10th April 2019

ASX ANNOUNCEMENT
Drilling Commenced at Earaheedy Zinc Project

Highlights

Diamond Core Drill Programme - Commenced

- Drilling has commenced on two diamond core holes designed to test the large gravity drill targets EG1 and EG3, with contingency holes planned for gravity targets EG4 and EG6
- The large EG1 gravity drill target is up to 1.5km in strike length and up to 300m in width (similar width and length to the Pillara Zn-Pb Deposit located in the Lennard Shelf of Western Australia)

The gravity iso-shells are compelling drill targets that potentially represent large, mineralised zinc ore bodies, based on following:

- The gravity targets are located over the main interpreted basement extension fault and likely represent high to moderate angle fault breccia zones with high potential to host economic base metal mineralisation
- Importantly, modelling determined the dip of gravity targets are in line with the basement fault which could reflect mineralisation intrusion
- Large zinc metal accumulation identified within project from historic drilling with zinc mineralisation over an area of 20km by 3.5km (zinc horizon) - example intercept:
 - 11.3m @ 4.34% Zn, 0.85% Pb from 150.2m
 Includes 2.3m @ 14.42% Zn, 1.15% Pb from 150.2m
- Widespread Zn and Pb metal distribution surrounding the gravity targets
- Significantly all gravity targets are located within the flat lying carbonate unit that hosts the known zinc-lead horizon (from historic drilling)
- No historic drill-holes previously intercepted the first order gravity targets being drill tested by Rumble

Target Style

- Rumble is targeting Mississippi Valley Type (MVT) high-grade zinc deposits associated with basement faults (high angle breccia fault zones) within flat lying carbonate rocks
- Exploration has shown similarities to the historical Pillara (Blendevale) Zn-Pb deposit located in the Lennard Shelf of WA, with a strike of 2km, discovered between 80m to 500m below surface for a resource of 20Mt @ 8.3% Zn, 2.5% Pb, 17ppm Ag"
Project Overview

Rumble has an option agreement with Fossil Prospecting Pty Ltd (a wholly owned subsidiary of ASX Listed Zenith Minerals Ltd – (ASX: ZNC)) to acquire a 75% interest in E69/3464. Rumble owns 100% of the contiguous application E69/3543.

Zinc and lead mineralisation with elevated silver is associated with the Navajoh Dolomite Member (also known as the Sweetwaters Well Member) of the Yelma Formation. The Yelma Formation is the lower unit of the 5000m thick Earaheedy Basin (Palaeoproterozoic). Sphalerite, galena, pyrite and marcasite (coarse grain) occurs as stratiform/stratabound ore fill veins and breccias, dissolution cavity fill, disseminated, stylolitic and fault fill mineralisation styles (Mississippi Valley Type). Broad spaced drilling (completed in the 1990’s) defined oxidised and primary Zn-Pb mineralisation (zinc dominant) over a strike of 20km. The mineralisation is associated with a flat lying to shallow northeast dipping laterally continuous dolomite to shale horizon. The initial drill spacing was 5 to 10km. The current drill program spacing is approximately 2km by 1km.

Review of the historic drilling has concluded that approximately half the drill holes did not intercept the target horizon.

A total of 64 drill holes were previously completed within the project area (E69/3464), with 35 drill holes intercepting the stratiform zinc horizon (including partial end of hole intercepts). The historic drilling was completed by Renison (RGC) 1991 -1992 and Zenith in 2007 (8 RC holes completed). Rumble is confident that all holes are located accurately and the sampling and assay techniques represent best practice for the period.

Mineralisation has been defined over an area of approximately 20km by up to 3.5km in width and is completely open.
Six First Order Gravity Drill Targets (Image 3, 4 and 5)

Two surveys covering an area of 24km² were completed on 100m by 100m and 200m by 100m spacings (1080 stations). The surveys targeted the main basement fault zone (interpreted from aero-magnetics) and the stronger base metal drill-hole intercepts from the historic drilling. Gravity inversion modelling has defined six (6) first order drill targets that occur over the main basement fault structure (Image 3). The targets are determined by variations in density contrasts (iso-shells). Targets EG1 to EG6 (see Image 3 & 5) are defined by the 0-200 (0.20 g/cm³) iso-shell.

