ASX ANNOUNCEMENT Drilling Confirms Large-Scale Gold Copper Silver System

Munarra Gully Project, Amaryllis Au-Cu-Ag Prospect

- Rumble's maiden reconnaissance RC drill programme at the Amaryllis Prospect intercepted multiple high-grade Au and significant Au-Cu-Ag zones:
 - confirming a large-scale Au-Cu-Ag system; along with
 - identifying two large-scale deposit-type targets.
- Intersections include:
 - □ High-grade Gold mineralisation:
 - o 5m @ 11.67 g/t Au from 161m (AMRC008)
 - 2m @ 13.45 g/t Au from 92m (AMRC012)
 - 4m @ 6.21 g/t Au from 94m (AMRC006 4m composites)
 - **Zones of significant Gold-Copper-Silver mineralisation**:
 - o 8m @ 1.94 g/t Au, 0.68% Cu, 9.5 g/t Ag from 142m (AMRC007)
 - o 8m @ 0.88 g/t Au, 1.11% Cu, 11.8 g/t Ag from 102m (AMRC003)
 - o 10m @ 2.88 g/t Au, 0.54% Cu, 7.5 g/t Ag from 146m (AMRC015)
 - 10m @ 1.35 g/t Au, 0.62% Cu, 9.5 g/t Ag from 108m (AMRC016)
 *within 40m @ 0.89 g/t Au, 0.39% Cu, 5.7 g/t Ag from 108m
 - □ Over 1500m of Au-Cu-Ag mineralised strike confirmed. Completely open along strike and down-dip (down-plunge).
 - □ The Au-Cu-Ag mineralisation is in wide alteration zones up to 50m true width and hosted in felsic to intermediate volcaniclastics and porphyritic felsic intrusives.
 - RC drilling has demonstrated strong strike and dip length continuity of Au-Cu-Ag mineralisation.
 - **Two target styles of Au-Cu-Ag-(Zn) mineralisation** have been identified:

1. Au-Cu-Ag-Zn VMS Type

Multi-element assaying from the current drilling has **identified strongly elevated zinc within the hanging wall to the gold-copper-silver.** Combined with the interpretation the mineralisation developed close to the transition of felsic to intermediate volcanics, sediments and high-level feeders, this infers the mineralisation likely represents a significant fertile VMS horizon which has the potential to develop Au-Cu-Ag-Zn-VMS deposits.

2. Orogenic Shear Related Au-Cu-Ag Sulphide Lode Type Wide widths of alteration with multiple Au Cu Ag sulphide zones is inferred to represent overprinting of the earlier VMS mineralisation by shearing. There is potential for large-scale orogenic shear related Au-Cu-Ag deposit(s) to develop/overprint the earlier VMS horizon along strike.

Next Steps

- Whole rock litho-geochemistry and petrography to determine deposition level of potential VMS horizon.
- High definition airborne magnetics to aid in targeting potential VMS horizon and main shear zones for follow up RC Drilling.

Rumble Resources Ltd

Suite 9, 36 Ord Street, West Perth, WA 6005

T +61 8 6555 3980

F +61 8 6555 3981

rumbleresources.com.au

ASX RTR

Executives & Management

Mr Shane Sikora Managing Director

Mr Brett Keillor Technical Director

Mr Matthew Banks Non-executive Director

Mr Michael Smith Non-executive Director

Mr Steven Wood Company Secretary

Mr Mark Carder Exploration Manager

Rumble Resources Ltd (ASX: RTR) ("Rumble" or "the Company") is pleased to announce the results from the maiden reconnaissance RC drill programme at the Amaryllis Au-Cu-Ag Prospect which was designed to confirm significant gold-copper-silver mineralisation associated with historic drilling and to assess the potential for large scale economic gold copper silver deposits.

These exciting drill results are the first received of three drill programs recently completed. The Rumble team is eagerly awaiting the assay results from two further drill programs, one following up two large scale Zn-Pb-Ag discoveries at the Earaheedy Project and the other following up high-grade gold intercepted at the Western Queen Project in its maiden drill program.

The Amaryllis Au-Cu-Ag Prospect lies within E51/1919 (RTR 100%), forming part of the Munarra Gully Project and lies some 60km to the north of the township of Cue, located in the Murchison Goldfields (600km NE of Perth) of Western Australia.

Historic drilling by explorers focused on gold, however, limited partial assaying by these explorers for Cu and Ag, and Rumbles Au-Cu association encountered at the White Rose prospect, highlighted the base metal potential associated with the gold at the Amaryllis Au-Cu-Ag Prospect. The mafic hosted mineralisation style detailed in historic open file exploration reports was not encountered, instead felsic to intermediate volcaniclastics with high level associated porphyritic intrusives was found in all RC drill holes completed by Rumble. Rumble's drilling successfully confirmed a large-scale Au-Cu-Ag system and identified the mineralisation style has the potential for both large-scale shear hosted Au-Cu-Ag sulphide lode type and Au-Cu-Ag-Zn VMS type deposits.

Comment by Technical Director (Brett Keillor) "The results from the inaugural RC drilling programme at Amaryllis has **completely changed** our original geological model as felsic to intermediate volcaniclastic/porphyritic intrusion lithologies were encountered instead of the inferred mafic intrusive lithology as reported by previous explorers. No differentiated mafics (White Rose Prospect Style) were intersected. However, the drilling confirmed broad zones of open Au-Cu-Ag mineralisation with multiple higher-grade sulphide shoots. The mineralisation is likely a modified earlier VMS system with a strong mineralising shear overprint. **The drilling has highlighted the potential for two target styles – large-scale shear hosted Au-Cu-Ag sulphide deposits (intersection of mineralising shear/splay with VMS horizon) and VMS Au-Cu-Ag-Zn deposits (potentially higher in the geological profile)."**

Image 1 – Munarra Gully Project – Location of Prospects over Regional Magnetics

Amaryllis Au-Cu-Ag Prospect – Large Scale Gold Copper Silver System

RC drilling comprised of seventeen (17) drill holes (2809m total) focused on the main mineralised zone defined by historic drilling at the Amaryllis Au-Cu-Ag Prospect.

