^{22nd August 2019} ASX ANNOUNCEMENT 14 High Priority Targets at Braeside-Barramine and New Mineralisation Style defined at Earaheedy

Braeside-Barramine Zn-Pb-Cu-Ag-Au-V Project – Drill Targeting

Ongoing geochemical drill targeting has highlighted nine (9) new high priority targets. Exploration by Rumble has now defined a large mineralised vein array system **over 60km in strike and 8km in width.**

- Moxems V-Pb Target (New)
 - Vanadinite has been defined over a strike of 400m (completely open)
 - Grab sampling has returned very high-grade vanadium and lead including:
 - BR507 6.75% V2O5, 48.25% Pb
 - BR643 6.62% V2O5, 31.3% Pb
 - BR640 4.62% V2O5, 16.71% Pb
- Bonecrusher Au-Zn Target (New)
 - Soil sampling has defined continuous gold anomalism (max value to 39ppb Au) with Zn and Ag over a strike of 1km
 - o Au has not been previously defined at Braeside-Barramine
- Other (New) targets include:
 - Far North Gossan Zn-Pb grab sampling has highlighted alteration over 500m strike with Zn to 8.23% and Pb to 9.34%
 - No Dice Chicun Zn-Pb strong soil anomalism over 1km with limited highgrade grab sample results including Pb to 34%, Ag to 88 g/t and Zn to 1.4%
 - Barramine Zn South large 2km by 1km soil anomaly with peak value of 1200ppm Zn and 700ppm Pb
 - Barramine Zn North strong Zn in soil anomalism over 800m by 400m
 - Camel Hump Cu Shear zone style mineralization over 1.5km as returned Cu to 13.4%, Pb to 6.04%, Zn to 1.79% and Ag to 131 g/t from limited grab sampling
 - Great Southern Zn large 1.4km long (open) soil anomaly with Zn to 498ppm.
 - Slimrose Ba-Pb large alteration zone 600m by 500m with strong Ba (to >2000ppm) and Pb (571ppm) soil anomalism

Next Steps

 14 High Priority Targets (9 new targets and 5 previously identified) will be further tested by infill geochemistry and prospect mapping to define for RC drilling

Earaheedy Zn-Pb Project – New Mineralisation Style – Drilling Results

A style of mineralization not previously recognized has been discovered in the current round of drilling. Flat lying unconformity related sandstone grit hosting Zn Pb mineralization returned:

- 4.7m @ 2.18% Zn, 0.63% Pb from 153.3m
- 7m @ 2.11% Zn, 0.4% Pb from 150m
- 2m @ 3.23% Zn, 1.73% Pb from 130m

The unconformity related mineralization is interpreted to form a shallow sub-basin at the base of the Frere Iron Formation with approximate dimensions of **8km by 2km**.

Re-interpretation of historic drilling in conjunction with the current drilling has inferred the subbasin as highly prospective for laterally extensive flat lying sandstone hosted Zn-Pb deposits. Historic drill-holes have significant mineralized sandstone intercepts including:

- TDH20 6m @ 3.91% Zn, 0.39% Pb from 210.5m
- TRC47 7m @ 4.85% Zn+Pb from 103m (hole ended in mineralization)

Next Steps

• Drill targeting of up-dip position where the sandstone sub-basin comes to the surface under cover with the focus on defining Zn Pb mineralization amenable to open cut mining.

Rumble Resources Ltd

Suite 9, 36 Ord Street, West Perth, WA 6005

T +61 8 6555 3980

F +61 8 6555 3981

rumbleresources.com.au

ASX RTR

Executives & Management

Mr Shane Sikora Managing Director

Mr Brett Keillor Technical Director

Mr Matthew Banks Non-executive Director

Mr Michael Smith Non-executive Director

Mr Steven Wood Company Secretary

Mr Mark Carder Exploration Manager

Rumble Resources Limited (ASX: RTR) ("Rumble" or "the Company") is pleased to announce the results of ongoing drill targeting completed at the Braeside-Barramine Project and the results and interpretation of the recently completed drilling program at the Earaheedy Project.

Braeside-Barramine Zn-Pb-Cu-AG-Au-V Project

The Braeside-Barramine Project, located in the east Pilbara region of Western Australia, comprises an area of 1813 km² covering **over 60km of prospective strike for significant mineralization**. Polymetallic high-level vein sets discovered by Rumble are considered to be part of a large porphyry to epithermal alteration and mineralization system related to potential underlying Fortescue (2.7 Ga) felsic (subvolcanic to aerial volcanics) and associated A type granitoids.

Soil and grab sampling completed by Rumble has highlighted a further nine (9) high priority drill targets complimenting 5 high priority targets previously defined in 2018 – **See image 1.**

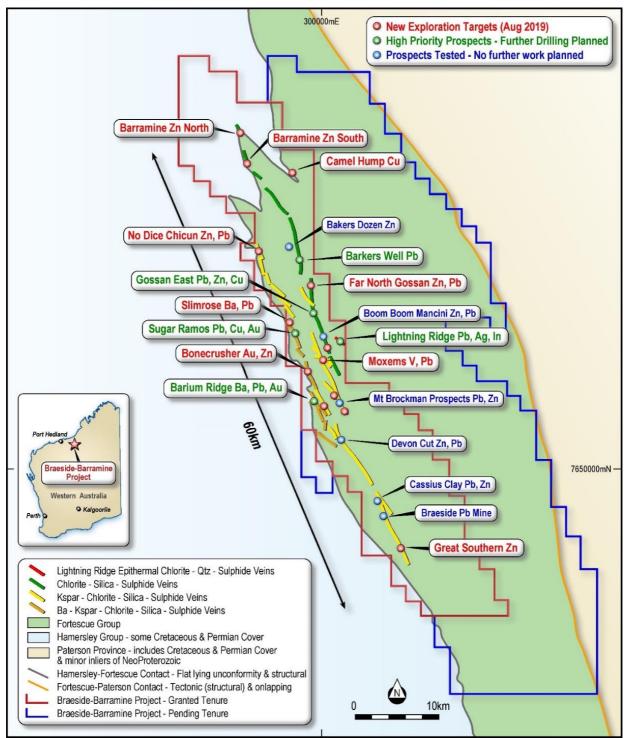
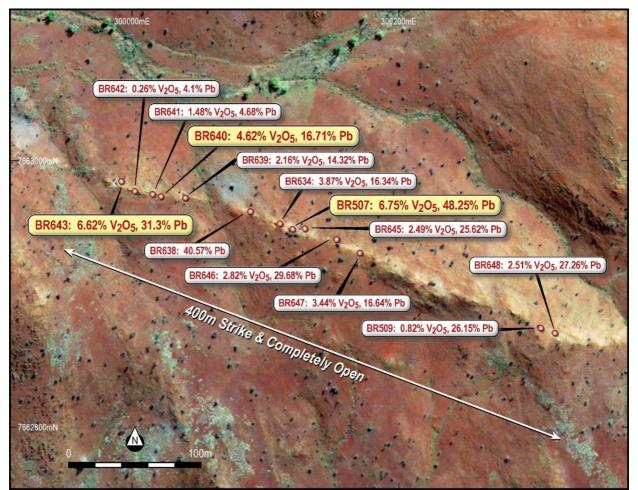


Image 1. Braeside-Barramine Project – Tenure, Regional Geology and Targets

Drill Targeting Completed - (9) nine new high priority drill targets defined

During May to June 2019, some 913 soil, 44 stream sediment and 195 grab samples were collected over a strike of 65 km within the Braeside-Barramine Project. The soils were collected on 400m by 400m, 200m by 200m and 100m by 50m grids over high priority targets.

The surface geochemistry has highlighted (9) nine new high priority drill targets.


