11th February 2020 ASX ANNOUNCEMENT Munarra Gully Project Large Scale Copper-Gold System defined over 7km Strike

Amaryllis Cu-Au Prospect

- Reconnaissance drilling has confirmed copper in basement mineralisation extends south from the Amaryllis Cu-Au Prospect.
- Ongoing compilation of historic data and current air core drilling has highlighted **multiple copper-gold bearing mafic sills occur over a strike of 7km** (completely open).
- The mineralised mafic sills are > 50m in width with significant historic primary sulphide zone intersections including:
 - MHD045 74m @ 0.41% Cu, 0.29 g/t Au from 139m to EOH inc 5m@ 1.71% Cu, 0.82 g/t Au, 21.2 g/t Ag from 139m inc 5m @ 0.74% Cu, 0.51 g/t Au from 164m inc 14m @ 0.58% Cu, 0.45 g/t Au from 192m

*Note drill hole ended in mineralisation

- Of importance: A large flat lying conductor (historic down-hole TEM survey) over 1km in length corresponds to an inferred strike extensive supergene sulphide zone above the primary zone mineralisation outlined above:
 - Conductor is open along strike;
 - Supergene sulphide zones are typically higher grade than underlying primary sulphide zones; and
 - The historic drilling only intercepted the primary sulphide zone while the potential higher-grade supergene sulphide zone remains to be drill tested.

Co Prospect

- Reconnaissance air core drilling at the Co Prospect has confirmed cobalt in laterite mineralisation extends along strike.
- Lateritic cobalt mineralisation was defined over 500m of strike and is open to the southwest over a strike of 1km. Air core drilling results include:
 - o 3m @ 0.11% Co from 15m (LBAC279)
 - 1m @ 0.19% Co from 18m (LBAC303)

Next Steps

• Rumble is fast tracking approvals to drill test the potential higher-grade supergene zone at the Amaryllis Cu-Au Prospect over the coming weeks.

Munarra Gully Cu-Au Tenements

- Rumble secured 80% of E51-1677.
- E51-1919 100% Rumble which hosts the Amaryllis Cu-Au Prospect, has been granted.

Rumble Resources Ltd (ASX: RTR) ("Rumble" or "the Company") is pleased to announce the results from the current round of reconnaissance air core drilling and the ongoing data review at the Munarra Gully Project located some 50km NNE of the town of Cue within the Murchison Goldfields of Western Australia and comprising an area of 205km².

Rumble Resources Ltd

Suite 9, 36 Ord Street, West Perth, WA 6005

T +61 8 6555 3980

F +61 8 6555 3981

rumbleresources.com.au

ASX RTR

Executives & Management

Mr Shane Sikora Managing Director

Mr Brett Keillor Technical Director

Mr Matthew Banks Non-executive Director

Mr Michael Smith Non-executive Director

Mr Steven Wood Company Secretary

Mr Mark Carder Exploration Manager

Managing Director Shane Sikora said "Rumble's technical team developed a previously unrecognised exploration model for the region that identified the potential for significant mafic hosted Cu-Au deposits based on Rumbles exploration results at the White Rose Prospect (example 22m @ 1.00% Cu from 29m coincident with 19m @ 2.19 g/t Au from 33m). The White Rose Prospect mineralisation zone is up to 50m wide over a strike of 350m (faults have terminated strike continuity). Of importance, even with the significant sulphide intercept outlined above, the mineralised primary sulphide zone was not conductive when using ground and downhole TEM.

"Using the newly developed regional exploration model, Rumble commenced regional exploration targeting for copper - gold bearing matic sills that could potentially host a large-scale Cu-Au deposit(s). Detailed Open File review of historic exploration results has highlighted that the Amaryllis Cu-Au Prospect, which lies some 6km north of White Rose, is on the main regional structure associated with Cu-Au-Co mineralisation within the Munarra Gully Project. The historic exploration at the Amaryllis Cu-Au Prospect has shown previous explorers were focused on gold mineralisation rather than the copper potential, with limited copper assaying completed.

"Of note, the Amaryllis Cu-Au Prospect has the same style of mineralisation as the White Rose Prospect with true widths of over 50 metres (disseminated Cu with Au sulphide mineralisation), however, unlike the White Rose, which is constrained to a strike length of 350m, the large scale tonnage potential for multiple mafic hosted Cu-Au deposits at the Amaryllis Cu-Au Prospect is compelling with over 7km's of Cu-Au strike identified and completely open.

"The Amaryllis Prospect has six (6) historic diamond core drill holes that were designed to test for gold mineralisation and were only partially assayed for copper, however intersected significant widths of Cu-Au mineralisation including 74m @ 0.41% Cu, 0.29 g/t Au from 139m to EOH which included a higher-grade 5m @ 1.71% Cu, 0.82 g/t Au and 21.2 g/t Ag from 139m in mineralised primary sulphides (primary zone).

"Historic down-hole geophysical surveys were completed on four (4) of the diamond core drill holes in response to the level of sulphide intercepted, however, like the White Rose Prospect, the primary mineralised sulphides are not conductive. Instead the results from the down hole survey indicate a flat lying conductor over 1km in strike (and open) at a depth of approximately 80m located above the significant widths of primary Cu-Au mineralisation. Rumble has inferred the conductor may represent the secondary sulphide zone associated with supergene enrichment (supergene zone) above the mineralised primary sulphide zone outlined above.

