4th November 2019

ASX ANNOUNCEMENT

Western Queen Gold Project Multiple High-Grade Gold Targets Identified Drilling to Commence Imminently

Exploration by Rumble

Cranes Prospect (2kms north of Western Queen Central Pit)

- Lag geochemistry identified a high-grade gold soil anomaly peak value of 11.75 g/t Au - Core zone 150m by 100m (>500ppb Au contour)
- Shallow reconnaissance air core drilling over the identified soil anomaly discovered high-grade gold mineralisation from surface including:
 - 14m @ 4.87 g/t Au from surface (composite sampling)
 - * Mineralisation is open over >200m strike and at depth

Desktop Study

Systematic review & re-interpretation of historic exploration, development & production data commenced and ongoing with aim to generate new high-grade drill targets & increase gold resources

Western Queen Central Deposit New High-Grade Extensions North & South

(Western Queen Central historic open pit production of 660,000t @ 8.9 g/t Au for 190,000oz with underground historic grade of 10.32 g/t Au)

- Western Queen Central North Extension Newly identified historical high-grade gold intercepts include:
 - 7m @ 60.6 g/t Au from 70m
 - 6m @ 37.34 g/t Au from 50m
 - 11m @ 16.8 g/t Au from 51m
 - 11m @ 9.75 g g/t Au from 55m
- Western Queen Central South Extension Newly identified historical high-grade gold intercepts include:
 - 2m @ 40.37 g/t Au from 4m
 - 3m @ 10.42 g/t Au from 1m
 - 11m @ 6.11 g/t Au from 52m
- > Four main drill target areas identified:
 - Western Queen Central Multiple Targets
 - Main Shear Zone Multiple Targets
 - Western Queen South
 - Cranes Prospect

Next Stages – Drilling to commence in early November

- Air core drilling to commence to scope and extend the shallow high-grade gold mineralisation at the Cranes Prospect imminent start in early November
- RC drilling will commence following the air core drill program with the aim to:
 - Test the down plunge at Western Queen Central historic intersections include 6.3m @ 36.09 g/t Au from 305.7m & 11.8m @ 16.08 g/t Au from 340.4m high-grade gold is open down plunge
 - Test the newly identified North and South extensions outlined above at Western Queen Central – high-grade gold is open down plunge, up plunge, north and south along strike

Rumble Resources Ltd

Suite 9, 36 Ord Street, West Perth, WA 6005

T +61 8 6555 3980

F +61 8 6555 3981

rumbleresources.com.au

ASX RTR

Executives & Management

Mr Shane Sikora Managing Director

Mr Brett Keillor Technical Director

Mr Matthew Banks Non-executive Director

Mr Michael Smith Non-executive Director

Mr Steven Wood Company Secretary

Mr Mark Carder Exploration Manager

Rumble Resources Ltd (ASX: RTR) ("Rumble" or "the Company") is pleased to announce that is has been fast tracking the exploration and development of the Western Queen High-Grade Gold Project focussing on identifying and progressing all opportunities within the project.

Western Queen Gold Project Overview

The Western Queen High-Grade Gold Project lies 110km NW of Mt Magnet within the Yalgoo mineral field of Western Australia ("the Project"). The Project comprises of two contiguous mining leases (M59/45 and M59/208) for a total area of 9.8 km². The holder is Mt Magnet Gold Pty Ltd, an entity owned by Ramelius Resources (ASX: RMS). Rumble entered into an option to acquire 100% of the Project in August 2019 (see ASX announcement – 6th August 2019 – Option to Acquire High-Grade Western Queen Gold Project).

Image 1 – Project Location with Neighbouring Gold Processing Facilities

The Western Queen High-Grade Gold Project is located **within a 100km radius of three operating gold processing mills** (see image 1). The closest mill is the Dalgaranga Mill (48km) which has a capacity of 2.5 Mtpa. The Checkers Mill (Mt Magnet) has a capacity of 1.9 Mtpa and the Tuckabianna Mill has a capacity of 1.2 Mtpa.

Two mined deposits at the Western Queen Gold Project have a combined historic production of **880,000t** @ **7.6** g/t Au for **215,000oz**. The Western Queen (Central) Mine produced **660,000t** @ **8.9** g/t Au for **189,500oz** and the Western Queen South Mine (from two stages) produced **220,000t** @ **3.6** g/t Au for **25,500oz**.

