced from the 1/8 th splitter is left to dry before passing through the 50:50 splitter. The typical composite sample size is 3 to 4kg.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation of the diamond core samples follows industry best practice in sample preparation involving oven drying ($105^{\circ}C$), coarse crushing of the diamond core sample down to ~2 mm, split (500g) and pulverizing to a grind size of 85% passing 75 micron. The sample preparation for RC samples is identical, without the coarse crush stage.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Field QC procedures involve the use of two certified reference material assay standards, along with certified blanks, and insertion of field duplicates. Certified standards are inserted at a rate of 1 in 25 (DD, RC and rock chip samples), duplicates were inserted at a rate of 1 in 20 and blanks are inserted at a rate of 1 in 50. QAQC samples are submitted with the rock chip samples.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field duplicates are taken on 2m composites for RC, using a riffle splitter. Field duplicates are taken as quarter core splits for diamond core.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The drill sample sizes are considered to be appropriate to correctly represent mineralisation at the Balama North project based on the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and percent value assay ranges for the primary elements.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical techniques to be used to analyse all samples for Graphitic Carbon, Total Sulphur, and Total Carbon on a Leco Combustion Infrared Detection instrument. Detection limits for these analyses are considered appropriate for the reported assay grades. In addition, selected drill samples will be analysed for multi- element abundances using a fused disc digested in a four acid digest with ICP/OES or ICP/MS finish The acids used are hydrofluoric, nitric, perchloric and hydrochloric acids, suitable for silica based samples. The method approaches total dissolution of most minerals.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations.

FRITON MINERALS LTD

28 July 2014

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The RC and diamond core samples are submitted to the lab with blind certified standards (4 per 100 samples), blanks (2 per 100 samples) and field duplicates (5 per 100 samples). These QAQC samples represent 11% of the unknown samples analysed. Twinned RC and diamond holes provided a means of evaluatin any bias associated with sampling and drill technique. From the Cobra Plains drilling, field duplicate datasets showed stron correlation coefficients (0.92 for the diamond samples and 0.98 for RC samples), indicating good repeatability of grades between paired samples. Sample preparation checks for fineness will be carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75 micron was being attained. Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, and repeats as part of their in house procedures. Repeat analysis for samples reveals that precision of samples is within acceptable limits. A selection of the 1/8th riffle split samples will be submitted for umpire assays to SGS and an independent laboratory as independent checks of the assay results. Umpire laboratory campaigns using other laboratories is yet to be undertaken.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Carl Young of Model Earth Geological Global Services, a consultant for Triton, has visually verified the geological observations of most of the reported RC and Diamond drill holes. The geological of all drill chips and core is undertaken by by trained geological staff on site.
	The use of twinned holes.	Three RC holes were twinned with diamond holes at the neighbouring Cobra Plains deposit to investigate sample bias related to the RC drill and sampling methods. The mineralisation zones within the holes show a reasonable correlation. Though the grade graphs suggest that the diamond holes are reporting higher graphitic carbon grades than the RC holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Sample information is recorded at the time of sampling in electronic and hard copy form. Assay data is received from SGS in electronic form and compiled into the Company's digita database. Secured electronic print files have been provided to the Company for verification purposes.
	Discuss any adjustment to assay data.	No adjustments or calibrations are made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar locations for all GNBC and GBND holes were surveyed with a differential GPS. The drillholes with the prefix TMB (drilled in 2013) were surveyed by hand-held GPS (nominal error of 5 metres). Drill holes were oriented at the collar using sighting pegs installed with the use of a magnetic compass and GPS. The dip of all RC holes is recorded for the collar only and no downhole surveys were taken. The dip and azimuth of all DD holes is measured by the drll company using a Reflex singleshot downhole survey tool. Readings were taken at the completion of the hole at an interval spacing of 30 m on the diamond holes, and at the collar and end of hole on the RC holes. Stated accuracy of the tool is is +-1°. Downhole survey measurements considered to be poor qualit are coded as 'Priority 2' and are e excluded from the drill location calcuations.
	Specification of the grid system used.	The grid system for Balama North Project area is World Geodetic System (1984 Spheroid and Datum; Zone 37 South).