Significant intersections include:

- AMRC001 8m @ 1.13g/t Au, 0.25% Cu from 92m
- AMRC003 8m @ 0.88 g/t Au, 1.11% Cu, 11.8 g/t Ag from 102m
- AMRC005 4m @ 1.52 g/t Au, 0.96% Cu, 13 g/t Ag from 124m 4m @ 0.89 g/t Au, 0.81% Cu, 12.4 g/t Ag from 131m
- AMRC006 4m @ 6.21 g/t Au from 94m (composite)
- AMRC007 8m @ 1.94 g/t Au, 0.68% Cu, 9.5 g/t Ag from 142m
- AMRC008 5m @ 11.67 g/t Au from 161m
- AMRC009 4m @ 3.27 g/t Au, 0.46% Cu, 9.1 g/t Ag from 120m
- AMRC011 7m @ 1.21 g/t Au from 103m
- AMRC012 2m @ 13.45 g/t Au from 92m
- AMRC015 4m @ 3.32 g/t Au, 0.52% Cu, 8.9 g/t Ag from 100m 10m @ 2.88 g/t Au, 0.54% Cu, 7.5 g/t Ag from 146m
- AMRC016 2m @ 6.28 g/t Au, 0.32% Cu from 84m
 10m @ 1.35 g/t Au, 0.62% Cu, 9.5g/t Ag from 108m
 within 40m @ 0.89 g/t Au, 0.39% Cu, 5.7 g/t Ag from 108m

Intersections are drill length intercepts.

Drilling was conducted over a strike of 1500m with the aim to confirm gold with partial copper and silver assaying defined by historic drilling. Historic down-hole TEM from four (4) diamond core tails (also historic) with recent ground TEM completed by Rumble was also used to guide the confirmation drilling.

Geology, Alteration and Mineralisation

Wide zones of gold, copper and silver mineralisation (> 50m true width) are hosted in fine grain sericite-chloritequartz schist, intercalated feldspar phyric sericite chlorite schist and feldspar phyric (porphyritic) intrusives. The host rocks are interpreted to be strongly foliated felsic to intermediate volcaniclastics with multiple high level felsic to intermediate intrusives.

Alteration is pervasive throughout the felsic to intermediate rocks and is dominated by sericite – chlorite and silica. Gold, copper and silver mineralisation is associated with chalcopyrite and pyrrhotite. The overall sulphide content is generally low (up to 5%).

Multiple gold copper and silver sulphide lenses occur within the broader mineralisation haloes as steep westerly dipping "shoots" with an inferred moderate southerly plunge.

Depth of weathering is generally 80 to 100m, however, in the mineralised schist, the base of oxidation deepens to 140m. Overburden ranges from 10m at the south end of the currently defined mineralisation, to 20m cover at the north end of the currently defined mineralisation.

Image 2 – Amaryllis Au-Cu-Ag Prospect – Location Plan of Rumbles Drilling with Significant Results

Geological Interpretation

The Au-Cu-Ag mineralisation is interpreted to have developed at the main transition between underlying feldspar phyric felsic to intermediate high level intrusives (to the east) and overlying felsic to intermediate volcanic sediments and interflow porphyritic dacitic volcanics (to the west). Sub-parallel shearing associated with a major shear zone that lies immediately east of Amaryllis, has form a wide zone of significant epigenetic mineralisation. The source of the metal is interpreted to be earlier Au-Cu-Ag-Zn VMS mineralisation associated with the felsic volcanic rocks.

Multi-element assaying from the current drilling has highlighted zones of strongly elevated zinc in the hanging wall to the main Au-Cu-Ag zone (AMRC009 – Table 1). Zn is also associated with the higher sulphide zones. The presence of zoned Zn with Au, Cu and Ag hosted in strongly sericitic and chloritic felsic to intermediate volcaniclastics and intrusives supports the likelihood of VMS style mineralisation as the precursor to the Amaryllis prospect.

Section 7024260N (**Image 3**) presents the wide zone of intense alteration (with >1000ppm Cu +/or 0.1 g/t Au over 50m in width) within the sericite-chlorite quartz schists with intercalated feldspar phyric sericite-chlorite-quartz schists above the main felsic to intermediate intrusive package. **Up to 5 zones of Au-Cu-Ag sulphide zones occur within the mineralised envelope.**

Section 7023950N (**Image 4**) lies 310m to the south of section 7024260N. The section highlights strong dip length continuity with the Au-Cu-Ag mineralisation.

Image 3 - Section 7024260N (see image 2 for location) – Drilling by Rumble in Red

Image 4 - Section 7023950N (see image 2 for location) – Drilling by Rumble in Red

Conclusion

The inaugural RC drilling programme completed by Rumble has demonstrated:

- Strong strike and dip length continuity of Au-Cu-Ag mineralisation.
- Good repeatability of Au-Cu-Ag sulphide mineralisation with respect to historic drilling results.
 - The current drilling has highlighted significant higher-grade gold mineralisation compared to historic drilling. i.e. **5m** @ **11.67 g/t Au and 2m** @ **13.45 g/t Au.**
- Au-Cu-Ag mineralisation is likely associated with a major shear zone that has overprinted earlier Au-Cu-Zn-Ag VMS (Volcanogenic Massive Sulphide) mineralisation.
- The Au-Cu-Ag mineralisation is completely open along strike and down-dip (down-plunge).
 - Broad zones of Au-Cu-Ag mineralisation including:
 - 40m @ 0.89 g/t Au, 0.39% Cu, 5.7 g/t Ag from 108m (AMRC016)

Potential and Targets (image 5)

The Amaryllis Prospect (and Munarra Gully Project in general) has potential for two styles of Au-Cu-Ag-(Zn) mineralisation.