An updated mineral resource (Payne Geological Services Pty Ltd – Independent) completed in January 2018. Rumble has reviewed and verified the indicated and inferred resource (refer ASX announcement 6 August 2019), and estimates remaining resources beneath both mined deposits of 962,000t @ 3.9 g/t Au for 120,000oz. Of note the high-grade zone below the Western Queen Central Pit hosts inferred mineral resources of 130,000t at 9.0g/t Au for 38,000 ounces.

Exploration by Rumble (Image 2 & 3)

Cranes Prospect - (2km north of Western Queen Central Pit)

Rumble completed a small surface lag (soil) survey over the Cranes Prospect area to aid in confirming the position of strong gold in soil anomalism defined by historic exploration. A total of 81 lag samples were collected on a 50m by 50m grid and were assayed for gold and multi-elements. Highly anomalous gold in lag (soil) was delineated with a peak value of **11,750ppb Au (11.75 g/t Au)**. Seven (7) lag (soil) samples returned assays >500ppb Au. An area of 150m by 100m returned >500ppb Au.

Rumble subsequently completed a small shallow air core drill programme over the gold in lag (soil) anomalism with four lines on a 50m by 20m spacing. A total of 34 air core drill holes were completed for 1096m. Laterite (surface) gold mineralisation was delineated over northeast trending basement anomalism where over **200m** of strike was defined (completely open). Basement geology comprised of mafic intrusives (gabbro to dolerite) with schistose ultramafics intruded by quartz porphyry and pegmatite.

Results from the air core drilling include:

- 14m @ 4.87 g/t Au from surface CRAC015 (laterite and basement)
- 4m @ 1.3 g/t Au from surface CRAC016 (laterite)
- 20m @ 0.47 g/t Au from surface CRAC007 (laterite and basement)
- 18m @ 0.35 g/t Au from surface CRAC006 (laterite and basement)

Image 2 – Cranes Prospect – Lag Geochemistry and Drill Hole Plan

Desktop Study – Review and Re-Interpretation

A major review (ongoing) and re-interpretation of historic data of the Western Queen deposits and surrounding exploration has highlighted four (4) areas/targets (see image 3) that potentially can add significant gold resources to the current resource base (962,000 t @ 3.9 g/t Au for 120,000 oz).

The review has confirmed the high-grade gold mineralisation is associated and controlled by a transgressive north to northeast trending shear zone cutting mafic and ultramafic lithologies. The mafic/ultramafic rocks are considered to be part of a large multiple staged differentiated mafic intrusive sill complex.

Recent air core drilling (by Rumble) at the Cranes Prospect has potentially defined the position of the prospective shear zone. Within the project area, the mineralised shear is over 5km in strike length. The re-interpretation of the shear highlights the lack of drilling between Cranes and Western Queen Central (see image 4 & 5), and south of the Western Queen South pit.

Image 3 - Location of High Order Area/Targets

Summary of High Order Target Areas (Image 3 and 4)

1. Western Queen Central

- Down plunge of main high-grade shoot
- Down plunge and up plunge of newly identified high-grade zones
- North extension to pit 200m strike open to the north and at depth
- South extension to pit 250m strike open to the south and at depth

2. Western Queen South

• Near pit extensions

3. Cranes Prospect

• Completely Open 200m strike - high-grade laterite and basement

4. Main Shear Zone

- Between Western Queen Central and Cranes 2km strike
- South of Western Queen South 1km strike
- Central Zone between Western Queen Central & Western Queen South

1. Western Queen Central Main Deposit – Multiple Targets

The main shoot is completely open down plunge from the inferred underground resource of **130,000t at 9.0g/t Au for 38,000oz.** Within the unmined inferred resource historic intercepts include:

- > 11.8m @ 16.08 g/t Au from 340.4m (WQD-1089)
- > 6.4m @ 36.09 g/t Au from 305.7m (WQD-1072)

Image 4 – Long Section highlighting Western Queen Central South, Central and North Extension – Multiple Targets

Western Queen Central High-Grade North Extension (image 3,4 & 5) Newly Identified

- High-grade gold mineralisation associated with inferred faults occurs over a strike of 200m immediately north of the main Western Queen Central Pit. The mineralisation is open down plunge, up plunge and north along strike. Significant intercepts include:
 - > 7m @ 60.6 g/t Au from 70m (WQJC-32)
 - 6m @ 37.34 g/t Au from 50m (QNC-10310-1)
 - 11m @ 16.8 g/t Au from 51m (WQP-1055)
 - > 11m @ 9.75 g/t Au from 55m (WQP-1083)
 - 4m @ 6.57 g/t Au from 9m (WQY-35)