"Of importance, typically the supergene zone is much higher grade than the underlying primary zone, and the historic diamond core drilling only intercepted the primary sulphide mineralisation while the potential higher-grade supergene zone remains to be drill tested. Rumble is now fast tracking the approvals to drill test the exciting supergene zone over the coming weeks".

Image 1 – Munarra Gully Project – Location of Prospect over Regional Magnetics

Munarra Gully Project Overview

Amaryllis Cu-Au Prospect

Exploration by Rumble has discovered copper, gold and cobalt mineralisation closely associated with a differentiated mafic sill horizon and a fine grain pyroxenite intrusion which are related to a regional structure (shear zone) that strikes over 34 km within the Munarra Gully Project (see image 1). Inferred magmatic copper-gold mineralisation with epigenetic shear related overprints were first recognised at the White Rose Prospect with significant widths of Cu-Au values (**22m @ 1.00% Cu from 29m coincident with 19m @ 2.19 g/t Au from 33m (WRRC001).** A differentiated mafic sill hosting disseminated copper sulphides (bornite and chalcopyrite) with strongly anomalous gold and silver was defined over a strike of 350m (sill terminated by faults) and an average width of 50m at White Rose. From the work completed at White Rose, a regional exploration model was developed with the emphasis on finding a larger (strike extensive) mafic sill that could potentially host large-scale Cu Au deposit(s).

Recent research on historic drilling, located some 6km to the north of the White Rose prospect, has outlined widespread copper in basement mineralisation with significant gold over a strike of 7km with the system completely open. Previous explorers completed only limited copper assaying, however, the tenor and style of mineralisation is identical to the White Rose model.

Rumble believes it has identified a large-scale copper-gold (with silver) mineralising system associated with a series of mafic (differentiated) sills under shallow cover (20 - 30m) and has renamed the prospect to the Amaryllis Cu Au Prospect.

The Amaryllis Prospect has six (6) historical diamond core drill holes completed over a strike of 1.2km. The diamond core drill holes were designed to test for gold mineralisation and were only partially assayed for copper. Historic reconnaissance air core drilling on 400m spacing was also tested for copper and image 2 highlights the 7km of strike potential currently delineated. Historic down-hole TEM (transient electromagnetic) surveys were completed on four (4) of the diamond core drill holes in response to the significant level of sulphide intercepted during the gold exploration. The results from the survey indicate a flat lying conductor (all four holes) with a conductance of 100 siemens lies at a depth of approximately 80m. The conductor is strike extensive and open. Rumble has inferred the conductor may represent the secondary sulphide zone associated with supergene enrichment. Typically, the supergene is higher grade than the underlying primary zone.

Primary copper gold mineralisation defined in the historic diamond core drilling occurs over the width of the mineralised mafic sill (> 50m width). Historic hole MHD045 returned:

- 74m @ 0.41% Cu, 0.29 g/t Au from 139m to EOH which included:
 - 5m @ 1.71% Cu, 0.82 g/t Au and 21.2 g/t Ag from 139m
 - o 5m @ 0.74% Cu, 0.51 g/t Au from 164m
 - o 14m @ 0.58% Cu, 0.45 g/t Au from 192m

Primary mineralisation was dominantly disseminated to stringer chalcopyrite and pyrite and was not conductive. Of importance - the diamond core drilling only intercepted primary sulphide mineralisation.

Co Prospect

During the regional exploration completed by Rumble in July 2019 (exploring for Cu-Au, refer ASX announcement 11 July 2019), an area of high-grade cobalt in laterite mineralisation was intersected at the Co Prospect (see image 1 for location). Results include:

- 2m @ 0.48% Co, 220ppb Pt from 18m
- 3m @ 0.37% Co, 75ppb Pt from 14m
- 2m @0.20% Co, 203ppb Pt from 11m
- 1m @ 0.55% Co, 382ppb Pt from 13m

The cobalt mineralisation lies within the laterite/saprolite zone of a fine grain pyroxenite intrusion within intercalated talc chlorite schists (after ultramafic), dolerite/gabbro and mafic volcanics.

Air Core Drilling Programme and Results

Air core drilling was completed on 10 traverses covering three areas within tenement E51/1677. A total of 127 drill holes for 3573m tested:

- 1. Extension of copper mineralisation south of the newly named Amaryllis Cu Au prospect.
- 2. Extension of cobalt in laterite mineralisation at the Co Prospect.
- 3. A large ultramafic body some 2 to 3km southwest of the Co Prospect for Ni-Cu-Co potential.

Amaryllis Cu Au Prospect

A single air core drill traverse was completed within E51/1677 immediately south of the main Amaryllis Cu Au prospect. The reconnaissance air core drilling was designed to test for copper geochemical trends south of the large Amaryllis mineralised system. Two wide-spaced (80m apart) drill holes intercepted elevated copper:

- LBAC286 4m @ 530ppm Cu from 12 and 4m @ 622ppm Cu from 28m
- LBAC287 8m @ 414 ppm Cu from 12m

Image 2 – Amaryllis Cu Au Prospect – Rumble and Historic Drilling (with copper values) over Magnetics

Air core drilling completed by Rumble in July 2019 intercepted elevated copper (up to 1130ppm Cu - LBAC124) 2.6km south of the latest air core drilling by Rumble (image 2). Rumble and historic air core drilling have outlined copper in basement anomalism over a strike of 7km. The anomalism is completely open.