1. Moxem's V-Pb Target (Image 1, 2 & 3)

- A new vanadinite vein has been discovered with **very high-grade** vanadium (**V2O5)** lead (Pb) **values** from limited grab sampling including:
 - ➢ BR507 − 6.75% V2O5, 48.25% Pb.
 - > BR640 4.62% V2O5, 16.71% Pb.
 - > BR643 6.62% V2O5, 31.3% Pb.
 - > BR647 3.44% V2O5, 16.64% Pb.
 - BR646 2.82% V2O5, 29.68% Pb.
 - BR634 3.87% V2O5, 16.34% Pb

Image 2 – Vanadinite from Moxem's

- The high-grade vanadium-lead mineralization has been defined along an east-northeast trending altered structure over a **strike length of 400m (completely open**).
- The mineralization is vanadinite (see image 2) occurring as multiple veins and veinlets (generally < 1m in width) with the alteration to 40m in width.

Image 3 - Moxem's V Pb Target – Location of Grab Samples and Results.

2. Bonecrusher Au-Zn Target (Image 1 and 4)

- Gold in soil anomalism has been confirmed over a **strike of 1km with** the peak Au value 39ppb and strong continuity of anomalism has been determined by infill 100m by 50m soil sampling.
- Limited grab sampling has highlighted strong Zn (to 2.54%) and Ag (to 32.7 g/t) mineralisation is associated with the gold in soil anomalism Underlying the gold in soil anomalism is an outlier of altered shale/siltstone.
- Bonecrusher lies within the main Ba Kspar Chlorite Silica sulphide vein alteration corridor (see image 1) and is the first significant gold target discovered since Rumble commenced exploration in 2017.

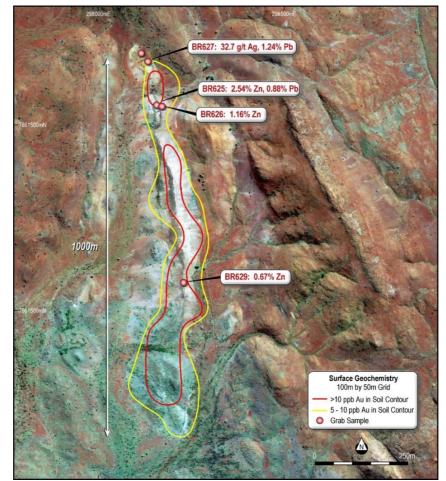


Image 4 – Bonecrusher Au Zn Target – Gold in Soil Contours and Grab Sample results.

3. Far North Gossan Zn-Pb Target (Image 1)

Strong alteration over 500m in strike is associated with sphalerite and galena mineralisation. Grab sampling focused on the intersection of two structures where results returned 8.32% Zn (peak value), 6.45% Zn, 4.23% Zn, 9.34% Pb (peak value) and 3.4% Pb.

4. No Dice Chicun Zn-Pb Target (Image 1)

• Soil anomalism over a strike of 1km and on average 200m wide is associated with altered shales and siltstone. Maximum Zn in soil value is 560ppm and Pb in soil is 422ppm. Limited grab sampling returned Pb to 34%, Ag to 88 g/t and Zn to 1.4%.

5. Barramine Zn South Target (Image 1)

 A large 2km by 1km soil anomaly with peak value of 1200ppm Zn and 700ppm Pb is associated with andesitic volcaniclastics and siltstones. Random grab sampling returned anomalous Zn to 0.7% and Pb to 0.62%.

6. Barramine Zn North Target (Image 1)

- Strong Zn in soil anomalism occurs over an area **800m by 400m** in shales and siltstones.with maximum Zn to 373ppm and Pb to 248ppm.
- 7. Camel Hump Cu Target (Image 1)
 - Shear zone style mineralization over 1.5km as returned Cu to 13.4%, Pb to 6.04%, Zn to 1.79% and Ag to 131 g/t from limited grab sampling. Soil sampling returned copper to 338 ppm.
- 8. Great Southern Zn Target (Image 1)
 - A large 1.4km long (open) soil anomaly with Zn to 498ppm is associated with a strongly altered. No grab sampling has been completed.
- 9. Slimrose Ba-Pb Target (Image 1)
 - A large alteration zone 600m by 500m is associated with strong Ba (to >2000ppm) and Pb (571ppm) soil anomalism. A single grab sample returned 0.52% Pb.

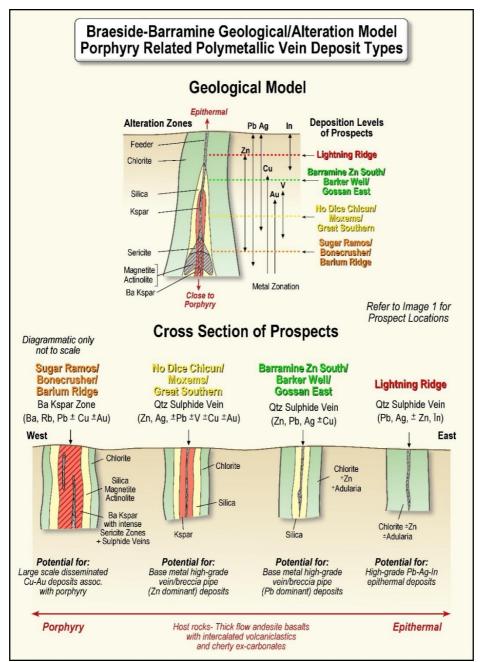


Image 5 – Braeside-Barramine Regional Scale Porphyry to Epithermal System - Refer to Image 1 for prospect locations

Exploration Potential

Exploration by Rumble has now outlined a large mineralised vein array system over 60km in strike and 8km in width.

Four styles of veining and alteration has been discovered (**See Image 1 and 5**) with high level epizonal to epithermal base metal veining occurring in the east section of the vein system then ranging into low level epizonal to upper porphyry in the west section (deeper deposition level).

The recent surface geochemistry exploration has extended the mineralised vein system along strike and defined additional parallel vein sets.

Next Steps

14 high priority targets made up of (9) nine new targets (no drilling) recently defined and (5) five prospects outlined during the 2018 RC drilling programme (**see Image 1**) have significant base metal and alteration intercepts and are open along strike.

- Infill surface geochemistry with prospect mapping will define drill targets for the new (9) nine targets.
- Up to 14 targets will be tested by RC drilling along strike and at depth.

Earaheedy Zn-Pb Project

Rumble has an option agreement with Fossil Prospecting Pty Ltd (a wholly owned subsidiary of ASX Listed Zenith Minerals Ltd – (ASX: ZNC) to acquire a 75% interest in E69/3464. Rumble owns 100% of the contiguous application E69/5503.

A style of Zn–Pb mineralization not previously recognized has been discovered at Earaheedy. Four holes (by Rumble) have intercepted this style of mineralization where Zn - Pb sulphides have developed in porous sandstone grits. The mineralization is interpreted to be associated with a shallow sub-basin unconformably overlying the carbonates that host widespread MVT (Mississippi Valley Type) Zn (dominant) – Pb occurrences.

Exploration Completed (Image 6)

Four (4) diamond drill holes (total metreage – 1199.8) and two (2) RC drill holes (total metreage – 374) were completed May – July 2019 in three stages. The program was interrupted by pastoral station activities and breakdowns.