Image 3. Area of Exploration Focus (see top image page 3 for location), historic drill Intercepts, Section AA, and 6 Gravity Drill Targets being drill tested over TMI Aeromagnetics on the interpreted basement extension fault and likely represent high to moderate angle fault breccia zones with high potential to host economic base metal mineralisation.
Of Importance:

- The six gravity targets sit below the overlying Frere Iron Formation and their dip length strongly correlates with width of the carbonate formations that host the historic Zn mineralisation (see image 4).
- The steep dip of the gravity targets (steep southwest) also reflect the inferred dip of the underlying basement fault.
- The depth of the gravity targets gradually deepen to the southeast in line with the basement fault and dip of the hosting sediments.
- The gravity targets (EG1 to EG6) are interpreted to be associated with high angle fault/fault breccias that extend from the basement and are hosted in the main carbonate units.
- The targets represent bodies defined by density contrasts and these bodies may reflect denser carbonate rich zones or more significantly (based on the widespread Zn and Pb metal distribution), base metal mineralisation (epigenetic replacement).
- The gravity targets (iso-shells) are up to 1.5km in strike length (EG1) and up to 300m in width.
- Review of the historic drilling has indicated no drill hole has intercepted any of the gravity targets.
- Historic drill holes that are close to the gravity targets include TDH19 (approximately 250m into the hanging wall of target EG1 - see image 4) which returned a wide low-grade intercept of 56m @ 0.46% Zn from 209m.

Diamond Core Drilling Commenced (Image 3, 4 and 5)

- Two diamond core holes will test gravity targets EG1 and EG3 with contingency holes for gravity targets EG4 and EG6.
- Image 4 highlights the proposed diamond core drill hole into target EG1.

Image 4 - Section AA (see Image 3 for location of target) – Mineralisation Model and location of EG1 Gravity Target drill hole being completed (same size target as the Pillara Zn-Pb Deposit)
Target Potential and Style

The target style for the Earaheedy Zn project is considered Mississippi Valley Type (MVT) with economic sphalerite – galena mineralisation hosted in high to moderate angle fault/fault breccia.

Widespread flat lying carbonate replacement by low grade Zn and Pb sulphides has been delineated by historic drilling at Earaheedy. The area of flat lying mineralisation is very significant (20km by 3.5km) indicating extensive metal input and is completely open along strike and down dip. The historic drilling is wide spaced and has not tested the zone within the carbonates overlying the main basement fault.

Previous work by Rumble has highlighted strong metal zonation Zn:Pb ratios paralleling the basement fault (refer to ASX Announcement 12/10/2017 – Option Agreement to acquire Earaheedy Zinc Project). Metal zonation is characteristic of MVT deposits in the Devonian Lennard Shelf of Western Australia and has proven to be a useful vector to aid in delineating high-grade fault mineralisation.

The exploration completed to date at the Earaheedy Project has shown similarities to the historical Pillara (Blendeval) Zn-Pb deposit located in the Lennard Shelf of Western Australia (previously mined by BHP and Billiton from 1987 at Cadjebut, continued by Western Metals until 2003 and Teck/Xstrata between 2006 and 2008). The Pillara deposit occurred over a strike of 2 km and was located 80 to 500m below surface. The geological resource was 20Mt @ 8.3% Zn, 2.5% Pb, 17ppm Ag (based on 3% cutoff)\(^1\). The deposit produced 10.3Mt @ 6.9% Zn and 2.3% Pb. Of note, the discovery drill-hole (6m @ 8.9% Zn, 3.5% Pb below 210m)\(^1\).