1. Orogenic Shear Related Au-Cu-Ag Deposits

• Drilling completed by Rumble at Amaryllis has demonstrated significant large-scale (width, down-dip and along strike) potential for multiple shear hosted Au-Cu-Ag sulphide lodes. The intersection of the main shear (or splay) with the inferred earlier VMS mineralised horizon has the potential to develop economic deposits, especially if the shear parallels the VMS horizon over considerable strike length.

2. VMS Au-Cu-Ag-Zn Deposits

• The Amaryllis Prospect is inferred to have developed close to the transition of intercalated felsic to intermediate volcanics and sediments and high-level feeders (porphyritic felsic to intermediate sills and dykes). The prospect likely represents a fertile VMS horizon which is also completely open along strike.

Image 5 – Amaryllis Au Cu Ag Prospect - Plan Highlighting Prospective Horizons

Next Stages

- Confirmation of inferred early Au Cu Ag Zn VMS mineralisation with whole rock litho-geochemistry and petrography
- High resolution airborne magnetics to aid in defining prospective shear and VMS horizons for next stage RC Drilling.

This announcement is authorised for release by: Shane Sikora Managing Director

For further information visit rumbleresources.com.au or contact enquiries@rumbleresources.com.au.

Table 1.

Significant RC Drill Hole Intersections based on Different Cut-Off Criteria

								Cut Off Criteria	a
Hole_ID	From (m)	Width (m)	Au (g/t)	Cu (%)	Ag (g/t)	Zn (%)	>0.5 g/t Au	Minz >0.25% Cu	Minz >0.1% Zn
AMRC001	92	8	1.13	0.25	2.3		yes		
	105	14	0.4	0.34	6.4			Yes	
	126	3	0.36	0.48	7.7			yes	
	139	7	0.4	0.45	5.9			yes	
AMRC002	69	12	0.3	0.32	0.5			yes	
AMRC003	102	12	0.75	0.89	10.3			Yes	
Including	102	8	0.88	1.11	11.8		Yes		
AMRC004	74	7	0.57				yes		
	174	1	22.9	0.49	6.2		Yes		
	180	2	0.38	0.31	3.8			Yes	
AMRC005	124	17	0.6	0.53	7.7			yes	
Including	124	4	1.52	0.96	13		Yes		
Including	131	4	0.89	0.81	12.4		Yes		
	161	4	0.28	0.59	8.1			Yes	
AMRC006	94	4 (comp)	6.21				Yes		
AMRC007	44	4 (comp)	1.67				yes		
	142	8	1.94	0.68	9.5		yes		
AMRC008	113	2	0.4	0.72	24.6			Yes	
	161	5	11.67	0.17	2.6		Yes		
AMRC009	32	28				0.21			Yes
	120	4	3.27	0.46	9.1		yes		
AMRC011	100	7	1.2				yes		
	123	2	1.59				Yes		
AMRC012	92	2	13.43		3.2		yes		
	95	2	0.35	0.77				yes	
	118	3	0.61	0.35	5.5			yes	
	125	9	0.12	0.31	5			Yes	
AMRC015	66	2	1.17				yes		
	100	4	3.31	0.52	8.9		Yes		
	120	4	0.25	0.31	5.3			Yes	
	134	2	0.46	0.82	12.4			Yes	
	146	10	2.88	0.54	7.5			Yes	
	173	7	0.16	0.45	7			Yes	
AMRC016	108	40	0.89	0.39	5.7			Yes	
Including	84	2	6.27	0.32	3.9		yes		
Including	108	10	1.35	0.61	9.5			Yes	

About Rumble Resources Ltd

Rumble Resources Ltd is an Australian based exploration company, officially admitted to the ASX on the 1st July 2011. Rumble was established with the aim of adding significant value to its current mineral exploration assets and will continue to look at mineral acquisition opportunities both in Australia and abroad.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Brett Keillor, who is a Member of the Australasian Institute of Mining & Metallurgy and the Australian Institute of Geoscientists. Mr Keillor is an employee of Rumble Resources Limited. Mr Keillor has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Keillor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 RC Sampling – 1 metre cone split samples with duplicate every 20, CRM standard (mixed OREAS high-grade and low-grade base metals) every 20 samples and CRM blank every 20 samples. If pXRF indicates >1000ppm Cu, 4m composite sample taken – speared from main plastic bag. Sample weights ranged from 2 to 3kg Samples were analysed by 30g FA for Au and 4 acid digest for multi-element assaying.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	• RC 5.5in face Hammer
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 RC sample chips collected from splitter as > 2kg sample. Remaining sample collected in plastic bags (approximately 30-40 kgs). Every metre, a reference chip sample is collected. Geologically logged on site.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 RC chip sample logging includes geological and first pass geotechnical appraisal
Sub- sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary 	RC samples are cone split. Samples were both wet and dry. Wet samples via cone splitter.
and sample preparation	 split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. 	Duplicates taken every 20 samples.
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	