Results

The new style of Zn Pb mineralisation has been delineated on the contact between the overlying Frere Iron Formation and underlying Navajoh Dolomite of the Palaeoproterozoic Yelma Formation. Drilling intercepted a flat lying porous sandstone to grit unit that lies at the base of the Frere Iron Formation. Sphalerite, galena and pyrite have developed interstitially within the porous sandstone grit host forming laterally extensive sulphide layers. Four drill-holes intersected the zone. Results include:

- 4.7m @ 2.18% Zn, 0.63% Pb from 153.3m (EDH004)
- 2m @ 3.23% Zn, 1.73% Pb from 130m (EDH003)
- 7m @ 2.11% Zn, 0.4% Pb from 150m (EHRC001)
- 10m @ 1.24% Zn, 0.63% Pb from 150m (EHRC002)

Interpretation

The mineralisation is considered to be unconformity related sandstone hosted Zn Pb type and is later than the MVT carbonate hosted mineralisation defined by previous explorers. There is an approximate hiatus of 20-30 million years between the underlying Navajoh Dolomite and overlying Frere Iron Formation. The sandstone grit unit is the first sedimentation stage (local and coarse grained) of the Frere Iron Formation cycle over the partly eroded palaeo-surface (in part karstified) of the Navajoh Dolomite. The sandstone grit unit forms a sub-basin that's lies unconformably over dolomite, siltstone and shales of the Yelma Formation.

The source of metal associated with the sandstone grit Zn Pb mineralisation is inferred to be chemically remobilised from the underlying Zn Pb bearing carbonates by low temperature chloride rich fluids.

Re-interpretation of historic drilling has shown that at least 12 mineralised Zn-Pb intercepts are within the sandstone grit unit. Two examples are historic drill-hole **TDH20 and TRC47** (see images 6 & 7).

TDH20 is interpreted to lie close to the margin or edge of the sandstone grit sub-basin and has two styles of mineralisation.

- 6m @ 3.91% Zn, 0.39% Pb from 210.5m hosted in sandstone
- 16m @ 1% Zn, 0.3% Pb from 225m hosted in carbonate

TRC47 is interpreted to lie within the sub-basin, approximately 1km in from the margin. The historic sandstone grit intercept was:

• 7m @ 4.85% Zn+Pb from 103m (EOH)

The area of the sandstone grit sub-basin is interpreted to be 8km by 2km.

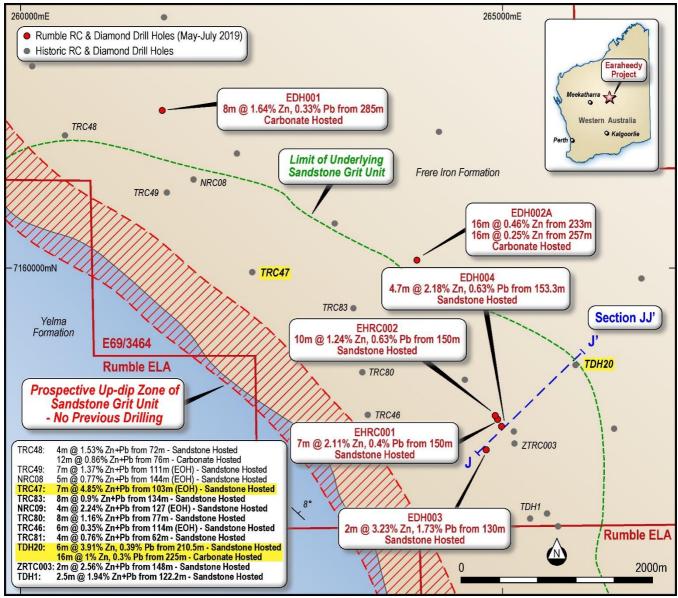


Image 6 – Earaheedy Project - Plan of Recent Drilling (Rumble) with Intercepts and Interpreted Geology

Section JJ' (see image 7) represents a cross section of the sandstone sub-basin margin and highlights (diagrammatic) the unconformity. The underlying Navajoh Dolomite has been eroded completely towards the southwest, however, Zn Pb mineralisation persists in the porous sandstone grit unit at the unconformity. The Pb/Zn ratio increases towards the southwest into the sub-basin.

Of note, <u>most</u> historic RC drillholes (see image 6) did not completely penetrate and pass through the sandstone grit unit due to excessive highly saline water ingress.

Exploration Potential

The sub-basin sandstone hosted mineralisation style is prospective for laterally extensive flat lying Zn Pb deposits.

The up-dip position towards the southwest, where the unconformity has not been tested, is considered as having the best potential as the mineralisation will be near surface and if economic, amenable to open cut mining.

There is also potential for further unconformity related sub-basin sandstone Zn Pb mineralisation along strike.

Next Steps

• Rumble to generate drill targets in up-dip positions where the mineralised sandstone sub-basin comes to the surface.

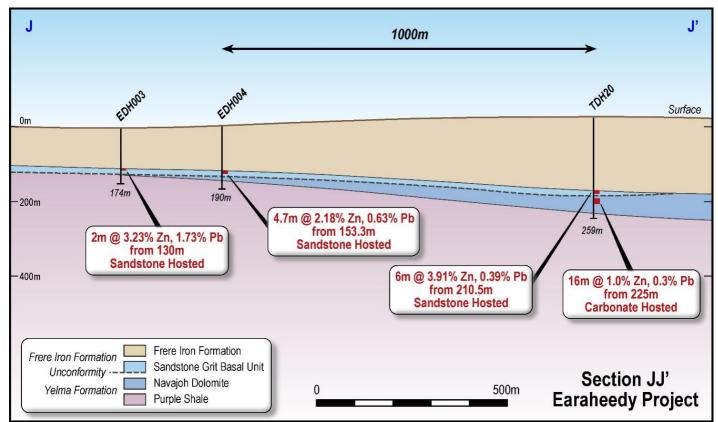


Image 7 – Cross Section JJ' (from image 5) Highlighting the Sandstone Grit Unit and Unconformity.

About Rumble Resources Ltd

Ends -

Rumble Resources Ltd is an Australian based exploration company, officially admitted to the ASX on the 1st July 2011. Rumble was established with the aim of adding significant value to its current gold and base metal assets and will continue to look at mineral acquisition opportunities both in Australia and abroad.

Forward Looking and Cautionary Statement

The information in this report that relates to historic exploration results was collected from DMP reports submitted by government agencies and previous explorers. Rumble has not completed the historical data or the verification process. As sufficient work has not yet been done to verify the historical exploration results, investors are cautioned against placing undue reliance on them.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Brett Keillor, who is a Member of the Australasian Institute of Mining & Metallurgy and the Australian Institute of Geoscientists. Mr Keillor is an employee of Rumble Resources Limited. Mr Keillor has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Keillor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Diamond Core – ¼ core cut at one metre intervals or if significant geological boundary present, cut to boundary. Entire ¼ core is crushed, pulverised and split for analysis by multi-element 4 acid digest for base metals. Core cut on recognised mineralisation (determined by pXRF). RC chip sampling every metre. Cone split with +2kg sample assayed by wet analysis. Wet analysis was multi-element 4 acid digest for base metals. Sample for assaying determined by pXRF.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.) 	Diamond drilling completed by Three Rivers Drilling. Two rigs were used individually. Rig 3 was a Edson MP4000 and rig 4 was a Hydco 1000H. Drilling was HQ from the surface before changing to NQ in more competent rock for two holes. The remaining two diamond drill holes used a tricone/roller bit as the pre-collar.
		RC drilling was completed by Precision Exploration Drilling using a Hydco 220 with 155mm bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core was logged and orientated (if possible) with total recovery recorded. For assay core split and then quartered for assaying. No core loss over mineralised section evident. RC chips collect from wet cone splitter. The split sample was collected by calico +2kg. Visual estimation of sample in bag volume. No undersize bags recorded. Very wet RC samples collected in large polyweave bags and left to drain overnight. If sample from polyweave bag, then collected by spear along length of bag.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 All Diamond Core and RC chips geologically logged by site geologist. Detailed logging of core was conducted by Rumble in it's Perth shed faculty. Drilling is considered first pass exploration, no resource estimation completed. Individual RC metres logged and library sample collected every metre.
Sub- sampling	 If core, whether cut or sawn and whether quarter, half or all core taken. 	 For diamond core drilling, ¼ core taken for assay.