Image 5 – Western Queen Central High-Grade North Extension highlighting drill Intercepts

Western Queen Central South Extension (Image 3 & 6) Newly Identified

- South of the Western Queen Central pit, widespread shallow gold mineralisation has been defined over a
- strike of 250m and is open to the south towards the Western Queen South pit/deposit and completely open down plunge. Very shallow or near surface intercepts include:
- 2m @ 40.37 g/t Au from 4m (WQY-85)
- 3m @ 10.42 g/t Au from 1m (WQY-123)
- 3m @ 9.30 g/t Au from 3m (WQY-76)
 5m @ 3 15 g/t Au
- 5m @ 3.15 g/t Au from 9m (WQD-2)
- 9m @ 3.98 g/t Au from 1m (WQY-23)
- 8m @ 2.98 g/t Au from 11m (WQY-93)

Image 6 – Western Queen Central South Extension and Drill Intercepts

2. Western Queen South Pit/Deposit (Image 3) - Newly identified

- Below and proximal to the pit, an inferred resource of **832,000t** @ **3.1** g/t Au for **83,000oz** is open at depth (down plunge). Significant intercepts within the resource and south of the pit includes:
 - > 3m @ 66 g/t Au from 135m (QND-38975-1)
 - > 5m @ 17.69 g/t Au from 83m (QNC-8900-1)

3. Cranes Prospect (Image 2 & 3) - Newly identified

- As reported (page 3), over 200m of mineralised strike with laterite and basement mineralisation has been recently defined by Rumble (14m @ 4.87 g/t Au from surface). The mineralisation is completely open (along strike and at depth).
- 4. Main Shear Zone Newly identified

Between Western Queen Central and Cranes – 2km strike Potential (Image 3 & 7)

The position of the main Western Queen mineralised shear zone has been re-interpreted based on the recent air core drilling at the Cranes Prospect. The basement mineralisation corresponds with the sheared contact between mafic and ultramafic rocks. The new position clearly indicates previous exploration has focused to the east of the re-interpreted shear zone between Cranes and the Western Queen Central pit – see image 7. The highly prospective zone of interest has not been drill tested effectively over a strike of 2km.

South of Western Queen South – 1km strike Potential (Image 3 & 7)

The position of the main Western Queen mineralised shear zone has been re-interpreted. The basement mineralisation corresponds with the sheared contact between mafic and ultramafic rocks. The new position clearly indicates previous exploration has focused to south west of the re-interpreted shear south of the western queen south pit – see image 7 - The highly prospective zone of interest has not been drill tested effectively over a strike of 1km.

Image 7 – Highlights drilling over the reinterpretation of the mineralised shear zone – Not Drill Tested Effectively

Central Zone – Between Western Queen Central and Western Queen South (Image 3)

- Between the Western Queen Central and Western Queen South historic pits, over 250m of highly
 prospective strike has been only tested by limited shallow drilling (see image 3). Significant wide
 widths of gold anomalism without historic follow drilling includes:
 - > 24m @ 0.32 g/t Au from 16m to EOH (WQRB111)
 - > 20m @ 0.34 g/t Au from 4m (WQRB105)
 - > 34m @ 0.28 g/t Au from 16m to EOH (QNB-9400-4)

Next Stages – Drilling to Commence

- Air-core drilling to commence imminently (early November) at the Cranes Prospect:
 - > Testing along strike (northeast trending) **potential to extend the current 200m strike**.
 - > Test below the recent high-grade surface zone **define the basement mineralisation**.
- RC drilling will commence after air-core drilling completion:
 - Deep RC drilling targeting the down plunge position of the main shoot of the Western Queen Central pit.
 - Testing for extensions to the high-grade mineralisation north of the Western Queen Central historic pit.
 - Testing for extensions to the shallow mineralisation south of the Western Queen Central historic pit.

-ends-

Shane Sikora Managing Director

For further information visit rumbleresources.com.au or contact enquiries@rumbleresources.com.au.

About Rumble Resources Ltd

Rumble Resources Ltd is an Australian based exploration company, officially admitted to the ASX on the 1st July 2011. Rumble was established with the aim of adding significant value to its current mineral exploration assets and will continue to look at mineral acquisition opportunities both in Australia and abroad.