FRITON MINERALS LTD

Criteria	JORC Code explanation	Commentary
	Quality and adequacy of topographic control.	Topographic surface for drill section is based on the differential GPS coordinates for the drill holes.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	The nominal drillhole spacing is 100 m on drill lines spaced 400m apart. The drill lines have a bearing of 120° (UTM grid northeast).
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The current data spacing and distribution is insufficient for the purpose of estimating a mineral resources for Nicanda Hill prospect. On completion of the current drill program and the receipt of all necessary data, the Company will undertake an estimation of the resource for the Nicanda Hill prospect.
	Whether sample compositing has been applied.	Samples have been composited to a maximum of two metres for RC samples. Most diamond core samples are taken as approximately 2m lengths of quarter core, with few samples of upto 3m in length of core for zones of low graphite. Diamond core sample breaks corresponding to geological boundaries.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The deposit is drilled towards the south east (magnetic grid) at approximately -60° to intersect the mineralised zones approximately orthogonal to the interpreted dip and strike of the geological units. Several characteristic geological units have been delineated in several drill holes giving a higher degree of confidence in the attitude and orientation of the graphite mineralisation. Near continuous sampling of all geological units bearing graphite is routinely undertaken.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Local increased graphite abundances are observed proximal to small-scale folding and thin tonalite veins. The orientation of these folds and veins is generally parallel to the attitude of the graphitic schist and mineralisation. Thus, the current drilling is not expected to produce any biased samples.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by Triton. Samples are stored at a secure yard on the project prior to shipping to SGS in South Africa. Any visible signs of tampering of the samples are reported by the lab. A chain of custody has been maintained for the shipment of the samples to South Africa.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	A QAQC review of the sampling data from the drill holes at Cobra Plains was carried out by Optiro as part of the resource estimate for the Cobra Plains deposit. This deposit is located to the southeast of Nicanda Hill. The Cobra Plains database was considered by Optiro to be of sufficient quality to carry out that resource estimation. No reviews or audits of sampling techniques were undertaken by Optiro or any other external consultant. The QAQC samples inserted with the reported RC chip samples returned values within the expected value ranges. On this basis, the reported drill assay results are considered representative and suitable for assessing the graphite grades of the intersected graphite mineralisation.

28 July 2014

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Cobra Plains Deposit and the Nicanda Hill Prospect are located wholly within Exploration Licences EL5365 and EL5966 respectively within the Cabo Delgado Province of Mozambique. Both licences are held by Grafex Limitada (Grafex), a Mozambican registered company. Triton Minerals entered into a Joint Venture (JV) agreement in December 2012 with Grafex to earn up to an 80% interest in Grafex's portfolio of graphite projects. In late 2013 Triton increased their holding in the projects to 60% by taking a direct equity interest in Grafex. EL5365 is valid until 29/10/2017 and EL5966 is valid until 19/06/2018.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All statutory approvals have been acquired to conduct exploration and Triton Minerals has established a good working relationship with local stakeholders
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	No previous systematic exploration has been undertaken at the Cobra Plains or the Nicanda Hill Prospects of the Balama North Project. The Company has acquired the data from an airborne electromagnetic survey that covers Licences 5966 and 5365. This data has been reprocessed and interpreted with some results included in this release. Small scale exploratory pits dug for ruby and/or graphite exploration have been identified. Data or reports disclosing the results of this work have not been located.
Geology	Deposit type, geological setting and style of mineralisation.	The Cobra Plains graphite deposit is hosted within Neoproterozoic rocks of the Xixano Complex in north-eastern Mozambique. The Xixano complex is composed dominantly of mafic to intermediate orthogneiss with intercalations of paragneiss, meta-arkose, quartzite, tremolite-rich marble and graphitic schist. Graphite mineralisation is hosted within fine grained graphitic schists underlain and overlain by felsic gneiss rock types. Mineralisation occurs as series of multiple stacked tabular northeast-southwest striking lodes moderately dipping to the northwest. Graphite mineralisation outcrops at surfaces and has been intersection at down hole depths of up to 428.55m below surface. Graphitic mineralisation is interpreted to be continuous between the Cobra Plains and the Nicanda Hill Prospects of the Balama North Deposit, based on the interpretation of the airborne electromagnetic survey data and drill results. Occurrences of vanadium mineralisation noted in the samples is thought to be associated with quartz muscovite <u>+</u> roscoelite schists.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Refer to Appendix 1 – Table 1.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No top cut applied Minimum composite width = 2m Maximum internal dilution = 2m Weighted average grades calculated using the Surpac High Grade reporting function using the above parameters