Criteria	JORC Code explanation	Commentary
techniques and sample preparation	 If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 For RC drilling, wet cone split taken. For diamond core, the core quality was relatively oxidised and broken, however, overall recovery was high. Sample collection and preparation consider adequate for reconnaissance drilling. Appropriate base metal and OREAS standards and blanks used for both diamond core and RC drilling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 All samples assayed by 4 acid digest – considered total digest for base metal mineralisation. Samples assayed by Intertek, Maddington using OE finish for multi-elements. Higher grade assays were redone by 4 acid digest as single elements. Use of pXRF to control and select sampling. Other instruments include magnetic susceptibility meter. CRM used at appropriate intervals. (20 samples for standard and blanks) include OREAS base metal standards and blanks.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Drill sample assays internally checked. No twins completed Data entry on site and office using standard spreadsheets. Verification completed on database entry. No adjustment to data.
Location of data points	 Discuss any adjustment to assay data. Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill-hole collars sited by hand held GPS – GDA94 Z51.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Reconnaissance Diamond Core and RC drilling only No composites used, maximum sample length was 1m.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Historic mapping and drill holes confirm flat lying sediments and mineralization. Sample orientation and mineralized intercepts are near true width.
Sample security	• The measures taken to ensure sample security.	Rumble contractors controlled transport and delivery samples.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No review has been completed

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of 	 The Braeside-Barramine project comprises of four granted exploration licenses – E45/2032, E45/4368, E45/4873, and E45/4874. A number of pending EL's form part of the project area. E45/2032 is currently owned by Maverick Exploration Pty Ltd. Rumble Resources has an earn in
	reporting along with any known impediments to obtaining a licence to operate in the area.	JV agreement. The license is granted, in a state of good standing and has no known impediments to operate in the area.
		 E45/4368 is held by Great Sandy Pty Ltd. Rumble has a JV whereby it earns 70% of the project (except for Mn and Fe rights).
		 E45/4873 and E45/4874 are 100% owned by Rumble.
		 Rumble has an additional 6 EL applications
		 The total area of the project is 1813 km²
		 The Earaheedy Project comprises of a granted exploration licence – E69/3464 and two applications
		 E69/3464 is currently owned by Fossil Prospecting Pty Ltd. Rumble Resources has an option agreement to acquire 75% of the licence over 2 years.
		 E69/3464 is granted, in a state of good standing and has no known impediments to operate in the area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	Exploration solely completed by Rumble Resources
Geology	 Deposit type, geological setting and style of mineralisation. 	 Braeside _ Barramine -Target is Zn, Pb, Cu, V and precious metals. Deposit type is conceptual. Porphyry related (including VHMS) polymetallic deposit type and disseminated sediment hosted type.
		• The Earaheedy Project Deposit type is MVT (Mississippi Valley Type). The geological setting is carbonate hosted. The style is stratiform replacement and fault breccia massive sulphides. Current work by Rumble has identified unconformity related sandstone hosted Zn Pb type
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all	Table 1 Braeside – Barramine Project – Grab Sample Location and Results – Vanadium
	 Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole 	Table 2 Earaheedy Project – Drill Hole Location and Survey
	 collar o dip and azimuth of the hole 	Table 3 Earaheedy Project - Diamond Core and RC Drill Assays

Criteria	JORC Code explanation	Commentary
Data aggregation	 down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum 	 Reporting of Diamond Core and RC sampling and assays includes
methods	 grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 highlighting zones of alteration and elevated metal. The main reporting of significant intercepts uses 0.1% Zn or Pb as the lower cutoff. No upper cutoff. If the diamond core drilling is cut to geological boundaries, weighted averaging of results has been completed.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Diamond Core and RC mineralization widths are reported as intercept (down hole length) widths, essentially 98% of true width. The geology dips 8° to 10° and the inclination of the drill hole is 70°. Best geological efforts were utilized to minimize down dip drilling. Drill hole azimuths were normal to the mineralized outcrops.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Image 1 – Braeside-Barramine Projec – Tenure, Regional Geology and Targets Image 2 – Vanadinite from Moxem's Image 3 – Moxem's V Pb Target – Location of Grab Samples and Results. Image 4 – Bonecrusher Au Zn Target – Gold in Soil Contours and Grab Sample Results. Image 5 – Braeside-Barramine Geological/Alteration Model Image 6 - Earaheedy Project - Plan of Recent Drilling (Rumble) with Intercepts and Interpreted Geology Image 7 - Cross Section JJ' (from image 5) Highlighting the Sandstone Grit Unit and Unconformity.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Table 2 and 3 presents the drill hole locations and all downhole drilling assays for Earaheedy Project
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical 	 Historic drilling and results have previously been reported in Announcement ASX – Drilling Commenced at Earaheedy Zinc Project – 10/4/2019

Criteria	JORC Code explanation	Commentary
	and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Braeside – Barramine Project Detailed infill in situ pXRF geochemistry Prospect mapping of high priority targets Planned RC and diamond drilling for 2020 season. Earaheedy Project Plan RC drilling to test up dip positions of prospective sandstone unit.

Table 1

Braeside – Barramine Project – Grab Sample Location and Results – Vanadium

6	00404 545	65464 54 N	A	A	D	0 .1	6			DL 0/	6		1/205 0/	7 . 0/
SampleID	GDA94_z51 E	GDA94_z51 N	Au g/t	Ag g/t	Ba ppm	Cd ppm	Cu ppm	Mn ppm	Mo ppm	Pb%	S ppm	V ppm	V2O5 %	Zn %
BR507	300121	7662949	0.02	39.8	62	13.1	1676	1077	13	48.25	19847	37792	6.75	1.05
BR643	299992	7662984	0.07	4.8	76	0.5	22	87	0.01	31.30	384	37070	6.62	0.04
BR640	300021	7662973	0.06	13	152	1.2	1338	489	9	16.71	1934	25869	4.62	0.21
BR634	300111	7662953	0.01	1.6	97	1.5	1938	273	10	16.34	387	21655	3.87	0.40
BR647	300172	7662931	0.04	7.2	118	3.1	567	518	10	16.64	799	19282	3.44	0.27
BR646	300154	7662941	0.06	16.8	142	0.01	27	372	3	29.68	1705	15805	2.82	0.03
BR648	300317	7662871	0.03	3.2	174	0.01	448	133	6	27.26	179	14091	2.52	0.03
BR645	300130	7662949	0.08	22.2	379	0.6	117	710	6	25.62	367	13923	2.49	0.06
BR639	300040	7662972	0.03	13.6	137	0.7	7397	277	42	14.32	961	12104	2.16	0.13
BR641	300016	7662974	0.05	13.3	256	1	188	437	4	4.68	681	8279	1.48	0.07
BR509	300307	7662874	0.12	1.2	156	1.1	1153	337	9	26.15	245	4608	0.82	0.09
BR506	299763	7663375	0.03	41.2	103	3.9	793	77	3	31.35	22854	4598	0.82	0.28
BR649	299754	7663382	0.02	17	70	187.2	1401	203	15	9.68	7431	3348	0.60	9.95
BR636	300111	7662952	0.01	1.5	1025	0.01	176	1059	4	5.09	76	2438	0.44	0.12
BR642	300002	7662977	0.06	26.7	228	24.1	4050	402	14	4.13	905	1456	0.26	1.66
BR633	300112	7662952	0.08	5.1	141	1.1	848	89	15	0.97	23926	722	0.13	0.09
BR544	299918	7656543	0.02	0.9	248	1.4	1525	2874	37	5.16	1014	696	0.12	0.12

Table 2.