Co Prospect (image 3)

Drilling has extended the cobalt in laterite anomalism (>500ppm Co) to the southwest. Some 500m of strike has been defined. Cobalt in laterite mineralisation is associated with a pyroxenite unit that has intruded into talc chlorite schists, dolerite, gabbro and mafic volcanics. Results include:

- 3m @ 0.11% Co from 15m (LBAC279)
- 1m @ 0.19% Co from 18m (LBAC303)

The cobalt mineralisation is open to the southwest over a strike >1km.

Image 3 – Co Prospect – Location of Air Core Drilling and Significant Drill Hole Results

Regional Targets (image 3)

Two air core drill traverses tested the upper profile of an ultramafic complex some 2.5km southwest of the Co Prospect. The laterite/saprolite zone (dominated by talc chlorite schists) returned mainly background nickel and cobalt – Nickel to 0.52% and Cobalt to 0.04%.

Amaryllis Cu-Au Prospect Prospectivity Update (image 2, 4, 5 and 6)

Ongoing review of historic geochemistry with reprocessing and re-interpretation of historic downhole TEM at the Amaryllis Cu Au Prospect has further enhanced the potential for a large-scale Cu-Au mineralising system.

Current reconnaissance air core drilling by Rumble as confirmed strong continuity of copper in basement mineralisation to the south of the Amaryllis Cu Au Prospect.

Review and compilation of historic copper assaying from reconnaissance air core drilling and 6 diamond core drill holes has highlighted multiple copper in basement zones (>1000ppm Cu) in association with gold

mineralisation. The diamond core drill holes (only partial copper assays) confirm wide zones of low-grade copper mineralisation with gold (and silver) are associated with differentiated mafic (dolerite to gabbro) sills. Within the wide low-grade copper haloes, higher grade copper mineralisation was intersected. Hole MHD045 returned **5m @ 1.71% Cu, 0.82 g/t Au, 21.2 g/t Ag from 139m.**

Historic down hole TEM (transient electromagnetic) surveys were completed on four diamond core drill holes subsequent to the geological observation of disseminated to stringer chalcopyrite, bornite and pyrite. Reinterpretation and re-modelling of the downhole TEM data has highlighted a broad flat to shallow west dipping conductor plate with a conductance of 100 siemens. The plate is modelled from the four diamond core drill holes and is interpreted to correlate with the supergene secondary sulphide zone at approximately 80m depth. Images 4 and 5 highlight the position of the conductor in plan and by longitudinal section. The plate over 1km in length and is open along strike.

All six diamond core drill holes intercepted the primary zone beneath the inferred supergene secondary sulphide zone over a strike of 1.2km.

Image 4 highlights the conductor plate and shows the >1% Cu basement contour is open to the north.

Image 4 – Amaryllis Cu Au Prospect – Copper in Basement Geochemistry, Conductor Plate and Location of Longitudinal Section.

Image 5 – Amaryllis Cu Au Prospect – Longitudinal Section – Primary Zone Cu-Au Intersections and Location of DHEM Conductor over Four Diamond Core Drill Holes

Amaryllis Cu Au Prospect Exploration Model

The Amaryllis Cu Au Prospect exploration model is inferred to be magmatic Cu-Au (and Ag) mineralisation associated with a series of differentiated mafic sills. Later epigenetic (shear zones) have developed higher grade gold zones which were the focus for previous exploration. The primary Cu Au mineralised zone has low conductivity and magnetic susceptibility, not detectable by TEM and magnetics. Other geophysical methods such as IP have not tested been applied.

Image 6 - Exploration Model for Amaryllis Cu-Au Prospect

Targeting Primary and Supergene High Grade Sulphides

The broad flat lying conductor may represent the supergene secondary sulphide zone (chalcocite, chalcopyrite, bornite and marcasite/pyrite). The supergene zone is typically higher grade than the primary zone. The inference is higher grade and volume of secondary sulphide (conductivity can be highly variable in supergene sulphides) will develop over higher grade and volume of primary sulphide and therefore allowing TEM to target primary Cu Au mineralisation via the conductivity response in the supergene sulphide zone.

Of Importance

- The Amaryllis Cu Au mineralisation system has the potential to be a large-scale deposit(s)
 - The strike is 7km and completely open.
 - Width of the mineralised sill is >50m.
 - Copper in basement geochemistry has highlighted multiple parallel zones.
- Only 6 diamond core drill holes have tested the copper gold mineralisation in the central 1.2km long zone. Copper and gold assays are partial.
 - Wide zones of low-grade Cu-Au mineralisation (i.e. 74m @0.41% Cu, 0.29 g/t Au from 139m to EOH).
 - Higher grade zones within the broad mineralised envelope include 5m @ 1.7% Cu, 0.82 g/t Au, 21.2g/t Ag from 139m.
- Historic DHTEM of four diamond core drill holes has defined a broad flat to shallow dipping conductor plate that is inferred to correlate with the supergene secondary sulphide zone.
 - The flat conductor is over 1km in strike (essentially open due to distance from surveyed drill holes).
 - $\circ\,$ The supergene secondary sulphide zone has not been assayed for copper based on distribution of drill holes.
 - The supergene oxide and secondary sulphide zone is typically higher grade than the underlying primary sulphide zone.

Rumble considers TEM will aid in targeting economic (Cu Au Ag) primary zones based on the inference higher-grade supergene sulphide mineralisation develops over higher-grade primary sulphide mineralisation.