JORC Table 1 - Section 2 Reporting Of Exploration Results

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	The significant weighted average graphite carbon (GrC) intersections reported were calculated as core-length weighted assay intercepts. The intersection calculations were made applying a maximum internal dilution of 2m for material below the GrC cutoff grade and a minimum composite width of 2m. Two sets of significant intercepts are reported at cutoff grades of 5% and 10% GrC.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The graphite schists and tonalite gneiss units dip moderately northwest based on outcrop exposures and measured structure in the oriented diamond drill holes. All GNBC drill holes are inclined -60° to the southeast to intersect the mineralised zones approximately orthogonal to the interpreted dip and strike of the geological boundaries. The reported intersections are considered to be near to true intercept widths.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figure 1 to 5 in the body of the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Assays for all drill holes except GBNC0003 and the upper part of GBNC005 are outstanding.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Selected core samples from all diamond drill holes are measured for bulk densities. This, and additional data from future drill holes will be used to estimate average densities for rock types. Multi element assaying was conducted on selected zones in the diamond drill holes TMBD0005 and TMBD006. Geotechnical logging is routinely carried out on all diamond drillholes for recovery, RQD and number of defects (per interval). Information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material is stored in the structure table of the database. Regional scale mapping has been carried out in the area to identify outcrop of graphitic material. This mapping is ongoing.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Further drill testing using reverse circulation and diamond drilling is underway on the Nicanda Hill prospect to determine the grade continuity and width of the graphitic units. Exploration activities resumed in April 2014.

Appendix 3

Geological information for GBNC0024 to GBNC0036

hole_id	depth from	depth to	lith_1	lith_2	MIN1	MIN1 PCT	MIN2	MIN2 PCT	MIN3	MIN3 PCT	MIN4	MIN4 PCT
GBNC0024	0.00	3.00	OGVL		QZ	100						
GBNC0024	3.00	4.00	ZS-QZBIGR		QZ	75	MU	20	GR	5		
GBNC0024	4.00	7.00	OGVL		QZ		MU		PL			
GBNC0024	7.00	13.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	75	MU	18	GR	5	RS	2