Earaheedy Project – Drill Hole Location and Survey

Hole ID	Туре	E	N	Depth (m)	Azi	Dip
EDH001	DD	261464	7161637	432.4	40	-70
EDH002A	DD	264108	7160083	403	40	-70
EDH003	DD	264825	7158112	174.4	330	-70
EDH004	DD	264987	7158351	189.6	330	-70
EHRC001	RC	264944	7158430	186	330	-70
EHRC002	RC	264925	7158464	188	330	-70
	GDA94 Z51					

Table	3
aheedy Project - Diamond	Core and RC Drill Assays

		-		D		Table 3						
				· · · · ·					Drill As			
Hole ID	From (m)	To (m)	Ag g/t	Ba ppm	Ca %	Cu ppm	Fe_%	Mg %	Mn ppm	Pb %	S ppm	Zn %
EDH001 EDH001	213 214	214 215	0.01	112 87	18.30 18.67	15 18	1.31 1.14	10.03 10.23	2518 2186	0.00	1574 997	0.02
EDH001	214	215	0.01	86	17.28	32	1.14	9.55	2015	0.00	778	0.03
EDH001	216	217	0.01	71	19.69	4	0.95	10.85	2001	0.00	366	0.00
EDH001	217	218	0.01	225	18.75	8	0.97	10.43	2025	0.01	1492	0.11
EDH001	218	219	0.01	79	18.87	3	0.73	10.53	1881	0.01	287	0.01
EDH001	219	220	0.01	87	19.48	0.01	0.76	10.83	2105	0.00	104	0.00
EDH001	220	221	0.01	79	19.51	0.01	0.76	10.89	2166	0.00	274	0.00
EDH001	221	222	0.01	92	19.44	0.01	0.71	10.84	1900	0.00	148	0.00
EDH001	222	223	0.01	77	18.83	1	0.73	10.54	2033	0.02	477	0.01
EDH001	223	224	0.01	52	19.50	2	0.69	10.97	1533	0.02	1665	0.01
EDH001 EDH001	224 225	225 226	0.01	87 76	18.84 18.97	0.01	0.62	10.63 10.60	1399 1860	0.00	736 185	0.00
EDH001 EDH001	223	220	0.01	35	20.13	0.01	0.74	11.37	1950	0.00	2180	0.00
EDH001	241	242	0.01	47	19.96	0.01	0.64	11.24	1585	0.00	232	0.00
EDH001	242	243	0.01	46	19.62	0.01	0.55	11.08	1244	0.00	655	0.01
EDH001	243	244	0.01	58	19.81	5	0.71	11.23	1273	0.01	2436	0.01
EDH001	244	245	0.01	57	20.06	2	0.57	11.38	1389	0.01	1020	0.04
EDH001	245	246	0.01	57	19.12	2	0.57	10.86	1163	0.00	1576	0.03
EDH001	246	247	0.01	51	19.40	0.01	0.52	11.07	1166	0.00	730	0.01
EDH001	247	248	0.01	46	19.84	12	0.57	11.36	1308	0.01	1116	0.06
EDH001	248	249	0.01	41	15.29	5	0.76	8.71	1302	0.03	4838	0.09
EDH001 EDH001	249 250	250 251	0.01	108 40	19.42 19.59	0.01	0.45	11.14 11.09	1115 1163	0.00	881 5177	0.01 0.05
EDH001 EDH001	250	251	0.01	39	20.02	1	0.78	11.09	919	0.01	1105	0.05
EDH001	251	252	1.4	57	17.18	42	2.31	9.71	1497	0.00	36487	3.05
EDH001	253	254	0.01	58	18.72	4	0.84	10.63	1363	0.02	4898	0.05
EDH001	254	255	0.01	57	18.98	2	0.72	10.79	1295	0.01	3995	0.13
EDH001	255	256	0.01	58	19.37	1	0.46	11.04	1107	0.00	976	0.04
EDH001	256	257	0.01	54	19.46	0.01	0.58	11.09	1699	0.00	829	0.00
EDH001	257	258	0.01	67	18.43	1	0.63	10.44	1968	0.00	1295	0.07
EDH001	258	259	1	61	18.64	11	1.28	10.56	1358	0.01	11313	0.10
EDH001	259	260	2.5	64	18.68	12	0.79	10.64	976	0.45	11160	0.84
EDH001 EDH001	260 261	261 262	0.01	43 56	19.39 19.41	2	0.35	11.05 11.11	1093 1019	0.00	542 1291	0.01
EDH001 EDH001	261	262	1.7	84	19.41	40	1.52	9.15	1393	0.01	23866	2.27
EDH001	263	264	0.01	79	17.55	7	0.54	10.00	1333	0.03	1926	0.04
EDH001	264	265	0.01	82	18.82	6	0.39	10.74	981	0.00	1084	0.03
EDH001	265	266	0.01	81	19.41	6	0.54	11.22	1496	0.01	2253	0.13
EDH001	266	267	0.01	73	19.28	2	0.39	11.03	1083	0.00	550	0.00
EDH001	267	268	0.01	102	19.04	3	0.5	10.93	1084	0.01	1825	0.01
EDH001	268	269	0.01	85	19.04	5	0.6	10.84	1062	0.02	3210	0.07
EDH001	269	270	0.01	95	19.52	11	0.43	11.10	824	0.01	3270	0.27
EDH001	270	271	0.01	50	20.21	2	0.27	11.53	745	0.00	321	0.00
EDH001 EDH001	271 272	272	0.5	72	19.45	14	0.56	11.07	914	0.04	6044	0.56
EDH001 EDH001	272	273 274	0.01	64 85	19.81 19.25	3	0.49	11.34 10.96	803 962	0.01	3321 3239	0.01
EDH001	273	275	0.01	88	19.81	7	0.65	11.28	1119	0.00	6995	0.02
EDH001	275	275	0.01	85	19.74	4	0.57	11.20	1218	0.01	4940	0.56
EDH001	276	277	0.01	69	20.16	0.01	0.35	11.57	1034	0.00	376	0.00
EDH001	277	278	0.9	98	19.54	5	1.37	11.20	1034	0.12	12735	0.06
EDH001	278	279	0.01	63	20.57	0.01	0.38	11.72	1215	0.00	489	0.02
EDH001	279	280	0.01	130	19.40	3	0.5	11.07	1035	0.03	2414	0.08
EDH001	280	281	0.5	121	18.71	3	0.64	10.71	1407	0.21	2786	0.15
EDH001	281	282	0.01	101	18.18	4	0.66	10.35	940	0.13	4503	0.11
EDH001	282	283	0.01	123	16.58	2	0.41	9.48	847	0.02	2826	0.27
EDH001 EDH001	283 284	284 285	0.01	170 108	18.67 18.03	0.01	0.48	10.75 10.29	1214 1037	0.01	612 585	0.05
EDH001 EDH001	284	285	0.01	108	18.03	5	0.4	10.29	1037	0.01	7990	1.24
EDH001 EDH001	285	280	0.01	110	19.45	4	0.31	11.07	971	0.07	9365	1.24
EDH001	287	288	0.6	171	20.46	8	0.55	11.61	1040	0.08	10601	1.57
EDH001	288	289	0.6	164	19.44	4	0.44	11.03	1075	0.17	6598	1.09
EDH001	289	290	1.4	163	18.89	10	0.56	10.68	1116	0.38	15548	2.71
EDH001	290	291	0.8	171	18.87	5	0.45	10.76	975	0.24	9392	1.54
EDH001	291	292	4.6	184	17.83	3	0.64	10.11	1222	1.26	14851	1.93
EDH001	292	293	1.1	177	18.33	10	0.78	10.28	1702	0.33	11072	1.49
EDH001	293	294	0.01	199	18.18	4	0.83	10.25	1857	0.03	2354	0.27
EDH001	294	295	0.01	175	18.67	0.01	0.92	10.52	2083	0.02	984	0.02
EDH002A	217	218	0.01	840	0.89	38	1.55	0.88	440	0.00	732	0.00
EDH002A	218 219	219	0.6	794 638	0.98	83 194	1.28	0.98	456	0.00	801 1403	0.00
EDH002A	219	220	1.5	638	5.83	194	1.95	3.08	1965	0.00	1403	0.00