Target

- Large-scale disseminated/stringer/massive sulphide Cu Au Ag magmatic mineralisation hosted in strike extensive differentiated to massive mafic intrusions. Potential for multiple deposits.
- Mineralisation styles within the mafic intrusions
 - Strike extensive supergene mineralisation (including oxide) broad flat zone overlying:
 - Primary sulphide mineralisation

Next Steps - Amaryllis Cu-Au Prospect

- Complete ground TEM survey
- Drill the conductors along defined copper-in-basement corridor (RC drilling)
- Extend and infill the current 7km of strike to the north and south with further drilling

Munarra Gully Cu-Au Tenements

E51/1677 - Earnt 80% of all mineral rights

Rumble provided notice to Marjorie Anne Molloy that it has exercised the Option in respect of E51/1677 based on the below terms:

- **a.** Rumble make final payment of \$25,000 cash and issue \$25,000 of RTR ordinary shares to earn 80% on all mineral rights.
- **b.** Marjorie Ann Molloy free carried to BFS.
- c. Following the completion of a BFS and decision to mine, Marjorie Ann Molloy can either elect to contribute to ongoing project development or dilute to a 1% NSR.

M51/0122

Rumble has notified Radman Mining Pty Ltd that is has withdrawn from the option agreement for M51/0122 which hosts the White Rose Prospect, based on the restrictive 350m of strike and Rumble exhausting all targets.

E51-1919 – 100% Rumble

Rumble confirms that tenement E51-1919 which hosts the Amaryllis Cu-Au Prospect has been granted and is 100% owned by Rumble.

Authorisation

This announcement is authorised for release by Shane Sikora, Managing Director of the Company.

About Rumble Resources Ltd

Rumble Resources Ltd is an Australian based exploration company, officially admitted to the ASX on the 1st July 2011. Rumble was established with the aim of adding significant value to its current mineral exploration assets and will continue to look at mineral acquisition opportunities both in Australia and abroad.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Brett Keillor, who is a Member of the Australasian Institute of Mining & Metallurgy and the Australian Institute of Geoscientists. Mr Keillor is an employee of Rumble Resources Limited. Mr Keillor has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Keillor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Section 1 Sampling Techniques and Data

	Criteria	JORC Code explanation	Commentary			
Drilling		 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Air core drilling sampling methodology included: Composite – to maximum of 4m Single metre samples based on pXRF response Drill cuttings placed in 1m piles. Sample method involved scoop/spear into piles. Individual weight of 1m sample cuttings 8 to 12kg. Sample size between 1 to 2kg. Analysis was four acid digest with 33 elements (ICP finish) and Au (25g charge) with AA digest. Historic drilling included AC, RAB, RC and DD. Detail reported in ASX Announcement 26/11/2019 – Munarra Gully Major Structure Hosting Cu Au Co 			
	Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	 Air Core Drilling. Blade and face hammer (3.5 in). Historic drilling included AC, RAB, RC and DD. Detail reported in ASX Announcement 26/11/2019 – Munarra Gully Major Structure Hosting Cu Au Co 			
	Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Air Core Drilling Drill cuttings placed in 1m piles. Sample method involved scoop/spear into piles. Individual weight of 1m sample cuttings 8 to 12kg. Sample size between 1 to 2kg. Analysis was four acid digest with 33 elements (ICP finish) and Au (25g charge) with AA digest. Historic sampling – Au (FA), Ag Cu Zn Multi-acid digest – Renton Labs Partial sections of diamond core were cut and assayed for Au, Cu and Ag. 			
	Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Air Core Drilling – every metre interval geologically logged Every metre was collected and stored in chip trays for future reference. 			
	Sub- sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and 	 Air Core Drilling All samples were dry. Samples were collected by spear (includes composites). Weight between 1 to 2 kg for air 			

Criteria	JORC Code explanation	Commentary				
and sample preparation	 appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 core samples Field duplicates every 20 samples Standard and blank every 20 samples 				
Quality of	The nature, quality and appropriateness of the	Air Core Drilling.				
and laboratory	 Assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF 	 Assay methodology was complete digest 				
tests	instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	 pXRF used only as a guide to wet sampling (i.e composites versus single metres) 				
		 Duplicates, standards and blanks used throughout programme. 				
	established.	 Historic drilling included AC, RAB, RC and DD. Detail reported in ASX Announcement 26/11/2019 – Munarra Gully Major Structure Hosting Cu Au Co 				
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Not known for historic exploration. All review work completed by Rumble No twins used in air core drilling. 				
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Air Core Drilling utilised MGA94 Z50 as datum. All collars picked up by hand held GPS. Historic drilling included AC, RAB, RC and DD. Detail reported in ASX Announcement 26/11/2019 – Munarra Gully Major Structure Hosting Cu Au Co 				
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Air core drilling was reconnaissance. Variable spaced lines (often single traverses testing targets) Composite sampling used. Historic drilling included AC, RAB, RC and DD. Detail reported in ASX Announcement 26/11/2019 – Munarra Gully Major Structure Hosting Cu Au Co 				
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the exist to be an an and the existence of leave size of a structure of structure of structure of leave size of a structure of structu	 Air Core Drilling Drilling designed to test for flat lateral mineralization. True width. 				
	the orientation of key mineralised structures is	o Anglea noles based on				