GBNC0024	13.00	29.00	ZS-QZMURSGR		QZ	65	MU	18	GR	8	RS	8
GBNC0024	29.00	35.00	ZS-QZMURSGR		QZ	70	MU	20	GR	5	RS	5
GBNC0024	35.00	37.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	70	MU	18	GR	5	RS	5
GBNC0024	37.00	45.00	ZS-QZMUBIGR		QZ	60	MU	15	BI	6	GR	4
GBNC0024	45.00	46.00	ZGI-PLQZMU		QZ	60	PL	20	MU	20		
GBNC0024	46.00	54.00	ZS-QZMUBIGR		QZ	72	MU	10	BI	10	GR	5
GBNC0024	54.00	58.00	ZGI-PLQZMUBI		QZ	50	PL	30	MU	15	BI	5
GBNC0024	58.00	63.00	ZS-QZBI		QZ	70	BI	30				
GBNC0024	63.00	68.00	ZS-QZMU		QZ	80	MU	20				
GBNC0024	68.00	74.00	ZS-QZBI		QZ	70	BI	30				
GBNC0024	74.00	79.00	ZS-QZMU		QZ	80	MU	20				
GBNC0024	79.00	80.00	ZS-QZBI		QZ	70	BI	30				
GBNC0024	80.00	81.00	ZS-QZMU		QZ	80	MU	20				
GBNC0025	0.00	1.00	OGVL		QZ	100						
GBNC0025	1.00	3.00	ZS-QZBIGR	OGVL	QZ	88	MU	10	GR	2		
GBNC0025	3.00	11.00	ZGI-PLQZMU	0012	QZ	45	PL	45	MU	10		
GBNC0025	11.00	16.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	73	MU	20	GR	5	RS	2
GBNC0025	16.00	21.00	ZS-QZMURSGR	LOITEQLINO	QZ	70	MU	20	GR	7	RS	3
GBNC0025	21.00	21.00	ZS-QZMUGR		QZ	80	MU	18	GR	2	11.5	5
GBNC0025	21.00	32.00	ZS-QZMURSGR		QZ	70	MU	20	GR	7	RS	3
GBNC0025	32.00	46.00	ZGI-PLQZMU		QZ	60	MU	30	PL	10	113	5
GBNC0025	46.00	48.00	ZS-QZMURSGR		QZ	70	MU	20	GR	7	RS	3
GBNC0025	40.00	48.00	ZS-QZMU			70	MU	30	GR	,	113	5
GBNC0025		62.00			QZ QZ	70	MU	20	GR	7	RS	3
GBNC0025	49.00 62.00	64.00	ZS-QZMURSGR ZS-QZMU	ZS-QZBI	QZ	70	MU	20	BI		кэ	3
GBNC0025	64.00	84.00	ZS-QZMURSGR	23-Q2BI	QZ	69	MU	20	GR	10 7	RS	3
					QZ	09	IVIO	20	GK	/	NJ	3
GBNC0028	0.00	1.00	NREC	OCNID	07	100						
GBNC0028	1.00	2.00	OGVL	OSND	QZ	100	07	40				
GBNC0028	2.00	4.00	ZGI-PLQZ	OGVL	PL	60	QZ	40				
GBNC0028	4.00	7.00	OGVL	ZS-QZMURSGR	QZ	100		10				
GBNC0028	7.00	10.00	ZS-QZMURSGR		QZ	75	MU	19	GR	5	RS	1
GBNC0028	10.00	46.00	ZS-QZMURSGR		QZ	67	MU	19	GR	6	RS	4
GBNC0028	46.00	47.00	VQZ		QZ	100						
GBNC0028	47.00	74.00	ZS-QZMUBIGR		QZ	70	MU	15	GR	6	BI	4
GBNC0028	74.00	80.00	ZS-QZMURSGR		QZ	67	MU	19	GR	6	RS	4
GBNC0028	80.00	82.00	VQZ		QZ	100						
GBNC0028	82.00	142.00	ZS-QZMURSGR		QZ	70	MU	17	RS	6	GR	5
GBNC0028	142.00	143.00	VQZ		QZ	100						
GBNC0028	143.00	150.00	ZS-QZMURSGR		QZ	70	MU	17	RS	6	GR	5
GBNC0029	0.00	2.00	OGVL	OSND	QZ	100						
GBNC0029	2.00	19.00	ZS-QZMUGR	ZS-QZMU	QZ	70	MU	28	GR	2		
GBNC0029	19.00	61.00	ZS-QZMURSGR		QZ	69	MU	20	GR	7	RS	3
GBNC0029	61.00	80.00	ZS-QZMUBIGR		QZ	70	MU	15	GR	7	BI	4
GBNC0029	80.00	99.00	ZS-QZMURSGR		QZ	69	MU	20	GR	7	RS	3
GBNC0029	99.00	100.00	VQZ		QZ	100						
GBNC0029	100.00	124.00	ZS-QZMURSGR		QZ	69	MU	20	GR	7	RS	3
GBNC0029	124.00	125.00	VQZ		QZ	100						
GBNC0029	125.00	150.00	ZS-QZMUBIGR	ZGI-PLQZ	QZ	70	MU	15	GR	8	BI	4