Criteria	JORC Code explanation	Commentary
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 All assaying was by 30-gram charge Fire Assay with AA finish (total digest). In addition to the Au FA analysis, RC samples were analysed by 4 acid digest (multi-element). pXRF assaying has been completed on all RC chips. Standards and blanks were industry CRMs from OREAS. Duplicates were taken every 20 samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Verification of significant intersections by Rumble personnel. No twinned holes completed. All data and documentation are both hard copy and electronic.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill-hole collars have been surveyed using GPS. System is MGA94 Zone 50.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC drilling was exploration by nature. RC drilling was designed to confirm historic assay intersections. The location of historic holes in database is not accurate. Although confirmation drilling, no twins were completed.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 RC drilling designed on historic geological information. Drilling was normal to inferred historic strike. Historic dip was not known and a combination of angles and vertical holes were completed by Rumble to ascertain the dip of mineralisation.
Sample security	The measures taken to ensure sample security.	 All samples double bagged (bulka bags) prior to freighting to Perth
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No external audits completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status Exploration done by other	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. Acknowledgment and appraisal of exploration by other parties. 	 E51/1919 and E51/1927 Granted (100% RTR) E51/1677 is granted and is 100% owned by Marjorie Ann Molloy. Rumble has exercised its option to acquire 80%. Current exploration solely completed by Rumble Resources
parties Geology	Deposit type, geological setting and style of mineralisation.	Au-Cu-Ag mineralization hosted in felsic to intermediate volcaniclastics and porphyritic intrusives. Mineralisation considered modified VMS, i.e. shear overprinting early VMS mineralization.
Drill noie Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Table 1 – Table of significant RC drill intercepts based on different cut-off criteria which includes >0.5 g/t Au, mineralized corridors >0.25% Cu and/or >0.1% Zn subject to style of mineralization. Table 2 – Table outlines all drill hole co-ordinates, depth, azimuth and inclination reported in this announcement Table 3 highlights selected Au, Cu, Ag, S and Zn assays related to drill hole intercepts reported in this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 RC drilling results are a combination of reporting intercepts based on >0.5 g/t Au and copper mineralization highlighting zones of exploration interest. Criteria includes 2m intercepts or wider (single metre very high-grade Au intercepts reported). Allow up to 2m of internal dilution. Copper mineralization reported >0.25% Cu (includes corresponding Au and Ag values). Zn was reported to highlight metal zonation – cut off >0.1% Zn
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not 	 All intersections reported as downhole lengths and not true width. One of the aims of this RC drilling programme was to delineate the dip of mineralization. The dip is variable with intercepts ranging from 60% to 80% to true width for angled holes.

Criteria	JORC Code explanation	Commentary
	known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Image 1 – Munarra Gully Project – Location of Prospects over Regional Magnetics Image 2 - Amaryllis Au-Cu-Ag Prospect – Location Plan of Rumbles Drilling with Significant Results Image 3 – Section 7024260N (see image 2 for location) – Drilling by Rumble in Red Image 4 – Section 7023950N (see image 2 for location) – Drilling by Rumble in Red Image 5 - Amaryllis Au Cu Ag Prospect - Plan Highlighting Prospective Horizons
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Table 3 highlights selected drill hole (single metre and composite) assays with Au, Cu, Ag, S and Zn.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Other data collected from RC drilling includes: 1 metre pXRF assays
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Amaryllis Cu Au Prospect Whole rock litho-geochemistry and petrography is currently in progress to aid in ascertaining the inferred VMS mineralisation along with determining the deposition level High resolution airborne magnetics is planned to test the strike extent and to aid in defining potential mineralising shears zones and the inferred VMS horizon. Reconnaissance drilling will test targets developed from the above.

Table 2RC Drill Hole Collar Location and Survey – Amaryllis Prospect

Hole_ID	E (MGA94Z50)	N (MGA94Z50)	Depth	Azi	Dip
AMRC001	616470	7024434	180	90	-60
AMRC002	616502	7024356	120	90	-60
AMRC003	616458	7024355	160	90	-60
AMRC004	616417	7024356	195	90	-60
AMRC005	616468	7024273	198	90	-60
AMRC006	616500	7023951	138	90	-60
AMRC007	616462	7023950	192	90	-60
AMRC008	616465	7023793	192	90	-60
AMRC009	616377	7023159	156	90	-60
AMRC010	616359	7023001	180	90	-60
AMRC011	616423	7023159	144	90	-60
AMRC012	616537	7023918	156	0	-90
AMRC013	616330	7025499	168	90	-60
AMRC014	616536	7024000	174	0	-90
AMRC015	616520	7024269	192	0	-90
AMRC016	616550	7024263	132	0	-90
AMRC017	616574	7024269	132	0	-90