Table 3 Continued	
--------------------------	--

Hole ID EDH002A EDH002A	From (m) 220 221 222 223 224	To (m) 221 222 223 224	Ag g/t 0.01 0.8 0.7	Ba ppm 158 165 155	Ca % 17.73 17.80 18.14	Cu ppm 13 24 7	Fe_% 2.81 2.16	Mg % 8.97 9.35	Mn ppm 4069 3014	Pb % 0.00 0.03	S ppm 1266 3549	Zn % 0.00 0.51
EDH002A EDH002A EDH002A EDH002A EDH002A EDH002A	221 222 223	222 223	0.8 0.7	165	17.80	24	2.16	9.35	3014	0.03		
EDH002A EDH002A EDH002A EDH002A EDH002A	222 223	223	0.7								3549	0.51
EDH002A EDH002A EDH002A EDH002A	223			155	18.14	7						
EDH002A EDH002A EDH002A		224	0.01				1.62	9.71	2280	0.03	1084	0.11
EDH002A EDH002A	224		0.01	177	18.17	40	1.35	9.90	2185	0.01	476	0.03
EDH002A		225	0.01	179	17.37	9	1.22	9.48	1963	0.01	667	0.02
	225	226	0.01	344	13.93	4	1.23	7.26	2030	0.01	774	0.00
EDH002A	226	227	0.01	286	14.40	7	1.12	6.70	1668	0.01	1109	0.00
	227	228	0.01	163	16.06	0.01	1.32	8.84	2304	0.00	872	0.00
EDH002A	228	229	0.01	161	17.49	0.01	1.24	9.57	2232	0.00	605	0.00
EDH002A	229	230	0.01	116	18.85	0.01	1.33	10.25	2457	0.00	215	0.00
EDH002A	230	231	0.01	221	18.22	0.01	1.19	10.08	2019	0.00	662	0.00
EDH002A	231	232	0.01	259	17.68	2	1.23	9.85	2018	0.00	1277	0.00
EDH002A	232	233	0.01	191	18.81	0.01	0.96	10.56	1805	0.00	321	0.00
EDH002A	233	234	0.01	296	18.42	0.01	0.89	10.33	1598	0.00	3429	0.18
EDH002A	234	235	0.01	211	20.02	1	0.62	11.33	1449	0.01	2371	0.28
EDH002A	235	236	0.01	7435	18.60	3	0.53	10.63	1206	0.04	8419	1.06
EDH002A	236	237	0.01	982	19.68	49	0.56	11.22	1482	0.02	3616	0.48
EDH002A	237	238	0.01	171	20.17	11	0.54	11.47	1631	0.01	2379	0.34
EDH002A EDH002A	238 239	239 240	0.01	322 174	19.42 20.35	0.01	0.61	10.98 11.49	1949 2092	0.03	3208 1168	0.43
EDH002A	239	240	0.01	598	19.77	1	0.81	11.49	1655	0.01	4300	0.09
EDH002A	240	241	0.01	133	19.77	7	0.61	11.21	1394	0.04	6230	0.19
EDH002A	241	242	0.01	133	19.85	4	0.87	10.87	2225	0.04	5300	0.39
EDH002A	242	243	0.01	171	19.20	0.01	0.71	11.20	2045	0.03	3297	0.33
EDH002A	243	244	0.01	194	19.02	0.01	0.68	10.81	2043	0.01	2682	0.33
EDH002A	245	245	1.1	5385	17.98	8	1.13	10.01	2103	0.02	16460	1.48
EDH002A	246	247	0.01	254	19.41	8	0.79	10.95	2288	0.02	4549	0.37
EDH002A	247	248	0.01	188	18.81	21	0.68	10.64	2347	0.02	3393	0.47
EDH002A	248	249	0.01	232	18.91	7	0.43	10.81	1108	0.03	3590	0.40
EDH002A	249	250	0.01	119	18.90	11	0.61	10.78	1579	0.02	2339	0.03
EDH002A	250	251	0.01	113	20.22	4	0.69	11.57	2032	0.00	1166	0.01
EDH002A	251	252	0.01	140	19.63	3	0.55	11.19	1516	0.01	1327	0.00
EDH002A	252	253	1.2	1178	19.55	17	1.71	11.08	1485	0.05	19416	0.76
EDH002A	253	254	0.01	158	20.32	5	0.38	11.64	1173	0.00	704	0.01
EDH002A	254	255	0.01	124	20.71	0.01	0.37	11.79	1077	0.00	520	0.00
EDH002A	255	256	0.01	187	19.89	1	0.36	11.40	893	0.00	721	0.00
EDH002A	256	257	1.3	215	19.98	7	0.71	11.35	913	0.17	6909	0.33
EDH002A	257	258	8.2	1019	18.26	63	3.63	10.26	1126	1.45	46121	0.89
EDH002A	258	259	0.6	137	20.49	11	0.71	11.71	1040	0.03	5202	0.16
EDH002A	259	260	1.8	128	19.85	33	0.92	11.33	984	0.08	8970	0.35
EDH002A	260	261	1	119	20.90	27	0.6	11.88	879	0.08	5615	0.38
EDH002A	261	262	9	102	16.88	104	4.04	9.64	741	0.06	45349	0.34
EDH002A	262	263	0.8	109	20.37	10	0.39	11.64	867	0.05	3211	0.39
EDH002A	263	264	0.01	88	21.14	5	0.35	12.19	864	0.01	1806	0.17
EDH002A	264	265	0.01	117	20.32	6	0.36	11.78	860	0.01	983	0.04
EDH002A	265	266	0.01	89	20.39	1	0.33	11.78	821	0.00	670	0.02
EDH002A	266	267	0.9	154	19.54	14	0.73	11.24	1005	0.03	5297	0.15
EDH002A	267	268	2.1	108	20.21	22	1.39	11.65	933	0.04	14411	0.30
EDH002A	268	269	0.01	111	20.11	9	0.47	11.61	1109	0.05	2940	0.34
EDH002A	269	270	0.01	127	19.75	7	0.47	11.46	892	0.00	1593	0.03
EDH002A	270	271	0.01	164	18.79	18	0.61	10.76	922	0.04	4113	0.20
EDH002A	271	272	0.01	97	21.09	9	0.37	12.19	740	0.02	1699	0.09
EDH002A	272	273	0.01	110	20.01	6	0.4	11.51	833	0.01	2016	0.17
EDH002A EDH002A	273	274	0.01	95	20.96	2 9	0.31	12.09	709 915	0.00	432 401	0.00
EDH002A EDH002A	274 275	275 276	0.01	112 138	20.20 20.92	9	0.34	11.57 12.07	815 699	0.00	401 357	0.00
EDH002A EDH002A	275	276	0.01	138	20.92 19.66	4	0.3	12.07	982	0.00	357 500	0.00
EDH002A EDH002A				106	19.66	12 8		11.36			746	
EDH002A	277 278	278 279	0.01	157	20.02	13	0.4	11.37	809 839	0.00	1042	0.00
EDH002A	278	279	1.8	213	19.52	65	0.41	11.48	839	0.01	5791	0.02
EDH002A	279	280	0.5	213	19.52	8	0.58	10.92	874	0.73	2676	0.30
EDH002A	280	281	0.01	238	19.00	° 12	0.48	10.92	928	0.01	2070	0.15
EDH002A	281	282	0.01	183	19.67	12	0.3	11.00	820	0.02	805	0.01
EDH002A	282	283	0.01	168	20.05	120	0.4	11.24	986	0.00	567	0.00
	283	284	0.01	186	18.76	8	0.4	10.88	765	0.00	553	0.01
EDH0030	284	285	0.01	295	16.57	° 11	0.54	9.45	703	0.00	2729	0.00
EDH002A	200	280	0.0	293	16.94	11	0.54	9.66	734	0.02	3057	0.13
EDH002A	286											5.20
EDH002A EDH002A	286 287			180	14 57	25	0.67	8 3 2	829	0.20	13668	2.18
EDH002A EDH002A EDH002A	287	288	1.3	180 184	14.57 14.30	25 1	0.67	8.32 8.11	829 1014	0.20	13668 5228	2.18 0.23
EDH002A EDH002A EDH002A EDH002A	287 288	288 289	1.3 0.01	184	14.30	1	0.84	8.11	1014	0.01	5228	0.23
EDH002A EDH002A EDH002A	287	288	1.3									