GBNC0030	0.00	2.00	06)//	1	07	100		I	1			
GBNC0030 GBNC0030	0.00	2.00 10.00	OGVL ZS-QZBIGR	OGVL	QZ QZ	100 77	MU	20	GR	3		
GBNC0030							IVIO	20	GK	5		
	10.00	13.00	OGVL ZS-QZBIGR	VQZ OGVL	QZ	100 77	MU	20	CD	2		-
GBNC0030	13.00	22.00 28.00	ZS-QZBIGR ZS-QZMURSGR	OGVL	QZ QZ	70	MU	20 15	GR GR	3 6	DC	2
GBNC0030	22.00						IVIU	15	GR	0	RS	2
GBNC0030	28.00 30.00	30.00 38.00	VQZ ZS-QZMURSGR	OGVL	QZ QZ	100	NALL	15	CP	6	DC	3
GBNC0030					QZ	68 68	MU MU	15	GR GR	7	RS BI	4
GBNC0030 GBNC0030	38.00	61.00	ZS-QZMUBIGR					18	GK	/	ы	4
	61.00	63.00	ZS-QZMU		QZ	80	MU	20	CD	5	DI	4
GBNC0030 GBNC0030	63.00 82.00	82.00 84.00	ZS-QZMUBIGR	ZS-QZMURSGR	QZ QZ	70 50	MU PL	18	GR	20	BI	4
			ZGI-PLQZMU					30	MU		DC	4
GBNC0030	84.00	104.00	ZS-QZMURSGR	ZS-QZMUBIGR	QZ	72	MU	15	GR	5	RS	4
GBNC0030	104.00	117.00	ZS-QZMUBIGR	ZS-QZMU	QZ	75	MU	16	BI	5	GR	2
GBNC0030	117.00	126.00	ZS-QZMURSGR	ZS-QZMUBIGR	QZ	72	MU	15	GR	5	RS	4
GBNC0030	126.00	128.00	ZGI-PLQZMU	75 070410160	QZ	50	PL	30	MU	20	DC.	
GBNC0030	128.00	150.00	ZS-QZMURSGR	ZS-QZMUBIGR	QZ	71	MU	16	GR	5	RS	4
GBNC0031	0.00	10.00	ZS-QZMUGR	OGVL	QZ	70	MU	25	GR	5		
GBNC0031	10.00	19.00	ZS-QZMURSGR	ZS-QZMUBIGR	QZ	65	MU	15	GR	10	RS	5
GBNC0031	19.00	28.00	ZS-QZMURSGR		QZ	68	MU	18	GR	7	RS	5
GBNC0031	28.00	30.00	ZGI-PLQZMUGR		QZ	50	PL	24	MU	20	GR	5
GBNC0031	30.00	39.00	ZQS-QZGRCA		QZ	65	MU	17	GR	12	CA	5
GBNC0031	39.00	41.00	ZGI-PLQZMU		QZ	45	PL	35	MU	20		
GBNC0031	41.00	46.00	ZQS-QZGRCA		QZ	65	MU	17	GR	12	CA	5
GBNC0031	46.00	51.00	ZS-QZMUGR		QZ	70	MU	23	GR	5	PY	2
GBNC0031	51.00	55.00	ZS-QZMURSGR		QZ	68	MU	18	GR	7	RS	5
GBNC0031	55.00	56.00	ZGI-PLQZMU		QZ	45	PL	35	MU	20		
GBNC0031	56.00	86.00	ZS-QZMURSGR	ZS-QZMUBIGR	QZ	68	MU	18	GR	5	RS	5
GBNC0031	86.00	90.00	ZS-QZMUGR		QZ	71	MU	20	GR	7	RS	1
GBNC0031	90.00	91.00	VQZ		QZ	75	MU	25				