Table 3

Select RC Drill Hole Multi-Element Assays

Hole_ID	mFrom	mTo	Au g/t	Ag g/t	Cu PPM	S %	Zn PPM	Cu %	Hole_ID	mFrom	mTo	Au g/t	Ag g/t	Cu PPM	S %	Zn PPM	Cu %
AMRC001	92	93	0.65	0.5	403	0.2	356		AMRC003	115	116	0.98	0.7	706	0.11	191	
AMRC001	93	94	1.8	3.2	4030	2.85	161		AMRC003	116	120	0.03	5.2	435	0.4	137	
AMRC001	94	95	0.25	2.6	6070	2.31	179		AMRC003	120	121	0.13	4	2560	1.45	343	
AMRC001	95	96	0.24	1.5	1860	1.5	190		AMRC003	121	125	0.03	0.9	712	0.78	111	
AMRC001	97	98	0.66	0.5	1200	0.03	265		AMRC003	125	120	0.03	1.1	660	0.52	104	
AMRC001	98	99	2.85	0.7	602	0.08	232		AMRC003	127	128	0.06	1.9	1200	0.63	119	
AMRC001	99	100	1.88	8.7	2810	0.19	230		AMRC003	128	129	0.06	3	1890	1.05	123	
AMRC001	100	101	0.09	0.5	178	0.03	139		AMRC003	129	130	0.38	1.1	773	0.5	66	
AMRC001	101	102	0.43	7.7	4970	1.31	126		AMRC003	130	131	0.14	3.1	2380	1.63	119	
AMRC001	102	103	0.02	0.5	71	0.23	143		AMRC003	131	132	0.18	8.5	5600	3.33	171	
AMRC001	103	104	0.46	4.3	2260	1.5	162		AMRC003	132	133	0.04	1.3	919	1.01	84	
AMRC001	104	105	0.15	1.6	370	0.6	237		AMRC003	133	134	0.08	1.6	1090	0.65	/4	
AMRC001	105	100	0.25	15.5	4770	1.0	399		AMRC003	134	135	0.04	3.4	2300	1 24	104	
AMRC001	107	108	0.19	6.8	3770	1.4	544		AMRC003	136	137	0.17	2.1	1555	0.63	104	
AMRC001	108	109	0.36	14.1	9180	2.79	888		AMRC003	137	138	0.07	2.5	1595	0.92	115	
AMRC001	109	110	0.13	5.4	3720	1.33	395		AMRC003	138	139	0.01	0.5	306	0.51	82	
AMRC001	110	111	0.06	3.3	2050	0.58	268		AMRC003	139	140	0.21	7.3	4990	3.17	211	
AMRC001	111	112	0.93	7.7	4590	2	256		AMRC003	140	141	0.07	5.5	3700	1.09	321	
AMRC001	112	113	0.04	1.4	1060	0.93	168		AMRC003	141	142	0.07	1.8	1380	0.52	215	
AMRC001	113	114	0.19	4.5	2770	1.7	243		AMRC003	142	143	0.18	2.4	1930	1.45	172	
AMRC001	114	115	1.31	7.4	3050	2.04	378		AMRC005	124	125	4./	9.7	3150	3.08 2.1	174	
AMRC001	115	117	0.03	0.7	378	0.21	165		AMRC005	126	127	0.36	5.6	3860	1.88	177	
AMRC001	117	118	0.13	1.7	1220	0.81	185		AMRC005	127	128	0.74	32	25000	4.61	1035	2.50
AMRC001	118	119	0.73	1.7	1460	1.99	303		AMRC005	128	129	0.02	1	453	0.26	107	
AMRC001	119	120	0.35	1.8	1500	1.67	129		AMRC005	129	130	0.01	0.5	246	0.51	47	
AMRC001	120	121	0.07	0.8	551	1.43	81		AMRC005	130	131	0.07	7.5	5000	1.47	174	
AMRC001	121	122	0.01	0.5	179	0.53	88		AMRC005	131	132	2.45	35	22900	5.34	607	2.29
AMRC001	122	123	0.07	0.5	163	0.81	84		AMRC005	132	133	0.01	0.5	199	0.48	67	
AMRC001	123	124	0.02	0.5	210	0.59	80		AMRC005	133	134	0.16	9.1	3240	2.47	149	
AMRC001	124	125	0.13	2.8	1540	1.19	105		AMRC005	134	136	0.03	1.7	1055	0.97	110	
AMRC001	126	127	0.19	11	7070	1.98	285		AMRC005	136	137	0.03	1.1	702	0.44	94	
AMRC001	127	128	0.09	4.1	2220	1.44	193		AMRC005	137	138	0.03	0.6	575	0.82	86	
AMRC001	128	129	0.81	8	5290	1.76	184		AMRC005	138	139	0.11	6.5	3660	1.55	209	
AMRC001	129	130	0.08	1.9	1340	0.82	103		AMRC005	139	140	0.15	6.3	4600	1.02	202	
AMRC001	130	131	0.15	3	1920	1.16	113		AMRC005	140	141	0.13	4	3050	1.47	130	
AMRC001	139	140	1.11	10.8	8810	4.34	1730		AMRC005	141	142	0.01	0.5	231	0.13	62	
AMRC001	140	141	0.29	2.3	3790	1.42	352		AMRC005	142	143	0.18	2.5	2440	1.32	82	
AMRC001	142	143	0.29	3.5	2480	3.69	120		AMRC005	143	145	0.1	0.8	596	0.75	53	
AMRC001	143	144	0.28	7.7	5640	1.41	160		AMRC005	145	146	0.11	3	2420	1.3	90	
AMRC001	144	145	0.21	5.4	3990	1.39	112		AMRC005	146	147	0.05	1.2	962	0.97	57	
AMRC001	145	146	0.23	6.8	5000	1.41	104		AMRC005	147	148	0.2	0.8	1025	1.24	54	
AMRC002	68	69	0.08	0.5	1810	0.11	58		AMRC005	148	149	0.16	2.2	1870	1.33	76	
AMRC002	69	70	0.01	0.5	3090	0.11	90		AMRC005	149	150	0.31	5	4020	1.51	97	
AMRC002	70	72	0.01	0.5	5240	0.1	96		AMRC005	150	151	0.09	1.7	1310	0.47	59	
AMRC002	72	73	0.01	0.5	3170	0.08	54		AMRC005	151	152	0.06	1.7	1285	0.69	73	
AMRC002	73	74	3.53	0.5	3670	0.08	45		AMRC005	153	154	0.02	0.5	311	0.13	55	
AMRC002	74	75	0.13	0.5	3290	0.08	58		AMRC005	154	155	0.02	0.5	242	0.25	46	
AMRC002	75	76	0.01	0.5	1950	0.07	49		AMRC005	155	156	0.02	1	800	0.14	47	
AMRC002	76	77	0.09	0.5	1415	0.08	29		AMRC005	156	157	0.01	0.5	114	0.09	42	
AMRC002	77	78	0.01	0.5	3140	0.07	42		AMRC005	157	158	0.24	1.3	1115	0.71	66 51	
AMRC002	78 79	79 80	0.01	0.5	2840	0.08	39			150	160	0.06	0.5	594 179	0.3	21	
AMRC002	80	81	0.05	0.5	2560	0.07	38		AMRC005	160	161	0.41	3	1755	1	63	
AMRC002	81	82	0.17	0.5	1750	0.07	47		AMRC005	161	162	0.52	11.7	8220	2.12	121	
AMRC002	82	83	0.01	0.5	1570	0.08	52		AMRC005	162	163	0.3	10.1	7370	1.96	104	
AMRC002	83	84	0.01	0.5	2360	0.09	89		AMRC005	163	164	0.21	5.9	4510	1.49	80	
AMRC002	84	85	0.04	0.5	1510	0.14	72		AMRC005	164	165	0.15	4.8	3440	1.21	160	
AMRC003	102	103	2.3	16.9	13000	3.64	1345	1.30	AMRC006	94	98	6.21	0.5	329	0.1	79	
AMRC003	103	104	0.23	/.1	5/00	2.08	548	1.05	AMRC007	141	142	0.15	2.2	1560	0.78	219	1 21
AMRC003	104	105	1 36	9.9 11 २	11250	2.00	550	1 1 2	AMRCOOT	142	145	2.25	16.6	11400	2.07	432	1.21
AMRC003	106	107	0.59	13.2	14700	2.73	621	1.47	AMRC007	144	145	0.13	4.6	3060	1.67	306	1.17
AMRC003	107	108	1.18	16.9	16300	2.9	379	1.63	AMRC007	145	146	1.03	4.7	2790	1.3	414	
AMRC003	108	109	0.09	1.8	1990	0.54	161		AMRC007	146	147	0.02	0.9	486	0.45	216	
AMRC003	109	110	0.96	17.5	15650	2.54	421	1.57	AMRC007	147	148	0.65	3.3	2110	1.53	378	
AMRC003	110	111	0.26	6.5	4560	1.06	197		AMRC007	148	149	0.13	2.6	1600	1.29	113	
AMRC003	111	112	0.1	3.2	2560	1.01	197		AMRC007	149	150	3.76	30	21100	3.96	424	2.11
AMRC003	112	113	0.41	9.4	5840	1.77	428		AMRC007	150	151	0.19	3.9	2350	1.37	121	
ANIRCO03	113	115	1.2	9.0	52/U 70¢	2.3/	38U		ANRCOU7	151	152	0.01	0.8	430	0.29	55	
AIVINC003	114	112	0.47	1.1	100	0.23	130		AIVINCUU/	172	172	0.01	0.5	122	0.09	50	