Criteria	JORC Code explanation	Commentary
	considered to have introduced a sampling bias, this should be assessed and reported if material.	known regional trend and foliation.
		 Historic drilling included AC, RAB, RC and DD. Detail reported in ASX Announcement 26/11/2019 – Munarra Gully Major Structure Hosting Cu Au Co
Sample security	 The measures taken to ensure sample security. 	 Rumble personnel ensure sample security on site and delivery to laboratory
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No external audits and reviews completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary				
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 EL51/1919 – 100% RTR – Granted 6/2/2020 ELA51/1927 – 100% RTR – in application E51/1677 is granted and is 100% owned by Marjorie Ann Molloy. Rumble has exercised its option to acquire 80%. 				
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Current exploration solely completed by Rumble Resources Historic exploration. Detail reported in ASX Announcement 26/11/2019 Munarra Gully Major Structure Hosting Cu Au Co 				
Geology	 Deposit type, geological setting and style of mineralisation. 	 Target is Cu, Au, Ag, Ni and Co. The style is considered mafic related disseminated sulphide associated with differentiated intrusives 				
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Table 1 outlines all drill hole co- ordinates, depth, azimuth and inclination reported in this announcement Table 2 highlights Au, Co, Cr, Cu, Fe, Mg, Mn and Ni assayed related to drill hole intercepts reported in this announcement. Table 3 – MHD045 – Location and Significant Au, Cu and Ag Assays Historic Exploration. Detail reported in ASX Announcement 26/11/2019 – Munarra Gully Major Structure Hosting Cu Au Co 				
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Air core drilling Drilling is reconnaissance. Simple averages used Historic Exploration. Detail reported in ASX Announcement 26/11/2019 Munarra Gully Major Structure Hosting Cu Au Co 				
Relationship between mineralisation widths and	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should 	 Air Core Drilling Targeting geochemical trends and flat lying cobalt 				

Criteria	JORC Code explanation	Commentary			
intercept lengths	 be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 in laterite mineralization. Historic Exploration. Detail reported in ASX Announcement 26/11/2019 Munarra Gully Major Structure Hosting Cu Au Co 			
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Image 1 – Munarra Gully Project – Location of Prospects over Regional Magnetics Image 2 - Amaryllis Cu Au Prospect – Rumble and Historic Drilling (with copper values) over Magnetics Image 3 – Co Prospect – Location of Air Core Drilling and Significant Drill Hole Results Image 4 – Amaryllis Cu Au Prospect – Copper in Basement Geochemistry, Conductor Plate and Location of Longitudinal Section. Image 5 - – Amaryllis Cu Au Prospect – Longitudinal Section – Primary Zone Cu-Au Intersections and Location of DHEM Conductor over Four Diamond Core Drill Holes Image 6 – Exploration Model for Amaryllis Cu Au Prospect Targeting Primary and Supergene High Grade Sulphides 			
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Table 2 highlights selected drill hole (single metre and composite) assays with Au, Co, Cr, Cu, Fe, Mg, Mn and Ni. 			
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Down hole EM surveys were conducted on four DD drill holes at Amaryllis. Australasian Gold Mines NL commissioned Southern Geoscience to complete the survey in 2000. The prospect was known as Hope River. Re-processing and modelling was completed by Armada Exploration Services. 			
Further work	• The nature and scale of planned further work (e.g.	Amaryllis Cu Au Prospect			
	 tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 MLTEM survey will commence in February 2020. A total of 2.6km of strike is planned to test for sulphide conductors RC drilling will test conductors and test zones not previously assayed for copper. Multi-element assaying will be completed. Regional air core drilling to extend the copper in basement mineralisation. 			

Criteria	JORC Code explanation	Commentary
		 Cobalt Prospect Infill AC to test the cobalt tenor along strike.

Air Core Drill Hole Location and Survey									
Hole_ID	E (MGA94Z50)	N(MGA94Z50)	RL (m)	Depth(m)	Dip	Azi			
LBAC248	613016	7015855	479	59	-60	150			
LBAC249	613003	7015874	474	39	-60	150			
LBAC250	612993	7015893	477	18	-60	150			
LBAC251	612979	7015908	472	18	-60	150			
LBAC252	612966	7015926	475	42	-60	150			
LBAC253	612955	7015943	471	18	-60	150			
LBAC254	612949	7015964	473	18	-60	150			
LBAC255	612919	7016006	467	48	-60	150			
LBAC256	613219	7015885	474	45	-60	150			
LBAC257	613214	7015904	478	24	-60	150			
LBAC258	613207	7015923	486	12	-60	150			
LBAC259	613195	7015942	475	24	-60	150			
LBAC260	613182	7015964	478	24	-60	150			
LBAC261	613175	7015981	477	30	-60	150			
LBAC262	613169	7015995	471	49	-60	150			
LBAC263	613155	7016012	470	18	-60	150			
LBAC264	613145	7016027	468	18	-60	150			
LBAC265	613136	7016038	460	18	-60	150			
LBAC266	613130	7016062	475	39	-60	150			
LBAC267	613113	7016090	475	18	-60	150			
LBAC268	612818	7015791	474	21	-60	150			
LBAC269	612804	7015814	510	62	-60	150			
LBAC270	612792	7015831	468	27	-60	150			
LBAC271	612778	7015852	467	27	-60	150			
LBAC272	612768	7015869	467	21	-60	150			
LBAC273	612753	7015890	467	30	-60	150			
LBAC274	612747	7015914	4/4	72	-60	150			
LBAC275	612735	7015736	476	30	-60	150			
	612724	7015754	477	10	-60	150			
	612710	7015775	474	10	-60	150			
LBAC278	612690	7015730	477	30	-60	150			
LBAC280	612678	7015833	486	27	-60	150			
LBAC281	612668	7015852	506	24	-60	150			
LBAC282	612656	7015871	499	30	-60	150			
LBAC283	612641	7015896	500	28	-60	150			
LBAC284	616920	7022202	448	11	-60	90			
LBAC285	616841	7022200	453	15	-60	90			
LBAC286	616751	7022200	451	15	-60	90			
LBAC287	616668	7022199	450	23	-60	90			
LBAC288	616590	7022196	449	21	-60	90			
LBAC289	616510	7022201	451	47	-60	90			
LBAC290	616431	7022204	451	41	-60	90			
LBAC291	616352	7022196	446	54	-60	90			
LBAC292	616271	7022193	455	39	-60	90			
LBAC293	616194	7022204	455	39	-60	90			
LBAC294	616116	7022199	470	36	-60	90			
LBAC295	616044	7022202	465	48	-60	90			
LBAC296	616000	7022199	449	54	-60	90			
LBAC297	615963	7022206	452	42	-60	90			
LBAC298	615926	7022203	452	42	-60	90			
LBAC299	615884	/022201	448	27	-60	90			
LBAC300	615846	/022200	451	39	-60	90			
LBAC301	615800	7022200	447	39	-60	90			
LBAC302	6157/1	7022198	441	63	-60	90			
LBAC303	612990	7015916	4/6	33	-60	150			
LBAC304	612050	7015954	483	32	-60	150			
	612559	70159/1	481	40	-00	150			
	612626	7015700	485	22	-60	150			
	612634	7015709	405	22	-60	150			
	612620	7015749	401	22	-60	150			
	612602	7015766	47J	22	-60	150			
LEACTIO	012002	,013,00		55		10			