GBNC0031	91.00	117.00	ZS-QZMUBIGR	ZS-QZMURSGR	QZ	70	MU	15	BI	7	GR	4
GBNC0031	117.00	120.00	ZGI-PLQZMU		QZ	45	PL	30	MU	15	BI	10
GBNC0031	120.00	123.00	ZS-QZMURSGR		QZ	70	MU	18	GR	5	RS	5
GBNC0031	123.00	150.00	ZGI-PLQZMU		QZ	40	PL	30	MU	15	BI	15
GBNC0032	0.00	10.00	OGVL	ZS-QZBIGR	QZ	85	MU	11	GR	4		
GBNC0032	10.00	13.00	ZS-QZMUBIGR		QZ	70	MU	15	BI	10	GR	5
GBNC0032	13.00	14.00	OGVL		QZ	100						
GBNC0032	14.00	48.00	ZS-QZMURSGR		QZ	70	MU	16	RS	5	GR	5
GBNC0032	48.00	55.00	ZS-QZMUBIGR		QZ	71	MU	12	BI	12	GR	5
GBNC0032	55.00	61.00	ZGI-PLQZMUBI		QZ	50	PL	25	MU	15	BI	10
GBNC0032	61.00	92.00	ZGI-QZBIGT		QZ	70	BI	25	GT	5		
GBNC0032	92.00	98.00	ZGI-PLQZMUBI		QZ	50	PL	25	MU	15	BI	10
GBNC0032	98.00	102.00	ZGI-QZBIGT		QZ	70	BI	25	GT	5		
GBNC0033	0.00	4.00	ZGI-PLQZMU	OGVL	QZ	50	PL	25	MU	25		
GBNC0033	4.00	28.00	ZS-QZMURSGR	ZS-QZMUBIGR	QZ	68	MU	14	GR	7	RS	5
GBNC0033	28.00	40.00	ZS-QZBIGR		QZ	70	MU	18	GR	7	RS	2
GBNC0033	40.00	53.00	ZS-QZMUBIGR		QZ	70	MU	18	GR	6	BI	5
GBNC0033	53.00	57.00	ZQS-QZGRCA	ZS-QZMUBIGR	QZ	63	MU	15	GR	12	CA	5
GBNC0033	57.00	58.00	ZS-QZBI		QZ	84	BI	15	PY	1		
GBNC0033	58.00	63.00	ZS-QZMURSGR		QZ	73	MU	14	GR	7	RS	5
GBNC0033	63.00	64.00	ZS-QZMU		QZ	80	MU	19	PY	1		
GBNC0033	64.00	72.00	ZS-QZMUBIGR	ZS-QZMURSGR	QZ	66	MU	18	GR	6	BI	5
GBNC0033	72.00	75.00	ZGI-PLQZMU		QZ	44	PL	35	MU	20	PY	1
GBNC0033	75.00	78.00	ZGI-PLQZBI		QZ	45	PL	40	BI	15		
GBNC0033	78.00	92.00	ZS-QZMUBIGR	ZS-QZMURSGR	QZ	66	MU	18	GR	7	BI	5
GBNC0033	92.00	95.00	ZS-QZBI		QZ	84	BI	15	PY	1		
GBNC0033	95.00	114.00	ZS-QZMUBIGR	ZS-QZMURSGR	QZ	66	MU	18	GR	7	BI	5
GBNC0033	114.00	115.00	ZS-QZMU		QZ	85	MU	15				
GBNC0033	115.00	117.00	ZS-QZMUBIGR		QZ	63	BI	30	MU	5	GR	2
GBNC0033	117.00	118.00	ZGI-PLQZMU		QZ	44	PL	35	MU	20	PY	1
GBNC0033	118.00	119.00	ZS-QZMUBIGR		QZ	64	BI	30	MU	5	GR	1
GBNC0033	119.00	122.00	ZGI-PLQZMU	1	QZ	45	PL	35	MU	20		