Hole_ID	mFrom	mTo	Au g/t	Ag g/t	Cu PPM	S %	Zn PPM	Cu %	Hole_ID	mFrom	mTo	Au g/t	Ag g/t	Cu PPM	S %	Zn PPM	Cu %
AMRC007	153	154	0.02	0.6	233	0.22	56		AMRC004	186	187	0.01	0.5	122	0.31	39	
AMRC007	154	155	0.36	4.4	3080	2.82	65		AMRC004	187	188	0.03	0.5	251	0.4	33	
AMRC007	156	157	0.11	4.4	2900	1.17	82		AMRC004	188	189	1.14	4.3	2560	0.72	82	
AMRC007	157	158	0.07	3.2	2050	1.45	57		AMRC004	189	190	0.19	1.8	1050	0.95	60	
AMRC007	158	159	0.18	3	1915	2.78	56		AMRC004	190	191	0.05	0.5	112	0.41	38	
AMRC007	159	160	0.14	2.8	1985	3.46	55		AMRC004	191	192	2.4	1.4	950	1.33	119	
AMRC007	160	161	0.08	1.6	1400	1.76	45		AMRC011	103	104	0.74	0.5	224	1.67	45	
AMRC007	161	162	0.04	0.6	454	0.87	40		AMRC011	104	106	1.06	0.5	243	1.37	37	
AMRC007	162	163	0.05	1.9	1310	1.24	46		AMRC011	106	107	2.12	0.5	250	1.35	40	
AMRC007	163	164	0.06	1.3	962	0.84	47		AMRC011	107	108	1.33	0.5	387	1.43	43	
AMRC007	164	165	0.03	0.5	245	0.67	42		AMRC011	108	109	1.1	0.8	1410	1.56	63	
AMRC007	165	166	1.3/	4	2110	1.33	/5		AMRC011	109	110	0.68	0.5	/31	1.07	46	
AMADCOOR	108	109	0.34	0.5	1210	0.08	465		AMRC011	110	111	1.41	0.5	290	1.33	38	
AMARCOOR	109	110	0.15	0.5	742	0.07	401		AMRC011	111	112	0.28	0.5	302	1.47	39	
AMPCOOS	110	111	0.14	0.5	20/	0.00	1/5		AMPC011	112	115	0.24	0.5	209	5 1 2	59 //1	
AMRC008	112	112	0.03	0.5	667	0.07	83		AMRC011	114	119	0.25	0.5	205	1.2	37	
AMRC008	112	113	0.56	20.9	5110	0.00	531		AMRC011	114	122	0.45	0.5	179	1.47	40	
AMRC008	114	115	0.30	28.3	9360	2.07	660		AMRC011	122	122	0.09	0.5	207	1.20	34	
AMRC008	161	162	56.7	2.7	484	0.31	64		AMRC011	123	124	2.05	0.5	483	1.72	29	
AMRC008	162	163	0.07	0.5	369	0.11	50		AMRC011	124	125	1.13	0.5	639	1.36	30	
AMRC008	163	164	0.58	7.7	6210	1.84	143		AMRC015	100	101	1.8	6.6	4110	1.26	175	
AMRC008	164	165	0.15	1.2	996	0.68	65		AMRC015	101	102	10.5	15.3	10400	2.86	160	1.04
AMRC008	165	166	0.83	0.9	743	0.9	59		AMRC015	102	103	0.35	8.5	4230	0.83	274	
AMRC009	32	36	0.01	0.5	449	0.08	1310		AMRC015	103	104	0.61	5.2	2270	0.87	376	
AMRC009	36	40	0.01	0.7	256	0.08	3290		AMRC015	116	117	0.18	1.7	1380	0.99	69	
AMRC009	40	44	0.06	0.5	145	0.06	2880		AMRC015	117	118	0.17	3	1970	1.23	80	
AMRC009	44	48	0.09	0.5	157	0.07	2730		AMRC015	118	119	0.13	8.7	1940	0.65	101	
AMRC009	48	52	0.01	0.5	207	0.1	901		AMRC015	119	120	0.11	3.1	1740	1.12	95	
AMRC009	52	56	0.01	0.6	104	0.1	1570		AMRC015	120	121	0.61	8.9	4800	1.4	163	
AMRC009	56	60	0.01	0.5	87	0.11	2370		AMRC015	121	122	0.13	4.5	2520	1.05	104	
AMRC009	60	64	0.01	0.5	115	0.11	732		AMRC015	122	123	0.08	1.5	1040	0.59	85	
AMRC009	118	119	0.07	5.6	631	0.19	80		AMRC015	123	124	0.17	6.3	4100	1.81	121	
AMRC009	119	120	0.31	0.3 20.1	14000	0.35	8/	1.40	AMRC015	124	125	0.08	1.6	1070	0.78	72	
AMRC009	120	121	2.04	20.1	2060	0.57	135	1.40	AMRC015	125	120	0.07	0.0	421	0.0	85	
AMRC009	121	122	0.82	3.5	1645	0.57	135		AMRC015	120	127	0.02	2.2	1500	1.57	87	
AMRC009	122	123	0.52	1.4	659	0.45	130		AMRC015	127	120	0.05	2.2	1060	0.8	79	