Table 1 Air Core Drill Hole Location and Survey

A					rcy	
Hole_ID	E (MGA94Z50)	N(MGA94Z50)	RL (m)	Depth(m)	Dip	Azi
LBAC311	612593	7015788	467	33	-60	150
LBAC312	612579	7015801	467	21	-60	150
1840212	612565	7015922	467	19	60	150
LDAC313	012505	7015625	407	21	-00-	150
LBAC314	612561	7015629	471	21	-60	150
LBAC315	612553	7015648	472	21	-60	150
LBAC316	612530	7015669	465	18	-60	150
LBAC317	612516	7015687	474	18	-60	150
LBAC318	611768	7015072	486	4	-60	150
	611757	7015086	402	6	60	150
LDAC315	611737	7015080	452	0	-00	150
LBAC320	611749	7015105	495	9	-60	150
LBAC321	611734	7015140	491	7	-60	150
LBAC322	611716	7015165	485	18	-60	150
LBAC323	611702	7015187	476	18	-60	150
LBAC324	611689	7015206	479	18	-60	150
1BAC325	611682	7015222	480	24	-60	150
	611662	7015222	400	27	60	150
LBAC320	011002	7015249	473	33	-60	150
LBAC327	611659	/015268	475	20	-60	150
LBAC328	611648	7015281	476	30	-60	150
LBAC329	611643	7015297	475	33	-60	150
LBAC330	611640	7015309	478	42	-60	150
1BAC331	611628	7015321	468	22	-60	150
	611620	7015321	400	21	60	150
LBAC332	011020	7015335	409	21	-60	150
LBAC333	611611	/015351	4/1	30	-60	150
LBAC334	611602	7015359	469	33	-60	150
LBAC335	611594	7015372	469	18	-60	150
LBAC336	611589	7015388	495	14	-60	150
LBAC337	611577	7015403	494	30	-60	150
	611567	7015/20	180	21	60	150
LDAC330	011507	7015420	480	21	-00	150
LBAC339	611556	7015438	479	33	-60	150
LBAC340	611548	7015452	479	12	-60	150
LBAC341	611543	7015467	483	30	-60	150
LBAC342	611527	7015490	481	19	-60	150
LBAC343	611514	7015503	477	24	-60	150
IBAC344	611508	7015521	476	36	-60	150
	611502	7015575	472	28	60	120
LBAC345	011505	7015575	472	20	-00	130
LBAC346	610558	7014592	483	25	-60	130
LBAC347	610541	7014608	482	30	-60	130
LBAC348	610527	7014624	483	28	-60	130
LBAC349	610512	7014643	486	33	-60	130
LBAC350	610500	7014654	494	24	-60	130
LBAC351	610488	7014668	493	18	-60	130
	610472	701/606	405	10	60	130
LDAC352	010473	7014080	495	18	-00	130
LBAC353	610458	/014697	499	30	-60	130
LBAC354	610258	/014082	485	33	-60	130
LBAC355	610245	7014095	483	28	-60	130
LBAC356	610225	7014109	486	15	-60	130
LBAC357	610216	7014124	484	21	-60	130
LBAC358	610201	7014139	493	18	-60	130
1840359	610184	7014149	487	17	-60	130
	610157	701/170	407	1,	60	120
	610107	7014178	407	9	-00	130
LBAC361	610127	/014203	487	15	-60	130
LBAC362	610114	7014217	494	5	-60	130
LBAC363	610106	7014240	486	24	-60	130
LBAC364	610090	7014244	488	6	-60	130
LBAC365	610076	7014255	489	18	-60	130
I BAC366	610068	7014272	477	24	-60	130
	610047	701/204	4/7	27	-00	120
LBAC367	010047	7014284	481	33	-60	130
LBAC368	610034	/014297	483	35	-60	130
LBAC369	610019	7014310	481	45	-60	130
LBAC370	610006	7014325	482	30	-60	130
LBAC371	609995	7014342	496	11	-60	130
LBAC372	609981	7014353	492	15	-60	130
1840272	600071	701/361	107	24	-60	130
LUACJIJ	000071	7014301	497	24	-00	130