GBNC0033	122.00	124.00	ZS-QZMUBIGR	1	07	64	ы	20	NALL	5	GR	1
GBNC0033 GBNC0033	122.00	124.00 134.00	ZGI-PLQZMUBIGR		QZ QZ	64 45	BI PL	30 35	MU MU	20	GR	1
GBNC0033	134.00	150.00	ZGI-QZBIGT	00110	QZ	50	BI	48	GT	2		
GBNC0034	0.00	2.00	OGVL	OSND	QZ	100		45	CD.	10	DC	2
GBNC0034	2.00	18.00	ZS-QZMURSGR		QZ	65	MU	15	GR	10	RS	3
GBNC0034	18.00	22.00	VQZ		QZ	100				10		
GBNC0034	22.00	26.00	ZS-QZMURSGR		QZ	66	MU	15	GR	10	RS	2
GBNC0034	26.00	27.00	ZS-QZMU		QZ	65	MU	35		-		
GBNC0034	27.00	48.00	ZS-QZMURSGR		QZ	71	MU	16	GR	6	RS	4
GBNC0034	48.00	58.00	ZS-QZMUGR		QZ	65	MU	24	GR	10	PY	1
GBNC0034	58.00	62.00	ZQS-QZGRCA		QZ	65	MU	18	GR	12	CA	5
GBNC0034	62.00	77.00	ZS-QZMURSGR		QZ	68	MU	16	GR	7	RS	6
GBNC0034	77.00	78.00	ZS-QZMU		QZ	65	MU	35				
GBNC0034	78.00	84.00	ZS-QZMURSGR		QZ	68	MU	16	GR	7	RS	6
GBNC0034	84.00	85.00	ZGI-PLQZMU		QZ	44	PL	40	MU	15	PY	1
GBNC0034	85.00	86.00	ZS-QZMUGR		QZ	65	MU	22	GR	10	RS	1
GBNC0034	86.00	89.00	ZQS-QZGRCA		QZ	65	MU	18	GR	12	CA	5
GBNC0034	89.00	97.00	ZS-QZMUGR		QZ	66	MU	22	GR	10	BI	1
GBNC0034	97.00	104.00	ZS-QZMURSGR		QZ	68	MU	16	GR	7	RS	6
GBNC0034	104.00	105.00	ZS-QZMU		QZ	74	MU	25	PY	1		
GBNC0034	105.00	114.00	ZS-QZMUGR		QZ	65	MU	22	GR	10	RS	1
GBNC0034	114.00	123.00	ZQS-QZGRCA		QZ	65	MU	18	GR	12	CA	5
GBNC0034	123.00	133.00	ZS-QZMUBIGR		QZ	75	MU	17	GR	5	BI	3
GBNC0034	133.00	141.00	ZQS-QZGRCA		QZ	65	MU	18	GR	12	CA	5
GBNC0034	141.00	150.00	ZS-QZMUBIGR	ZS-QZMUBIGR	QZ	70	MU	17	GR	5	BI	4
GBNC0034	150.00	166.00	ZGI-PLQZMU		QZ	45	PL	40	MU	15		
GBNC0034	166.00	171.00	ZS-QZMUBIGR	ZS-QZMUBIGR	QZ	68	MU	17	GR	7	BI	4
GBNC0034	171.00	178.00	ZGI-PLQZMU		QZ	45	PL	40	MU	15		
GBNC0034	178.00	179.00	ZS-QZMUBIGR	ZS-QZMUBIGR	QZ	68	MU	17	GR	7	BI	4
GBNC0034	179.00	183.00	ZGI-PLQZMU		QZ	45	PL	40	MU	15		
GBNC0034	183.00	186.00	ZS-QZMUBIGR		QZ	70	MU	16	GR	7	BI	4
GBNC0035	0.00	3.00	OGVL	OSND								
GBNC0035	3.00	9.00	ZS-QZMURSGR		QZ	30	MU	30	GR	3	RS	1
GBNC0035	9.00	12.00	ZGI-PLQZMU	ZS-QZMURSGR	QZ	40	PL	40	MU	10	GR	0.5
GBNC0035	12.00	15.00	ZS-QZMURSGR		QZ	40	MU	30	GR	5	RS	1
GBNC0035	15.00	21.00	ZGI-PLQZMU		QZ	40	PL	40	MU	10		
GBNC0035	21.00	22.00	ZGI-PLQZMU	ZS-QZMURSGR	QZ	40	PL	40	MU		GR	
GBNC0035	22.00	24.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	30	GR	5	RS	1
GBNC0035	24.00	27.00	ZGI-PLQZMU	ZS-QZMURSGR	QZ	40	PL	30	MU	20	GR	2
GBNC0035	27.00	35.00	ZS-QZMURSGR		QZ	30	MU	30	GR	5	RS	1
GBNC0035	35.00	37.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	30	GR	5	BI	5
GBNC0035	37.00	39.00	ZS-QZMURSGR		QZ	30	MU	30	GR	7	BI	5
GBNC0035	39.00	45.00	ZGI-PLQZMU		QZ	40	PL	50	MU	10		
GBNC0035	45.00	49.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	4	RS	1
GBNC0035	49.00	59.00	ZS-QZMURSGR		QZ	30	MU	20	GR	7	RS	1
GBNC0035	59.00	60.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	5	RS	1
GBNC0035	60.00	66.00	ZS-QZMURSGR		QZ	30	MU	20	GR	7	RS	1
GBNC0035	66.00	70.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	5	RS	1
GBNC0035	70.00	79.00	ZGI-PLQZMU		QZ	40	PL	40	MU	10		
GBNC0035	79.00	85.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	7		
GBNC0035	85.00	87.00	ZGI-PLQZMU	ZS-QZMURSGR	QZ	40	PL	40	GR	1	RS	0.5
GBNC0035	87.00	91.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	7	RS	1
GBNC0035	91.00	98.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	7	RS	1
GBNC0035	98.00	101.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	30	GR	5	RS	0.5
GBNC0035	101.00	106.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	30	GR	10	RS	1
GBNC0035	106.00	107.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	50	MU	30	GR	7	RS	1
GBNC0035	107.00	110.00	ZS-QZMURSGR		QZ	30	MU	30	GR	10	RS	1
GBNC0035	110.00	112.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	30	GR	7	RS	1
GBNC0035	112.00	117.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	30	GR	10	RS	1
GBNC0035	117.00	119.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	30	GR	10	RS	1
				1			1		1	•		