AMRC012	92	93	11.05	0.9	543	0.06	98		AMRC015	120	130	0.03	0.6	421	0.61	73	
AMRC012	93	94	15.8	5.6	928	0.06	104		AMRC015	130	131	0.04	1.1	717	1.46	81	
AMRC012	94	95	0.15	0.5	793	0.05	49		AMRC015	131	132	0.13	4	2590	2.41	111	
AMRC012	95	96	0.1	0.5	6720	0.06	97		AMRC015	132	133	0.11	2.5	1410	0.9	116	
AMRC012	96	97	0.6	0.5	8760	0.05	98		AMRC015	133	134	0.26	3.9	2410	0.91	151	
AMRC012	118	119	1.38	8	5310	3.4	112		AMRC015	134	135	0.53	18.8	12350	2.29	570	1.24
AMRC012	119	120	0.17	2.6	1470	0.97	56		AMRC015	135	136	0.4	6	4090	1.16	269	
AMRC012	120	121	0.29	5.9	3750	1.44	90		AMRC015	136	137	0.01	0.5	151	0.13	57	
AMRC012	121	122	0.04	1.6	899	0.45	60		AMRC015	137	138	0.09	0.5	82	0.11	51	
AMRC012	122	123	0.01	0.5	67	0.04	52		AMRC015	138	139	0.02	0.5	164	0.16	66	
AMRC012	123	124	0.01	0.5	39	0.03	41		AMRC015	139	140	0.11	0.9	691	0.24	80	
AMRC012	124	125	0.04	1.5	859	0.43	58		AMRC015	140	141	0.87	1.8	1230	1.52	109	
AMRC012	125	126	0.18	6.6	3810	0.81	82		AMRC015	141	142	0.38	1.7	1150	0.83	111	
AIVIRC012	126	127	0.01	0.5	134	0.07	34	1.02	AIVIRC015	142	143	0.11	1.3	859	0.66	101	
AMPC012	12/	120	0.25	12.8	10200	2.39	104	1.02	AMPCO15	143	144	0.00	2.2	1110	0.72	121	
AMRC012	128	129	0.01	3.2	2080	0.11	45 69		AMRC015	144	145	0.02	2.0	2130	1 45	12/	
AMRC012	130	131	0.27	4 5	2890	0.95	70		AMRC015	146	147	0.23	75	5160	2.68	150	
AMRC012	131	132	0.05	2.6	1680	0.54	54		AMRC015	147	148	0,11	5.6	3600	1.06	123	
AMRC012	132	133	0.04	1	541	0.47	42		AMRC015	148	149	0.14	8	5270	1.35	156	
AMRC012	133	134	0.23	10.3	6730	1.58	105		AMRC015	149	150	0.13	6.2	4100	1.25	148	
AMRC012	134	135	0.03	1.1	794	0.2	45		AMRC015	150	151	0.14	6.4	4450	1.38	175	
AMRC012	135	136	0.04	1	555	0.21	37		AMRC015	151	152	0.12	6.9	4620	1.32	175	
AMRC012	136	137	0.28	4	2490	0.83	66		AMRC015	152	153	0.17	9.5	6330	1.32	211	
AMRC004	74	75	0.55	0.5	605	0.03	129		AMRC015	153	154	0.18	6.2	4270	1.3	178	
AMRC004	75	76	1.1	0.5	481	0.03	101		AMRC015	154	155	0.3	9.2	6910	1.55	329	
AMRC004	76	77	0.73	1.2	914	0.04	129		AMRC015	155	156	27.3	9.5	9680	1.89	483	
AMRC004	77	78	0.17	0.8	433	0.02	86		AMRC015	156	157	0.3	6.1	4150	0.81	356	
AMRC004	78	79	0.72	0.5	354	0.02	40		AMRC015	157	158	0.23	3.1	2130	0.77	295	
AMRC004	79	80	0.06	0.5	373	0.03	60		AMRC015	158	159	0.2	4.9	3160	0.96	352	
AMRC004	80	81	0.65	0.5	321	0.02	56		AMRC015	159	160	0.34	2.7	1700	0.68	270	
AMIRC004	174	175	22.9	6.2	4940	2.29	331		AMRC015	160	161	0.1	5.3	3500	1.85	310	
AMRC004	175	170	0.09	2.3	334	1.29	39/		AIVIRC015	161	162	0.05	2.8	1950	1.08	235	
AMPC004	170	100	0.03	0.5	40	0.33	104		AMPCO15	162	167	0.03	2.5	1220	0.45	215	
AMRC004	180	181	0.01	U.5 5 1	05 4610	1.55	308		AMRC015	103 #RFFI	104	0.05	5.0	2200	0.55	152	
AMRC004	181	187	0.51	2.6	1660	0.71	202		AMRC015	174	175	0.13	10.5	7010	2 01	241	
AMRC004	182	186	0.15	1.3	756	0.66	148		AMRC015	175	176	0.13	5.6	3500	1.2	145	
						2.00											