Competent Persons Statement

The information in this report that relates to Exploration Results and Mineral Resources is based on information compiled by Mr Brett Keillor, who is a Member of the Australasian Institute of Mining & Metallurgy and the Australian Institute of Geoscientists. Mr Keillor is an employee of Rumble Resources Limited. Mr Keillor has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Keillor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Western Queen Gold Deposit							
Mineral Resource Estimate (2.0g/t Au cut-off)							
Deposit Indicated		ated	Inferred		Total		
-	Tonnes	Au	Tonnes	Au	Tonnes	Au	Au
	t	g/t	t	g/t	t	g/t	ounces
WQ South	243,000	3.5	590,000	2.9	832,000	3.1	83,000
WQ Central	-	-	130,000	9.0	130,000	9.0	38,000
Total	243,000	3.5	719,000	4.0	962,000	3.9	120,000

Table 1 – Western Queen Project Resource Estimate (table subject to rounding)

Rumble Pipeline of Projects = Multiple Avenues to Discovery

Image 8. Rumble location of Projects

Executing Pipeline of Projects Strategy

Multiple near term catalysts for significant re-rating to end of December 2019

- Drill Conductors targeting massive Ni–Cu–Co-PGE-Au Deposits
 Panache Ni–Cu–Co-PGE–Au Project (Completed awaiting assays)
- 2. Drill Down Plunge of High-Grade Au Western Queen Central Deposit Western Queen Au Project
- 3. Drill Down Plunge Cu-Au Feeder Zone targeting High-Grade Cu-Au Munarra Gully Cu-Au-Co Project
- Follow up Drilling of High-Grade Co Discovery 10km Open & Untested Munarra Gully Cu-Au-Co Project
- 5. JV Partner IGO Follow up Drilling of High-Grade Au Discovery Fraser Range Thunderstorm Ni-Cu-Au Project
- 6. JV Partner AIC Mines Drill targeting Tier 1 Cu-Au Deposits Paterson Province Lamil Cu-Au Project
- 7. Drill Targeting Sudbury "Offset Dyke" Massive Ni-Cu-PGM Deposits Long Lake Ni-Cu-PGM Project
- 8. Drill Targeting (14 Targets) Epithermal to Porphyry Deposits Braeside/Barramine Zn–Pb–Cu–Ag-Au–V Project.
- Drill Targeting open-pittable flat lying sandstone hosted Zn-Pb Deposits Earaheedy Zn Project.

Image 9. Rumble Schedule of Exploration

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Lag Sampling – Rumble -5mm+2mm sieved lag was completed on 50m by 50m spacing. Approximately 200g of lag was collected and assayed for Au and multi-elements. Air Core Drilling – Rumble A total of 34 holes were completed with variable composite sampling – 2m and 4m composites. Samples collected by spear and assayed for Au only – Survey control was by handheld GPS – GDA94 grid
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	• Air core drilling completed using 100mm blade and face hammer if appropriate
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drill cuttings laid on ground as 1m intervals Sample weight was approximately 1kg. Shallow holes and no water. Adequate sample size.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging conducted for each metre. All drill chips logged
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples were recovered from cyclone and not split. Spear sampling is indicative and follow up single metre sampling of anomalism has been conducted. Air core sampling is considered reconnaissance exploration and is indicative of the likely grade.
Quality of assay data and	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Assaying completed by ALS Malaga. For the lag sampling – assay methodology includes 25g

Criteria	JORC Code explanation	Commentary
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bios) and procession have been established 	AA (1ppb) Au and multi-element assaying was 43 elements using AR digest with MS and ICP-AES finish. Standards, blanks and duplicates were used. For air core sampling, - gold only using 30 gram charge Fire assay
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 with AA finish. All documentation and assay checks by Rumble personnel Reconnaissance air core drilling – no twins Data is digital subject to checks and for air core drilling 1m resampling of significant Au mineralisation
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Both lag sampling and air core drilling controlled by handheld GPS. GDA94 datum used
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Data spacing is based on reconnaissance exploration Composite sampling was used for the air core drilling Refer Rumble announcement 6 August 2019 for detail in respect of the Mineral Resource.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	The air core drilling was angled and positioned to reflect the inferred strike of mineralisation. The surface laterite mineralisation is considered flat and therefore the intercept is not true width Note composite have only been reported. Resampling of individual metres (ongoing) will determine approximate true width.
Sample security	• The measures taken to ensure sample security.	 Sampling security controlled by Rumble. Samples are monitored and packaged to minimize inference.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Rumble is conducting a detailed review of all historic data (ongoing). Sampling techniques are based on previous work and geological assessment by Rumble geologists