- ENDS –

About Rumble Resources Ltd

Rumble Resources Ltd is an Australian based exploration company, officially admitted to the ASX on the 1st July 2011. Rumble was established with the aim of adding significant value to its current gold and base metal assets and will continue to look at mineral acquisition opportunities both in Australia and abroad.

Forward Looking and Cautionary Statement

The information in this report that relates to historic exploration results was collected from DMP reports submitted by government agencies and previous explorers. Rumble has not completed the historical data or the verification process. As sufficient work has not yet been done to verify the historical exploration results, investors are cautioned against placing undue reliance on them.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled by Mr Brett Keillor, who is a Member of the Australasian Institute of Mining & Metallurgy and the Australian Institute of Geoscientists. Mr Keillor is an employee of Rumble Resources Limited. Mr Keillor has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the “Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves”. Mr Keillor consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.
Section 1 Sampling Techniques and Data

<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
</table>
| **Sampling techniques** | - Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.
- Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.
- Aspects of the determination of mineralisation that are Material to the Public Report.
- In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. | - Historic Drill Assays
- Within Project area E69/3464 a total of 64 historic holes completed
 - 42 RC drill holes
 - 22 Diamond tails
- Total metres completed – 10,834
- For RC Drilling – composites routinely collected.
- For RC Pre-collar sampling – composites taken
- For Diamond Drilling – 1 and 2 m sections cut and assayed. With visible mineralisation, assays taken of sulphide limits.
- Sample duplicates not known. |
| **Drilling techniques** | - Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). | - Historic Drilling
 - Zenith completed 8 RC holes in 2007.
- RC – 5.5in hammer
- RC precollar – roller bit and/or RC hammer
- Diamond Core – NQ and HQ core orientation not known |
| **Drill sample recovery** | - Method of recording and assessing core and chip sample recoveries and results assessed.
- Measures taken to maximise sample recovery and ensure representative nature of the samples.
- Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | - Historic Drilling
- Recovery methods not known. |
| **Logging** | - Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.
- Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.
- The total length and percentage of the relevant intersections logged. | - Historic Drilling
- Standard geological logging of RC and diamond drilling. Considered exploration style. No resource definition completed |
| **Sub-sampling techniques and sample preparation** | - If core, whether cut or sawn and whether quarter, half or all core taken.
- If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.
- For all sample types, the nature, quality and appropriateness of the sample preparation technique.
- Quality control procedures adopted for all sub-sampling stages to maximise representivity of | - Historic Drilling
- Sub sampling techniques unknown
- Quality control procedures not known |
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>samples.</td>
<td>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.</td>
<td></td>
</tr>
<tr>
<td>Quality of assay data and laboratory tests</td>
<td>The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.</td>
<td></td>
</tr>
<tr>
<td>Verification of sampling and assaying</td>
<td>The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.</td>
<td></td>
</tr>
<tr>
<td>Location of data points</td>
<td>Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.</td>
<td></td>
</tr>
<tr>
<td>Data spacing and distribution</td>
<td>Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.</td>
<td></td>
</tr>
<tr>
<td>Orientation of data in relation to geological structure</td>
<td>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</td>
<td></td>
</tr>
<tr>
<td>Sample security</td>
<td>The measures taken to ensure sample security.</td>
<td></td>
</tr>
<tr>
<td>Audits or reviews</td>
<td>The results of any audits or reviews of sampling techniques and data.</td>
<td>Not known</td>
</tr>
</tbody>
</table>

Historic Drilling
- RC and RC pre-collars and diamond tails report the following elements assayed:
 - Ag, As, Ba, Cu, Mn, Pb, Zn, S, Ca, Fe
 - ALS laboratories used techniques IC587 and PM219
- The use of standards, blanks and duplicates not known

Historic Drilling
- Significant intercepts reported by previous explorers.
- Review of drilling assay data by Rumble utilised weighted average techniques if applicable.