Table 1 Cont.Air Core Drill Hole Location and Survey

Hole_ID	mFrom	mTo	Au_ppm	Co_ppm	Cr_ppm	Cu_ppm	Fe_%	Mg_%	Mn_ppm	Ni_ppm
LBAC256	34	35	0.01	5	122	538	1.88	0.17	65	41
LBAC256	35	36	0.01	16	422	326	4.33	1.53	304	173
LBAC269	7	11	0.01	60	2410	316	27.7	0.78	311	396
LBAC269	11	13	0.01	59	4200	309	20.4	0.54	552	456
LBAC269	13	15	0.01	57	2500	393	25.2	0.21	2060	695
LBAC270	4	5	0.01	28	2340	410	29.4	0.17	343	578
LBAC270	5	9	0.01	54	4660	228	23.8	0.93	224	387
LBAC270	9	13	0.01	189	3410	373	27.6	0.34	1100	763
LBAC270	13	17	0.01	214	6330	438	30.1	2	1290	1300
LBAC270	17	21	0.01	127	4440	341	24.6	1.28	840	1130
LBAC270	21	24	0.01	47	900	294	20.8	0.25	519	763
LBAC270	24	25	0.01	60	4360	438	29.4	0.57	879	1345
LBAC270	25	27	0.01	86	1050	3/5	23.7	3.4	742	1415
LBAC271	12	12	0.01	353	1950	129	14.2	7.29	2980	2010
	12	13	0.02	121	600	230	14.2	1.90	2060	1570
	13	14	0.03	120	1965	213	14.05	2.71	1060	1200
	18	22	0.01	788	2020	215	16.15	3.49	5760	2290
LBAC277	16	18	0.02	52	2370	<u>413</u>	25.4	0.19	913	721
LBAC278	12	16	0.01	166	4550	387	27.9	0.62	1265	909
LBAC278	16	20	0.01	40	2600	365	26.1	0.21	509	707
LBAC278	20	24	0.01	34	2790	332	27.6	0.29	547	881
LBAC279	15	16	0.01	1740	1990	134	12.85	7.34	16850	3270
LBAC279	16	17	0.01	1050	3310	182	16.95	4.7	15850	3220
LBAC279	17	18	0.01	648	2380	140	15.7	3.71	6640	2560
LBAC279	30	31	0.02	183	4160	226	20.5	2.53	4300	2100
LBAC279	31	32	0.03	429	1870	162	15.2	3.87	9110	2870
LBAC279	32	33	0.02	180	1460	257	14.45	1.59	998	2020
LBAC279	33	34	0.01	576	1205	304	14.4	2.98	18050	2960
LBAC279	34	35	0.01	869	2050	259	14.2	4.95	25700	3790
LBAC279	35	36	0.01	524	2340	162	14.75	4.54	6240	3290
LBAC279	36	37	0.01	506	1620	85	13.95	3.62	3580	2890
LBAC279	3/	38	0.01	2/2	1400	190	13.5	2.41	1680	21/0
LBAC279	38	39	0.01	348	1435	93	13.7	5.85	5590	2410
LBAC280	0	4	0.02	45 E00	529	105	10.95	1.32	779	284
LBAC280	4	0 16	0.01	22	1410	520	6.25	2.5	2220	250
LBAC286	28	29	0.05	29	321	530	5.42	2.89	429	188
LBAC286	20	30	0.06	23	178	568	5.25	2.05	382	106
LBAC286	30	31	0.05	47	160	588	5.23	2.00	567	125
LBAC286	31	32	0.05	21	150	802	5.43	2.08	210	113
LBAC286	32	33	0.03	28	140	421	4.83	2.14	483	120
LBAC286	33	34	0.03	28	169	397	4.96	2.39	400	129
LBAC286	34	35	0.18	30	166	160	4.94	2.78	374	147
LBAC286	37	38	0.05	29	117	463	5.03	2.46	383	116
LBAC287	12	16	0.05	49	181	406	5.18	1.5	241	144
LBAC287	16	20	0.03	39	146	422	4.31	1.22	423	105
LBAC303	18	19	0.01	1940	2610	221	17.7	2.05	20300	2880
LBAC304	20	21	0.01	554	1135	209	12	3.42	8630	1230
LBAC308	16	20	0.01	54	3920	316	27.5	0.21	474	805
LBAC308	20	24	0.01	53	3020	309	27	0.44	603	889
LBAC310	12	13	0.01	891	2970	356	14.65	5.18	5300	3200
LBAC310	13	14	0.01	5/8	2300	138	16.15	4.14	4960	2420
	14	15	0.01	344	2530	141	16.15	3.8/ 5 E1	4060	2400
LBAC310	15	17	0.01	449	2080	202	17 55	5.51	2000	2000
LBAC310	17	10	0.01	/22	2970	1/5	16.85	۵۵.C ۱ ۶۲	6360	2520
IBAC310	18	19	0.01	620	2350	222	15 3	-+.05	8430	3010
LBAC310	19	22	0.02	419	1800	188	11.5	7.74	2770	2300
LBAC310	22	23	0.01	646	1735	155	11.15	8.15	5610	2360
LBAC347	13	14	0.01	263	1600	285	11.8	2.32	3800	2420
LBAC347	14	15	0.01	534	1200	176	24.9	2.62	5440	2800
LBAC371	8	11	0.02	415	3340	53	13.6	10	2030	5160