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Western Queen Project comprises of two mining leases - M59/45 and M59/208. The licenses are currently owned by Mt Magnet Gold Pty Ltd The licenses are granted, in a state of good standing and have no known impediments. Production royalties include \$20/oz on existing resources with \$8/oz on new open pit resources and \$6/oz on new underground resources.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Recent lag sampling and air core drilling completed by Rumble Historical exploration and mining completed by: Western Mining Company Yinnex NL Hill 50 NL Equigold NL Mt Magnet Gold NL entity held by Harmony Ramelius Resources
Geology	 Deposit type, geological setting and style of mineralisation. 	Deposit type is orogenic shear zone hosted gold in Archaean greenstones of the Yilgarn Block
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Table 1 to 3 presents recent work by Rumble Historic Drilling database has 1604 drill-holes in database 1604 drill-holes in database Excludes grade control, dewatering and geotech holes Drill hole collars are in MGA. Table 4 highlights select intercepts from historic drilling with collar co-ords based on GDA94 conversion.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of 	 Significant intercepts reported in this announcement have been presented as weighted averages.

Criteria	JORC Code explanation	Commentary			
	metal equivalent values should be clearly stated.				
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 High grade intercepts presented in this announcement are not true width. The drill hole angle is 50 - 60° (approximately normal) intercepting mineralization dipping 85° towards the drill-hole. True width at 50° is 75% of the intercept width. True width at 60° is 60% of the intercept width. 			
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for	 Image 1 - Project Location with neighboring gold processing facilities 			
	should include, but not be limited to a plan view of drill hole collar locations and appropriate	 Image 2 - Cranes Prospect – Lag Geochemistry and Drill Hole Plan 			
	sectional views.	 Image 3 - Location of High Order Area/Targets 			
		 Image 4 - Long Section highlighting Western Queen Central South, Central and North Extension – Multiple Targets 			
		 Image 5 - Western Queen Central High-Grade North Extension highlighting drill Intercepts 			
		 Image 6 - Western Queen Central South Extension and Drill Intercepts 			
		 Image 7 - Highlights drilling over the reinterpretation of the mineralised shear zone – Not Drill Tested Effectively 			
		Image 8 - Rumble location of Projects			
		 Image 9 - Rumble Schedule of Exploration 			
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable,	 Table 1 – Lag Sampling – assay results and location. 			
	representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Table 2 – Air Core Drilling – Location of drill holes 			
		 Table 3 – Air Core Drilling Assay Results >0.1 g/t Au 			
		 Table 4 – Historic Drill Hole Locations and Significant Assays. 			
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Information used in this announcement includes re- interpretation of the Western Queen Shear Zone – Airborne magnetics. 			
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth	 Resampling of the recent air core drilling (1m resplits) 			

Criteria	JORC Code explanation	Commentary
	 extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Air core drilling at Cranes to test the inferred strike extension and depth potential. RC drilling to test the down plunge, north and south strike extension of high-grade gold mineralisation at Western Queen Central.

Table 1
Sampling Location and Results – Cranes Prospect (GDA94 Z50)