	Table 3 Continued											
Hole ID	From (m)	To (m)	Ag g/t	Ba ppm	Ca %	Cu ppm	Fe_%	Mg %	Mn ppm	Pb %	S ppm	Zn %
EDH003	131	132	3.2	719	0.02	244	2.5	0.47	82	0.65	35503	3.36
EDH003	132	133	4.4	360	0.02	366	2.92	0.15	358	0.12	8430	0.13
EDH003	133	134	0.7	470	0.04	55	8.99	0.23	217	0.05	245	0.10
EDH003	134	135	0.8	1143	0.02	35	1.69	0.35	324	0.02	408	0.02
EDH003	135	136	0.8	9572	0.19	52	3.76	0.25	38584	0.03	2474	0.05
EDH003	136	130	0.01	6001	0.08	48	10.37	0.31	12180	0.08	1686	0.14
EDH003	130	138	0.6	988	0.02	56	3.49	0.25	370	0.00	355	0.02
EDH003	138	130	0.8	706	0.02	47	5.08	0.23	158	0.03	151	0.02
EDH003	139	140	0.0	619	0.02	67	5.19	0.30	208	0.05	527	0.00
EDH003	139	140	1.1	580	0.02	31	2.85	0.30	101	0.00	351	0.07
EDH003	140	141	0.01	580	0.02	93	11.54	0.24	242	0.02	233	0.03
EDH003	141	142	0.01	326	0.02	222	28.52	0.25	605	0.08	259	0.13
EDH003	142	143				66	6.91					
EDH003	145	144	0.01	501 397	0.86	4	2.04	0.88	18606 2949	0.03	1501 78	0.44
					11.99							
EDH003	145	146	0.01	297	14.94	0.01	2.18	7.99	3657	0.00	425 91	0.00
EDH003	146	147	0.01	334	14.82		2.3	7.85	3831	0.00		0.00
EDH003	147	148	0.01	215	13.76	0.01	3.23	6.84	4764	0.00	982	0.00
EDH003	148	149	0.01	719	0.70	3	1.36	0.56	361	0.00	104	0.00
EDH003	149	150	0.01	997	0.56	1	1.35	0.56	454	0.00	190	0.00
EDH004	152	153	1.3	752	0.05	30	2.59	0.52	72	0.03	973	0.01
EDH004	153	153.3	3	652	0.03	62	2.25	0.47	89	0.01	1013	0.01
EDH004	153.3	154	6	662	0.03	253	2.02	0.48	82	1.23	29850	3.12
EDH004	154	154.7	1.6	484	0.02	64	2.67	0.49	97	0.35	11549	0.93
EDH004	154.7	155	5	792	0.02	89	2.97	0.63	57	0.73	52264	4.94
EDH004	155	155.25	4.7	888	0.03	71	3.24	0.64	105	0.74	45005	3.91
EDH004	155.25	155.8	7.4	936	0.02	282	2.53	0.64	67	1.68	40508	3.23
EDH004	155.8	156	2	891	0.02	87	1.92	0.59	119	0.15	16128	1.15
EDH004	156	156.3	1.4	897	0.02	38	1.81	0.60	95	0.09	12599	0.28
EDH004	156.3	156.9	1.5	854	0.02	39	1.79	0.56	85	0.08	13161	0.42
EDH004	156.9	157.2	3.7	625	0.03	125	3.8	0.43	97	0.72	51157	3.52
EDH004	157.2	157.45	3.5	630	0.03	99	4.75	0.54	101	0.70	64085	3.82
EDH004	157.45	157.75	0.7	866	0.02	50	2.04	0.52	82	0.01	14530	0.07
EDH004	157.75	158	2.6	493	0.02	127	2.47	0.40	94	0.03	29407	2.24
EDH004	158	158.4	1	322	0.02	52	1.77	0.28	144	0.01	6455	0.18
EDH004	158.4	159	0.7	787	0.02	44	1.34	0.52	113	0.00	2326	0.02
EDH004	159	160	0.6	892	0.06	89	2.61	0.43	4107	0.00	1830	0.06
EDH004	160	160.4	0.6	697	0.20	5	11.33	0.52	26985	0.01	1279	0.51
EDH004	160.4	161	0.6	636	0.16	9	7.55	0.30	16955	0.01	1305	0.41
EDH004	161	161.45	0.01	673	0.20	6	10.39	0.40	29225	0.01	873	0.74
EDH004	161.45	162	0.5	709	0.14	13	7	0.29	16046	0.03	529	0.28
EDH004	162	162.25	0.01	851	0.04	11	1.17	0.27	243	0.01	535	0.00
EDH004	162.25	162.65	0.6	907	0.16	13	4.06	0.46	8217	0.01	1150	0.20
EDH004	162.65	163	0.01	821	0.05	12	1.21	0.27	378	0.01	911	0.00
EDH004	163	164	0.01	752	0.12	6	3.24	0.28	6792	0.00	600	0.05
EDH004	164	165	0.01	659	5.07	1	1.08	2.81	1235	0.00	147	0.00
EHRC001	147	148	0.01	842	0.04	32	9.23	0.70	1056	0.06	2125	0.07
EHRC001	148	149	0.6	947	0.04	26	11.03	0.71	1318	0.05	2150	0.08
EHRC001	149	150	0.01	700	0.03	21	11	0.67	1095	0.05	1845	0.08
EHRC001	150	151	1.6	832	0.05	63	7.18	0.49	1066	0.33	26933	2.30
EHRC001	151	152	1	907	0.04	62	6.19	0.52	1116	0.28	15134	1.53
EHRC001	152	153	1.8	1006	0.04	72	6.95	0.54	1175	0.26	16822	1.43
EHRC001	153	154	4.1	746	0.03	83	4.12	0.48	304	0.76	47058	3.63
EHRC001	154	155	2	911	0.03	62	2.78	0.61	184	0.45	25272	2.03
EHRC001	155	156	2	983	0.03	87	2.99	0.69	209	0.44	24591	1.81
EHRC001	156	157	3.7	325	0.02	95	3.46	0.26	384	0.26	24261	2.08
EHRC001	157	158	0.9	501	0.05	40	9.04	0.48	5096	0.08	9551	0.48
EHRC001	158	159	1.9	668	0.07	59	5.71	0.67	6819	0.08	11468	0.34
EHRC001	159	160	0.7	582	0.10	41	5.98	0.64	8675	0.06	7860	0.30
EHRC001	160	161	0.8	581	0.07	42	4.6	0.49	3751	0.05	6566	0.35
EHRC001	161	162	1.1	639	0.07	57	3.91	0.50	1875	0.04	6679	0.28
EHRC001	162	163	0.7	714	0.09	57	2.09	0.38	1269	0.03	4083	0.14
EHRC001	163	164	0.9	609	0.08	150	3.41	0.30	2064	0.03	4611	0.16
EHRC001	164	165	0.01	561	0.07	32	2.15	0.22	1391	0.01	2504	0.08
EHRC001	165	166	0.01	640	0.31	39	1.64	0.37	485	0.01	2294	0.06
EHRC001	166	167	0.5	604	0.91	30	2.09	0.67	680	0.01	2865	0.08
EHRC001	167	168	0.01	548	1.89	36	1.69	1.14	857	0.01	2582	0.08
EHRC001	168	169	0.01	596	0.85	34	1.47	0.70	665	0.01	2954	0.08
EHRC001	169	170	0.6	499	3.86	51	1.55	2.27	1217	0.01	3543	0.13
EHRC001	170	171	0.6	324	8.02	29	2.03	4.14	2438	0.01	2702	0.08
EHRC001	171	172	0.01	365	9.93	5	1.96	5.20	2606	0.00	1189	0.02
EHRC001	172	173	0.01	434	8.87	4	1.95	4.68	2334	0.00	816	0.01