GBNC0035	130.00	136.00	ZS-QZMURSGR		QZ	30	MU	30	GR	10	RS	1
GBNC0035	136.00	140.00	ZS-QZMURSGR		QZ	30	MU	20	GR	15	CA	10
GBNC0035	140.00	141.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	15	GR	15	CA	10
GBNC0035	140.00	151.00	ZS-QZMURSGR	EGITEQEMO	QZ	30	MU	20	GR	15	СА	10
GBNC0035	151.00	153.00	ZS-QZMURSGR	ZGI-PLOZMU	QZ	40	MU	30	GR	10	СА	5
GBNC0035	153.00	155.00	ZS-QZMURSGR	LOITEQLINO	QZ	30	MU	20	GR	15	CA	10
GBNC0035	155.00	160.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	30	GR	13	СА	10
GBNC0035	160.00	161.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	25	GR	10	RS	1
GBNC0035	161.00	166.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	10	RS	1
GBNC0035	166.00	167.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	30	GR	10	RS	1
GBNC0035	167.00	176.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	13	RS	1
GBNC0035	176.00	184.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	30	GR	10	RS	1
GBNC0035	184.00	193.00	ZS-QZMURSGR	2011202110	QZ	30	MU	30	GR	10	RS	0.5
GBNC0035	193.00	199.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	30	GR	10	RS	0.5
GBNC0035	199.00	200.00	ZS-QZMURSGR		QZ	30	MU	30	GR	10	RS	0.5
GBNC0036	0.00	2.00	OGVL	OSLT		50			GIL	10	110	0.0
GBNC0036	2.00	9.00	ZGI-PLQZMU	ZS-QZPLMUGR	QZ	60	PL	30	GR	2		
GBNC0036	9.00	17.00	ZS-QZPLMUGR		QZ	40	MU	20	PL	20	GR	8
GBNC0036	17.00	29.00	ZS-QZPLMUGR		QZ	40	MU	20	PL	20	GR	8
GBNC0036	29.00	30.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	8	RS	1
GBNC0036	30.00	39.00	ZS-QZMURSGR	Loi i Lazino	QZ	30	MU	20	GR	10	RS	1
GBNC0036	39.00	41.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	5	RS	1
GBNC0036	41.00	42.00	ZS-QZMURSGR	ZS-QZMURSGR	QZ	50	MU	10	GR	2	RS	1
GBNC0036	42.00	54.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	10	RS	0.5
GBNC0036	54.00	59.00	ZS-QZMUGR	ZGI-PLQZMU	QZ	50	MU	20	GR	8	1.0	0.0
GBNC0036	59.00	61.00	ZS-QZMUGR	ZGI-PLQZMU	QZ	50	MU	20	GR	5		
GBNC0036	61.00	66.00	ZS-QZMUGR	ZGI-PLQZMU	QZ	40	MU	20	GR	10		
GBNC0036	66.00	73.00	ZQS-QZGRCA	ZGI-PLQZMU	QZ	30	MU	20	GR	15	CA	5
GBNC0036	73.00	76.00	ZS-QZMUGR	ZGI-PLQZMU	QZ	30	MU	20	GR	10		
GBNC0036	76.00	80.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	10	RS	1
GBNC0036	80.00	81.00	ZGI-PLQZMU	-	QZ	50	MU	10				
GBNC0036	81.00	91.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	30	MU	20	GR	10	RS	0.5
GBNC0036	91.00	92.00	ZGI-PLQZMU	ZS-QZMURSGR	QZ	40	MU	20	GR	5	RS	0.1
GBNC0036	92.00	95.00	ZGI-PLQZMU	ZS-QZMURSGR	QZ	50	MU	10	GR	2	RS	0.1
GBNC0036	95.00	100.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	8	RS	0.5
GBNC0036	100.00	115.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	8	RS	0.5
GBNC0036	115.00	117.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	50	MU	20	GR	5	RS	0.5
GBNC0036	117.00	135.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	8	RS	0.5
GBNC0036	135.00	138.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	10	RS	1
GBNC0036	138.00	140.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	50	MU	20	GR	5	RS	0.5
GBNC0036	140.00	146.00	ZS-QZMURSGR		QZ	40	MU	20	GR	8	RS	0.5
GBNC0036	146.00	150.00	ZS-QZMURSGR	ZGI-PLQZMU	QZ	40	MU	20	GR	10	RS	1
GBNC0037	0.00	6.00	OGVL	ZS-QZMURSGR	QZ	73	MU	18	GR	5	RS	5
GBNC0037	6.00	21.00	ZS-QZMURSGR		QZ	72	MU	20	GR	7	RS	1
GBNC0037	21.00	56.00	ZS-QZMURSGR		QZ	69	MU	18	GR	10	RS	3
GBNC0037	56.00	58.00	ZGI-PLQZMU		QZ	44	PL	40	MU	15	PY	1
GBNC0037	58.00	69.00	ZS-QZMURSGR		QZ	75	MU	17	GR	5	RS	2
GBNC0037	69.00	89.00	ZS-QZMUBIGR	ZS-QZMURSGR	QZ	70	MU	15	GR	5	BI	4
GBNC0037	89.00	116.00	ZS-QZMURSGR		QZ	71	MU	15	GR	5	RS	5
GBNC0037	116.00	127.00	ZS-QZMUGR	ZS-QZBIGR	QZ	68	MU	18	GR	10	BI	3
GBNC0037	127.00	150.00	ZS-QZMURSGR	ZS-QZMUBIGR	QZ	71	MU	17	GR	5	RS	3