SAMPLE ID	East MGA 94	North MGA 94	Au ppb	Bi ppm	Te ppm	W ppm
CRS190001	514063	6957627	1	0.67	0.07	0.3
CRS190002	514013	6957627	1	0.7	0.08	0.26
CRS190003	513963	6957627	2	0.71	0.12	0.15
CRS190004	513913	6957627	2 1	0.71	0.11	0.27
CRS190005	513813	6957627	2	1.12	0.17	0.35
CRS190007	513763	6957627	88	2.06	0.24	0.45
CRS190008	513713	6957627	24	0.75	0.12	0.15
CRS190009	513663	6957627	4	0.68	0.07	0.14
CRS190010	514063	6957677	3	0.38	0.05	0.15
CRS190011	514013	6957677	6	0.55	0.11	0.19
CRS190012	513963	6957677	2	0.53	0.1	0.11
CRS190013	513913	6957677	3	0.81	0.12	0.31
CRS190014	513863	6957677	2	1.05	0.13	0.31
CRS190015	513813	6957677	20	2.47	0.16	0.3
CRS190016	513763	6957677	141	3.27	0.66	0.45
CRS190017	513713	6957677	212	1.08	0.14	0.16
CRS190018	513663	6957677	5	0.83	0.07	0.17
CRS190019	514063	6957727	3	0.7	0.07	0.27
CRS190020	514013	6957727	5	0.4	0.06	0.12
CRS190021	513963	6957727	8	0.9	0.11	0.21
CRS190022	513913	6957727	8	0.96	0.09	0.21
CR5190023	513863	6957727	4	3.26	0.21	0.7
CR5190024	513813	6957727	436	5.0/	0.68	0.31
CR\$100025	513/03	6057727	17	5./	0.98	0.48
CR\$100020	513663	6057727	17	0.93	0.12	0.17
CRS190027	514063	6957777	4	1 07	0.13	0.10
CRS190029	514013	6957777	2	1	0.06	0.14
CRS190030	513963	6957777	12	0.65	0.08	0.22
CRS190031	513913	6957777	4	6.38	0.31	1.06
CRS190032	513863	6957777	29	2.24	0.15	0.19
CRS190033	513813	6957777	1350	20.9	3.52	0.29
CRS190034	513763	6957777	426	11.5	1.76	0.55
CRS190035	513713	6957777	7	0.84	0.11	0.17
CRS190036	513663	6957777	49	1.19	0.15	0.18
CRS190037	514063	6957827	17	0.96	0.08	1.95
CRS190038	514013	6957827	23	1.4	0.08	0.13
CRS190039	513963	6957827	6	0.32	0.04	0.08
CRS190040	513913	6957827	8	1.66	0.08	0.22
CRS190041	513863	6957827	518	2.69	0.35	0.08
CRS190042	513813	6957827	11750	36.2	6.14	0.34
CRS190043	513763	6957827	1120	18	2.54	0.52
CRS190044	513/13	6957827	30	1.1/	0.2	0.18
CRS190045	513663	6957827	297	2.3	0.38	0.23
CRS190046	514063	6957877	28	1	0.14	0.41
CRS190047	514013	6957877	8 29	0.58	0.07	0.04
CRS190048	513903	6957877	15	1.66	0.11	0.23
CRS190050	513863	6957877	816	5.9	1 14	0.45
CRS190051	513813	6957877	307	5 38	0.27	0.37
CRS190052	513763	6957877	38	4 7	0.32	0.25
CRS190053	513713	6957877	52	3.05	0.52	0.35
CRS190054	513663	6957877	16	1.29	0.13	0.36
CRS190055	514063	6957927	5	0.67	0.06	0.32
CRS190056	514013	6957927	4	0.57	0.05	0.1
CRS190057	513963	6957927	14	2.41	0.19	0.42
CRS190058	513913	6957927	18	1.91	0.14	2.81
CRS190059	513863	6957927	41	2.97	0.04	0.25
CRS190060	513813	6957927	41	6.98	0.15	0.17
CRS190061	513763	6957927	35	4.04	0.2	0.27
CRS190062	513713	6957927	746	10.85	1.43	0.48
CRS190063	513663	6957927	1430	5.64	0.69	0.51
CRS190064	514063	6957977	4	0.5	0.04	0.25
CRS190065	514013	6957977	29	0.82	0.06	0.18
CRS190066	513963	6957977	31	1.91	0.25	0.24
CR5190067	513913	695/9//	2/	2.85	0.1/	0.42
CR5190068	513863	695/9//	13	5.99	0.08	0.29
CRS100070	513762	6957977	72	3.0	0.13	0.32
CR\$190070	512712	6057077	291	2.20	0.24	0.27
CR\$190077	513663	6957977	ه	2.23	0.14	0.43
CRS190072	514063	6958027	4	0.5	0.10	0.10
CRS190074	514013	6958027	2	0.54	0.03	0.47
CRS190075	513963	6958027	2	1.14	0.05	0.23
CRS190076	513913	6958027	18	3.42	0.24	0.18
CRS190077	513863	6958027	13	6.84	0.1	0.42
CRS190078	513813	6958027	32	6.37	0.22	0.62
CRS190079	513763	6958027	8	2.96	0.12	0.43
CRS190080	513713	6958027	3	2.42	0.11	0.81
CRS190081	513663	6958027	2	1.36	0.05	0.2