Historic Drilling
- Drill hole spacing was exploration based and over a large area (2km by 1km grid)

Historic Drilling
- Detailed elevation terrain model correlates with WA Gov RGB topographic images. i.e. historic drill holes located on imagery match the GDA94 datum

Historic Drilling
- GSWA mapping and geological interpretation of flat lying sediments indicate drilling is normal to flat lying mineralisation – true width.
### Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status | | **The project comprises of a granted exploration licence – E69/3464 and a pending exploration licence – ELA69/3543**
• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.
• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.
• E69/3464 is currently owned by Fossil Prospecting Pty Ltd. Rumble Resources has an option agreement to acquire 75% of the licence over 2 years.
• E69/3464 is granted, in a state of good standing and has no known impediments to operate in the area.
• ELA69/3543 is pending and is owned by Rumble Resources 100%.

Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | Historical drill hole information for this report was obtained from Zenith Minerals Ltd (holding company of Fossil Prospecting Ltd) and Zinc Company Aust.
• Details of the information within this report are documented in the announcement released 12/10/2017 – Option Agreement to Acquire Earahedy Zinc Project.

Geology | Deposit type, geological setting and style of mineralisation. | Deposit type is MVT (Mississippi Valley Type). The geological setting is carbonate hosted. The style is stratiform replacement and fault breccia massive sulphides.

Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:
• easting and northing of the drill hole collar
• elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar
• dip and azimuth of the hole
• down hole length and interception depth
• hole length.
• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

• Refer to Announcement – ASX release. 6th Feb 2019 – First Order Drill Targets Defined at Earahedy Zn Project

Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.
• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such A cut off of 0.15% Zn has been used to highlight mineralised trends.
<table>
<thead>
<tr>
<th>Criteria</th>
<th>JORC Code explanation</th>
<th>Commentary</th>
</tr>
</thead>
<tbody>
<tr>
<td>aggregation should be stated and some typical examples of such aggregations should be shown in detail.</td>
<td>The assumptions used for any reporting of metal equivalent values should be clearly stated.</td>
<td>Review of the geology and drill hole intercepts indicate the reported intercepts are true width.</td>
</tr>
</tbody>
</table>
| **Relationship between mineralisation widths and intercept lengths** | *These relationships are particularly important in the reporting of Exploration Results.*
If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.
If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. ‘down hole length, true width not known’). | *Image 1 Diamond Core Drilling Rig operating at the Earaheedy Project*
Image 2 – Project Geology, Historic significant zinc mineralisation over 20km by 3.5km and area of exploration focus
Image 3 – Area of Exploration Focus (see top image page 3 for location), historic drill Intercepts, Section AA, and 6 Gravity Drill Targets being drill tested over TMI Aeromagnetics on the basement fault.
Image 4 – Section AA (see Image 3 for location of target) – Mineralisation Model and EG1 Gravity Target Drill Hole being completed (same size target as the Pillara Zn-Pb Deposit)
Image 5. – 3D Image of Gravity Targets (Isoshells) highlighting historic drill holes not intersecting the 6 gravity drill targets being drill tested – (See Image 3 for locations) |
| **Diagrams** | *Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.* | *Historical results reported.* |
| **Balanced reporting** | *Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.* | *Two surveys completed by Haines Geophysics in December 2017 and September 2018. The final survey grid spacing is 100m by 100m and 200m by 100m comprising of 1080 stations.*
The gravity survey has been tied in to the regional gravity grid.
Terrain corrections have been completed to optimize accuracy of results.
Gravity Inversion modelling was |
| **Other substantive exploration data** | *Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.* | *Two surveys completed by Haines Geophysics in December 2017 and September 2018. The final survey grid spacing is 100m by 100m and 200m by 100m comprising of 1080 stations.*
The gravity survey has been tied in to the regional gravity grid.
Terrain corrections have been completed to optimize accuracy of results.
Gravity Inversion modelling was |
Criteria | JORC Code explanation | Commentary
--- | --- | ---

Further work
- The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

- Diamond Drilling (pre-collars with tails) is planned to test at least two of the gravity targets with contingency for a further two holes. It is estimated each hole depth will be 400-450m.