Table 3 Continued

Table 3 Continued

Hole ID	From (m)	To (m)	Ag g/t	Ba ppm	Ca %	Cu ppm	Fe %	Mg %	Mn ppm	Pb %	S ppm	Zn %
EHRC001	173	174	0.01	338	10.37	2 2	2.08	5.34	3254	0.00	1218	0.03
EHRC001	174	175	0.01	475	5.67	11	2.22	3.00	2470	0.01	2726	0.11
EHRC001	175	176	0.01	625	0.61	15	1.79	0.57	661	0.02	3111	0.15
EHRC001	176	177	0.01	734	0.36	8	2.35	0.54	373	0.01	1824	0.05
EHRC001	177	178	0.01	599	1.33	17	2.62	0.83	1195	0.00	1569	0.02
EHRC001	178	179	0.01	928	1.50	7	2.12	1.02	1385	0.00	1337	0.02
EHRC001	179	180	0.01	617	1.32	61	2.41	0.87	1382	0.01	2303	0.07
EHRC001	180	181	0.01	631	0.43	14	1.66	0.51	643	0.01	3402	0.15
EHRC001	181	182	0.6	622	1.41	24	2.03	0.97	1979	0.02	4616	0.21
EHRC001	182	183	0.01	573	0.76	25	1.65	0.55	970	0.01	2825	0.08
EHRC001	183	184	0.01	810	0.60	29	1.67	0.72	833	0.01	2296	0.05
EHRC001	184	185	0.01	849	1.97	85	2.13	1.39	2521	0.00	2398	0.04
EHRC001	185	186	0.01	817	1.70	83	4.31	1.39	2187	0.01	2747	0.10
EHRC002	138	139	0.01	338	0.02	4	5.43	0.46	116	0.00	1309	0.01
EHRC002	139	140	0.01	284	0.02	0.01	4.44	0.38	90	0.00	1179	0.01
EHRC002	140	141	0.01	273	0.03	0.01	4.61	0.36	97	0.00	1149	0.01
EHRC002	141	142	0.01	384	0.02	5	4.12	0.51	101	0.01	1252	0.01
EHRC002	142	143	0.01	1648	0.03	20	2.3	0.53	83	0.03	1244	0.01
EHRC002 EHRC002	143 144	144 145	0.01 0.6	1463 645	0.03	28 22	4.59 8.17	0.56	104 197	0.07	1163 1170	0.02
EHRC002 EHRC002	144	145	0.6	728	0.05	15	3.68	0.44	197	0.06	1170	0.06
EHRC002 EHRC002	145	146	0.01	606	0.04	15	3.68	0.52	153	0.05	1439	0.03
EHRC002	140	147	0.01	550	0.03	24	2.43	0.45	80	0.00	1184	0.02
EHRC002	147	148	0.01	615	0.02	37	3.83	0.54	129	0.10	1374	0.01
EHRC002	149	150	1.5	542	0.02	74	2.65	0.59	57	0.08	1454	0.03
EHRC002	150	151	1.5	700	0.03	58	1.79	0.62	62	0.41	13158	0.81
EHRC002	151	152	1.6	677	0.03	84	2.72	0.55	75	0.41	22815	0.52
EHRC002	152	153	1.2	570	0.03	75	2.24	0.47	66	0.22	20888	0.66
EHRC002	153	154	6.4	648	0.03	115	3	0.54	65	2.63	37691	2.00
EHRC002	154	155	3.6	616	0.03	136	2.55	0.51	60	0.97	39416	3.75
EHRC002	155	156	1.1	657	0.02	86	2.12	0.50	71	0.14	15430	0.19
EHRC002	156	157	1.9	714	0.03	91	3.15	0.56	86	0.39	22133	0.91
EHRC002	157	158	2.2	753	0.03	97	2.79	0.57	77	0.52	20624	0.88
EHRC002	158	159	1.8	756	0.03	74	2.04	0.54	82	0.30	14583	0.61
EHRC002	159	160	8.7	379	0.02	122	3.31	0.24	122	0.32	34247	2.10
EHRC002	160	161	0.9	448	0.03	38	2.12	0.31	1050	0.07	7477	0.26
EHRC002	161	162	0.7	411	0.06	45	5.54	0.35	2139	0.06	4942	0.22
EHRC002 EHRC002	162 163	163 164	0.5 0.5	321 513	0.03	59 42	2.98 3.22	0.21 0.29	784 3510	0.05	5419 4436	0.22
EHRC002 EHRC002	165	164	0.5	515	0.08	42 89	3.14	0.29	4006	0.02	4430	0.18
EHRC002	165	165	0.6	586	0.03	130	4.55	0.31	4000	0.02	4031	0.21
EHRC002	166	167	0.0	555	0.17	53	5.23	0.31	1367	0.05	4294	0.17
EHRC002	167	168	0.8	555	0.13	63	5.11	0.29	1335	0.03	3201	0.09
EHRC002	168	169	1.5	542	1.19	52	1.72	0.78	503	0.05	9525	0.58
EHRC002	169	170	1.9	569	0.17	44	2.33	0.30	1608	0.06	10210	0.73
EHRC002	170	171	1.2	711	3.32	105	1.8	2.17	1093	0.03	5474	0.22
EHRC002	171	172	1.3	216	12.70	83	2.95	6.44	3479	0.03	5931	0.21
EHRC002	172	173	1	322	12.29	15	2.41	6.51	2879	0.02	4750	0.19
EHRC002	173	174	0.5	328	12.19	3	2.32	6.37	3483	0.00	1376	0.02
EHRC002	174	175	1.8	254	7.21	34	2.19	3.70	1844	0.05	10852	0.54
EHRC002	175	176	0.9	388	11.55	5	2.9	5.91	4065	0.02	2775	0.08
EHRC002	176	177	1.6	407	6.25	24	3.16	3.15	2956	0.04	8620	0.39
EHRC002	177	178	1.1	778	1.03	19	2.17	0.75	636	0.02	5468	0.22
EHRC002	178	179	0.8	580	0.57	21	3.03	0.61	474	0.02	4576	0.17
EHRC002	179	180	1.1	820	1.94	13	2.76	1.24	1928	0.02	4586	0.14
EHRC002	180	181	1.9	510	0.82	31	2.15	0.60	882	0.04	7872	0.41
EHRC002	181	182	1.3	630	0.79	27	2.54	0.67	765	0.03	6522	0.24
EHRC002	182	183	0.6	777	1.33	9	2.13	0.95	1552	0.01	1825	0.04
EHRC002	183	184	0.7	769	1.46	35	2.24	1.05	1719	0.01	3085	0.06
EHRC002 EHRC002	184 185	185 186	1.1 2.3	870 875	0.50	46 98	1.85 2.41	0.67	632 1201	0.02	5083 9983	0.13
EHRC002 EHRC002	185	186	3.3	590	0.90	50	3.76	0.82	283	0.05	12011	0.45
EHRC002	180	187	3.3	428	0.17	49	3.02	0.48	688	0.10	13466	0.68
LINCOUZ	10/	100	5.5	420	0.51	43	5.02	0.51	000	0.10	13400	0.00