 Table 2

 Select Air Core Drill Hole Multi-Element Assays

Table 3 - MHD45 – Significant Au, Cu and Ag Assays MHD45 – 616466E 7024279N Azi 90 Dip -90 (MGA94 Z50)

Hole ID	From	То	Au g/t	Cu PPM	Ag g/t	Hole ID	From	То	Au g/t	Cu PPM	Ag g/t
MHD045	111.10	112.00	0.08	20.00		MHD045	176.00	177.00	0.02	860.00	
MHD045	114.90	116.00	0.08	80.00		MHD045	177.00	178.00	0.04	800.00	
MHD045	120.20	121.00	0.08	40.00		MHD045	178.00	179.00	0.18	4520.00	
MHD045	121.00	122.00	0.30	600.00		MHD045	179.00	180.00	0.46	3680.00	
MHD045	122.00	123.00	0.92	60.00		MHD045	180.00	181.00	0.04	820.00	
MHD045	123.00	124.00	0.02	40.00		MHD045	181.00	182.00	0.32	4080.00	
MHD045	124.00	125.00	0.12	200.00		MHD045	182.00	183.00	0.12	720.00	
MHD045	125.00	126.00	0.76	560.00		MHD045	183.00	184.00	0.14	1240.00	
MHD045	126.00	127.00	0.18	60.00		MHD045	184.00	185.00	0.06	740.00	
MHD045	133.50	134.40	0.02	222.00		MHD045	185.00	186.00	0.28	1240.00	
MHD045	134.40	135.10	0.04	122.00		MHD045	186.00	187.00	0.06	300.00	
MHD045	135.10	136.10	0.04	34.00		MHD045	187.00	188.00	0.02	60.00	
MHD045	136.10	137.10	0.06	170.00		MHD045	188.00	189.00	0.30	60.00	
MHD045	137.10	138.00	0.04	100.00		MHD045	189.00	190.00	0.08	690.00	
MHD045	138.00	139.00	0.22	568.00	0.80	MHD045	190.00	191.00	0.28	3500.00	
MHD045	139.00	140.00	0.48	8640.00	12.60	MHD045	191.00	192.00	0.16	2680.00	
MHD045	140.00	141.00	1.16	11700.00	18.80	MHD045	192.00	193.00	0.36	5660.00	
MHD045	141.00	142.00	1.34	29600.00	34.40	MHD045	193.00	194.00	0.36	15700.00	
MHD045	142.00	143.00	0.66	17700.00	24.00	MHD045	194.00	195.00	0.34	4680.00	
MHD045	143.00	143.90	0.48	17700.00	16.40	MHD045	195.00	196.00	0.08	920.00	1
MHD045	143.90	145.00	0.02	584.00	0.60	MHD045	196.00	197.00	0.26	5080.00	1
MHD045	145.00	146.00	0.08	1530.00	0.20	MHD045	197.00	198.00	0.74	4260.00	
MHD045	146.00	147.00	0.06	1130.00	0.80	MHD045	198.00	199.00	0.42	3100.00	
MHD045	147.00	148.00	0.34	2260.00	1.40	MHD045	199.00	200.00	1.46	9020.00	
MHD045	148.00	149.00	0.10	1190.00	3.00	MHD045	200.00	201.00	0.10	1300.00	
MHD045	149.00	150.00	0.08	1240.00	1.80	MHD045	201.00	202.00	0.10	1000.00	
MHD045	150.00	151.00	0.22	2830.00	5.60	MHD045	202.00	203.00	0.06	1140.00	
MHD045	151.00	152.00	0.24	614.00	3.00	MHD045	203.00	204.00	1.32	11700.00	L
MHD045	152.00	153.00	0.14	1450.00	2.40	MHD045	204.00	205.00	0.34	5240.00	L
MHD045	153.50	154.50	0.10	1940.00	5.40	MHD045	205.00	206.00	0.36	11800.00	
MHD045	154.50	155.50	1.46	9020.00	0.80	MHD045	206.00	207.00	0.14	2240.00	
MHD045	155.50	156.10	0.32	1050.00	1.80	MHD045	207.00	208.00	0.14	3100.00	
MHD045	156.10	157.00	0.18	2090.00	3.80	MHD045	208.00	209.00	0.16	3360.00	
MHD045	157.00	158.00	0.02	1200.00	12.00	MHD045	209.00	210.00	0.02	320.00	
MHD045	158.00	159.00	0.10	346.00	1.80	MHD045	210.00	211.00	0.04	1380.00	
MHD045	159.00	160.00	0.06	1160.00	4.20	MHD045	211.00	212.00	0.12	2180.00	
MHD045	160.00	161.00	0.10	1620.00	2.00	MHD045	212.00	213.00	0.10	920.00	
MHD045	161.00	162.00	0.16	2470.00	0.80						
MHD045	162.00	163.00	0.10	2170.00	1.80						
MHD045	163.00	164.00	0.02	1430.00	3.20						
MHD045	164.00	165.00	0.46	9530.00	4.80						
MHD045	165.00	166.00	1.38	7380.00	4.40						
MHD045	166.00	166.50	0.30	10600.00	3.00						
MHD045	170.60	171.00	0.20	1960.00	12.60						
MHD045	171.00	172.00	0.22	7380.00	8.20						
MHD045	172.00	173.00	0.08	2080.00	17.40						
MHD045	173.00	174.00	0.28	1080.00	0.20						
MHD045	174.00	175.00	0.06	1320.00							
MHD045	175.00	176.00	0.12	3900.00							