Hole_ID	mFrom	mTo	Au g/t	Ag g/t	Cu PPM	S %	Zn PPM	Cu %
AMRC015	176	177	0.25	9.7	6290	2.4	188	
AMRC015	177	178	0.13	9.6	6090	1.49	175	
AMRC015	178	179	0.05	3	1810	0.4	115	
AMRC015	179	180	0.17	4.7	2800	1.27	120	
AMRC015	180	181	0.06	2.1	1150	0.69	99	
AMRC016	#REF!	69	0.02	0.5	2610	0.12	34	
AMRC016	69	70	0.05	0.5	3150	0.12	40	
AMRC016	70	71	0.04	0.5	2440	0.11	56	
AMRC016	71	72	0.03	0.5	1550	0.11	59	
AMRC016	72	73	0.01	0.5	1970	0.1	80	
AMRC016	73	74	0.01	0.5	2950	0.12	106	
AMRC016	74	75	0.01	0.5	2250	0.08	112	
AMRC016	75	76	0.01	0.5	1550	0.08	108	
AMRC016	76	77	0.04	0.5	2170	0.08	108	
AMRC016	77	78	0.01	0.5	1430	0.08	112	
AMRC016	78	79	0.01	0.5	1390	0.09	100	
AMRC016	79	80	0.01	0.5	1280	0.09	109	
AMRC016	80	81	0.01	0.5	687	0.08	95	
AMRC016	81	82	0.03	0.5	551	0.07	100	
AMRC016	82	83	0.01	0.5	1600	0.08	122	
AMRC016	83	84	0.15	0.5	1090	0.07	95	
AMRC016	84	85	11.5	1.7	1110	0.09	111	
AMRC016	85	86	1.05	6.1	5260	0.52	315	
AMRC016	86	87	0.3	2.8	2060	1.89	161	
AMRC016	87	88	0.26	5.6	4040	2.35	123	
AMRC016	88	89	0.14	3	2300	1.03	86	
AMRC016	89	90	0.21	4.9	3160	2.67	87	
AMRC016	90	91	0.14	2.4	1620	0.77	73	
AMRC016	91	92	0.24	2.8	1720	0.96	72	
AMRC016	92	93	0.47	4.3	2920	1.27	103	
AMRC016	93	94	0.34	5.7	3940	1.23	110	
AMRC016	94	95	0.4	7.9	5500	2.47	118	
AMIRC016	95	96	0.05	1.7	1100	0.58	92	
ANARCOLO	96	97	0.13	5.1	3320	1.51	97	
AMARCO16	97	98	0.09	3.2	2180	1.34	94	
AMARCOLO	98	100	0.08	3.4	2340	0.69	09	
AMRC016	100	100	0.30	4	2360	2.10	04 122	
AMPC016	100	101	0.4	7.9	2200	3.19	152	
AMPC016	101	102	0.17	3.2	2600	0.87	99	
AMRC016	102	103	0.07	5.0	3500	0.82	101	
AMRC016	10/	104	0.05	14	912	0.00	76	
AMRC016	105	105	1 37	<u> </u>	4000	1 1/	103	
AMRC016	106	107	0.14	4	2820	1.15	94	
AMRC016	107	108	0.15	3.2	2330	0.82	81	
AMRC016	108	109	0.93	9.7	6290	1.65	137	
AMRC016	109	110	1.72	18.8	11450	3.15	204	1.15
AMRC016	110	111	0.26	6.5	4400	2.09	117	
AMRC016	111	112	5.85	3.4	2490	0.84	94	
AMRC016	112	113	3.05	7.1	3550	0.87	123	
AMRC016	113	114	0.17	2.9	1910	0.43	96	
AMRC016	114	115	0.45	13.8	9540	2.54	204	
AMRC016	115	116	0.23	8.7	5780	2.59	134	
AMRC016	116	117	0.32	8.3	5350	3.46	120	
AMRC016	117	118	0.53	15.5	10750	4.98	204	1.08
AMRC016	118	119	0.39	6	4060	1.81	106	
AMRC016	119	120	0.8	5.5	3820	3.53	105	
AMRC016	120	121	0.5	6.9	4710	4.79	111	
AMRC016	121	122	1.03	5.6	3960	3.68	87	
AMRC016	122	123	0.39	6.2	4520	2.59	94	
AMRC016	123	124	0.76	5	3780	2.28	87	
AMRC016	124	125	0.1	2.2	1770	1.46	64	