Air Core Drill Hole Locations – Cranes Prospect

Hole ID	E GDA94	N GDA94	Depth	Azimuth (mag)	Dip
CRAC001	513929	6957847	25	90	-60
CRAC002	513910	6957850	25	90	-60
CRAC003	513890	6957850	40	90	-60
CRAC004	513864	6957855	49	90	-60
CRAC005	513841	6957856	24	90	-60
CRAC006	513826	6957852	39	90	-60
CRAC007	513809	6957853	34	90	-60
CRAC008	513789	6957852	31	90	-60
CRAC009	513768	6957851	28	90	-60
CRAC010	513748	6957841	27	90	-60
CRAC011	513895	6957804	36	90	-60
CRAC012	513877	6957800	28	90	-60
CRAC013	513861	6957802	30	90	-60
CRAC014	513841	6957800	34	90	-60
CRAC015	513824	6957806	957806 27 90		-60
CRAC016	513798	6957806	39	90	-60
CRAC017	513779	6957795	50	90	-60
CRAC018	513760	6957797	33	90	-60
CRAC019	513879	6957752	27	90	-60
CRAC020	513864	6957750	25	90	-60
CRAC021	513840	6957752	39	90	-60
CRAC022	513817	6957752	38	90	-60
CRAC023	513798	6957748	30	90	-60
CRAC024	513776	6957746	40	90	-60
CRAC025	513760	6957747	33	90	-60
CRAC026	513740	6957750	32	90	-60
CRAC027	513860	6957695	25	90	-60
CRAC028	513841	6957700	26	90	-60
CRAC029	513819	6957693	25	90	-60
CRAC030	513795	6957701	29	90	-60
CRAC031	513780	6957699	25	90	-60
CRAC032	513760	6957699	41	90	-60
CRAC033	513741	6957700	29	90	-60
CRAC034	513718	6957700	33	90	-60

GDA94 Z50

	Table 3
Air	Core Drill Hole Intercepts > 0.1 g/t Au - Cranes Prospect

Hole_ID	mFrom	mTo	Sample_Type	Sample ID	Au ppm
CRAC022	0	2	AC	CAC00115	0.12
CRAC025	0	2	AC	CAC00153	0.58
CRAC014	0	2	AC	CAC00204	1.21
CRAC015	0	2	AC	CAC00215	4.45
CRAC015	2	4	AC	CAC00216	1.11
CRAC015	4	6	AC	CAC00217	10.85
CRAC015	6	10	AC	CAC00218	7.38
CRAC015	10	14	AC	CAC00219	1.34
CRAC015	14	18	AC	CAC00221	0.48
CRAC016	0	2	AC	CAC00225	1.53
CRAC016	2	4	AC	CAC00226	1.07
CRAC016	4	6	AC	CAC00227	0.36
CRAC016	6	8	AC	CAC00228	0.2
CRAC017	0	2	AC	CAC00245	0.17
CRAC018	6	10	AC	CAC00263	0.44
CRAC018	10	14	AC	CAC00265	0.16
CRAC018	22	26	AC	CAC00268	0.12
CRAC004	0	2	AC	CAC00300	0.21
CRAC004	6	10	AC	CAC00302	0.35
CRAC004	10	14	AC	CAC00303	0.5
CRAC004	14	18	AC	CAC00304	0.11
CRAC004	26	30	AC	CAC00307	0.33
CRAC004	30	34	AC	CAC00309	1.12
CRAC005	0	2	AC	CAC00314	0.68
CRAC005	18	22	AC	CAC00321	0.12
CRAC006	0	2	AC	CAC00323	0.71
CRAC006	2	4	AC	CAC00324	0.26
CRAC006	6	8	AC	CAC00326	0.21
CRAC006	8	10	AC	CAC00327	0.81
CRAC006	10	14	AC	CAC00328	0.19
CRAC006	14	18	AC	CAC00329	0.38
CRAC007	0	2	AC	CAC00337	1
CRAC007	2	4	AC	CAC00338	0.86
CRAC007	4	6	AC	CAC00339	0.48
CRAC007	6	8	AC	CAC00340	0.12
CRAC007	8	12	AC	CAC00341	0.2
CRAC007	12	16	AC	CAC00342	0.21
CRAC007	16	20	AC	CAC00343	0.71
CRAC008	0	2	AC	CAC00348	0.25
CRAC008	2	4	AC	CAC00349	0.22
CRAC009	0	2	AC	CAC00359	0.11

Table 4 (1 of 2)	
Historic Drill Hole Locations and Significant Assays.	

Hole ID	Туре	E (GDA94 Conversion)	N (GDA94 Conversion)	Depth (m)	Azi	Dip	From (m)	To (m)	Au g/t
WQD-1089	Diamond	512724	6955488	356	127	-59	340.4	340.9	7.9
							340.9	341.1	480
							341.1	341.4	11.2
							341.4	342	18.6
							342	343	16.1
							343	344	8.1
							344	345	7.9
							345	346	0.73
							346	347	8.6
							347	348	0.67
							348	349	8.5
							349	349.8	1.54
							349.8	350.2	0.65
							350.2	350.9	10.3
							350.9	351.25	34
							351.25	351.5	10
							351.5	352.15	1.15
WQD-1072	Diamond	512738	6955489	316	126	-54	305.7	306.65	11.7
							306.65	307.07	195
							307.07	308	49
							308	308.5	87
							308.5	309.45	23
							309.45	310	19.9
							310	310.85	11.2
							310.85	311.3	0.88
							311.3	311.95	1.16
WQJC-32	RC	512921	6955871	99	52	-60	70	71	7.6
							71	72	370
							72	73	1.95
							73	74	3.46
							74	75	0.3
							75	76	35
							76	77	5.9
QNC-10310-1	RC	512929	6955901	78	52	-60	50	51	7.3
							51	52	103.55
							52	53	63.4
							53	54	46.85
							54	55	2.44
							55	56	0.52
WQP-1055	RC	512990	6955891	80	232	-55	51	52	3.25
							52	53	3.26
							53	54	28.1
							54	55	25.1
							55	56	48.8
							56	57	68.6
							57	58	0.95
							58	59	4.13
							59	60	1.32
							60	62	0.14
WOD 1092	DC.	E120E1	6055071	75	FO	60	61	62	1.15
WQF-1085	NC NC	512551	0555571	75	30	-00	55	57	72
							57	58	0.53
							58	50	0.33
							59	60	0.76
							60	61	0.45
	1						61	62	21
							62	63	0.24
							63	64	1.64
							64	65	0.74
							65	66	0.72
WQY-35	RC	512948	6955906	27	56	-60	9	10	12.8
							10	11	10.3
							11	12	2.25
							12	13	0.95
WQY-85	RC	512948	6955906	27	56	-60	4	5	76.9
							5	6	3.84
WQY-123	RC	512746	6955309	21	56	-60	1	2	24.4
							2	3	5.27
							3	4	1.58
WQY-76	RC	512742	6955310	40	56	-60	6	7	12.1
							7	8	14.3
							8	9	1.52
WQD-2	Diamond	512744	6955311	27	57	-60	9	10	8.7
							10	11	0.04
							11	12	3.01
							12	13	2.00
		I					13	14	3.98

Table 4 (2 of 2)

Hole ID	Туре	E (GDA94 Conversion)	N (GDA94 Conversion)	Depth (m)	Azi	Dip	From (m)	To (m)	Au g/t
WQY-23	RC	512722	6955276	33	56	-60	16	17	15
							17	18	2.6
							18	19	0.43
							19	20	3.1
							20	21	5
							21	22	1.2
							22	23	4.4
							23	24	2.1
							24	25	2
WQJC-2	RC	512706	6955311	100	52	-60	52	53	50
							53	54	0.73
							54	55	4.4
							55	56	1.49
							56	57	5.8
							57	58	1.06
							58	59	0.31
							59	60	1.27
							60	61	0.69
							61	62	0.93
							62	63	0.52
QNC-9810-4	RC	512789	6955397	28	52	-60	18	19	3.55
							19	20	1.2
							20	21	0.16
							21	22	15.37
							22	23	2
							23	24	0.58
WQY-93	RC	512714	6955253	25	56	-60	11	12	7.67
							12	13	0.51
							13	14	2.3
							14	15	5.17
							15	16	3.51
							16	17	2.2
							17	18	0.35
							18	19	2.09
QND-38975-1	Diamond	512368	6954653	193	90	-58	135	136	121.33
							136	137	51.9
							137	138	24.9
QNC-8900-1	RC	512318	6954491	160	54	-60	83	84	4.13
							84	85	4.62
							85	86	1.23
							86	87	0.57
							87	88	77.9
							88	89	1.89
WQRB111	RAB	512588	6955012	40	52	-60	16	40	0.32
WQRB105	RAB	512601	6955049	33	52	-60	4	14	0.34
QNB-9400-4	RAB	512573	6954991	50	52	-60	16	50	0.28