

16 December 2021

Mulgabbie North AC Gold Anomaly Extends Another 1.4km

OzAurum Resources Ltd (**ASX: OZM** or **OzAurum** or the **Company**) is pleased to announce significant high-grade gold aircore (AC) drilling results from 149 holes for 10,556 meters (m) of drilling at its Mulgabbie North Project, situated two kilometres (km) from the **Northern Star Resources (ASX: NST**) Carosue Dam Mine Operations.

Highlights

- AC holes that intersected significant gold mineralisation from composite samples include:
 - o 4m @ 3.09 g/t Au from 12m MNOAC 615
 - o 4m @ 3.03 g/t Au from 64m MNOAC 560
 - o 4m @ 2.00 g/t Au from 44m MNOAC 534
 - o 4m @ 1.68 g/t Au from 56m MNOAC 579
 - o 4m @ 1.68 g/t Au from 56m within 17m @ 0.8 g/t Au MNOAC 536
 - o 4m @ 1.65 g/t Au from 68m MNOAC 559
 - o 4m @ 1.61 g/t Au from 28m MNOAC 546
 - o 4m @ 1.59 g/t Au from 36m MNOAC 636
 - o 4m @ 1.47 g/t Au from 40m MNOAC 523
 - o 4m @ 1.41 g/t Au from 56m MNOAC 597
 - o 4m @ 1.40 g/t Au from 52m MNOAC 606
- Recent AC drilling further extends the widespread gold zone an additional 1.4km to over 4.2km long and 150m wide at Mulgabbie North.
- New high priority targets for Reverse Circulation (RC) drilling have been defined by the high-grade AC supergene gold zone- coinciding with the magnetic destruction zone.
- The Mulgabbie North Gold Project, situated on the Keith Kilkenny fault zone with the favourable host rocks being felsic-intermediate volcaniclastics and intrusive porphyries, is shaping up as an exciting gold discovery story adjacent the Northern Star Carosue Dam Gold Mine.

Mulgabbie Project AC Drilling Results

A total of 149 AC holes were drilled for 10,556m (MNOAC 515 -663) at the Mulgabbie North gap zone between the Ben and Alicia Prospects. A total of 663 AC holes have been drilled for 48,027m at the Mulgabbie Project to date.

A new zone of widespread gold mineralisation, extending for 1.4km long and up to 150m wide, has been defined by numerous high-grade AC intersections at the Mulgabbie North gap zone between Ben and Alicia Prospects.

Results from the current AC drill program have provided the Company with exciting new high priority targets that will be followed-up with planned RC and diamond drilling in the near future.

Significant four metre composite AC drilling results from holes MNOAC 515-633 at Mulgabbie North include 4m @ 3.09 g/t Au from 12m (MNOAC 615), 4m @ 3.03 g/t Au from 64m (MNOAC 560), 4m @ 2.00 g/t Au from 44m (MNOAC 534) along with 4m @ 1.68g/t Au from 56m (MNOAC 579). Numerous other high-grade anomalous composite gold results can be found in table 1 of this release.

AC holes that have ended in high-grade gold mineralisation include:

- MNOAC 570 1m @ 2.15 g/t Au from 76m to EOH
- MNOAC 573 1m @ 1.65 g/t Au from 96m to EOH.
- MNOAC 536 1m @ 1.52 g/t Au from 72m to EOH
- MNOAC 617 3m @ 0.98 g/t Au from 68m to EOH
- MNOAC 648 2m @ 0.96 g/t Au from 60m to EOH
- MNOAC 548 1m @ 0.84 g/t Au from 80m to EOH

A number of significant AC gold intersections are associated with widespread supergene gold mineralisation and paleochannel hosted gold mineralisation. Of particular interest, is MNOAC 536 that intersected a wide zone of supergene gold mineralisation grading at **17m @ 0.80 g/t Au** (from 56m), including **4m @ 1.68 g/t Au** from 56m and **1m @ 1.52 g/t Au** at 73m to EOH. The drill chips from the last metre of MNOAC 536 (grading 1.52 g/t Au) are logged as felsic-intermediate volcaniclastic host rock with intense silicification, hematite and sericite alteration. AC hole MNOAC 536 is situated in the centre of the demagnetised area on the Relief Shear with no associated historical drilling.

Gold mineralisation intersected in MNOAC 615 4m @ 3.09 g/t Au is paleochannel hosted, previously reported high-grade paleochannel gold mineralisation includes 1m @162.5 g/t Au from 27m MNOAC 120 and 1m @ 31 g/t Au from 34m MNOAC 130 (see ASX announcement 24 May 2021).

Results have also been received from 1m resampling of previously released AC 4m composite intersections from holes MNOAC 343-512 with a number of + 1 g/t Au intersections received including MNOAC 378 **2m @ 1.94 g/t Au** from 40m, please refer to table 3.

Widespread gold mineralisation at the 4.2 km-long gold zone is currently open to the north and the south. In addition, the new gold zone is co-incident with OzAurum's gold auger calcrete geochemistry anomalies, and a gravity low trough similar to the Northern Star (ASX: NST) Carouse Dam corridor of riches in which their operating gold mines are situated, which includes production of about 1.5 million ounces of gold to date.

As previously announced, another significant aspect of the AC drilling program completed at Mulgabbie thus far is the discovery of a 40-80m wide zone of hematite alteration being intersected in the bottom of the AC holes, defining a trend striking NW for over 4.2 kms, and situated 150m west of the Relief Shear (see ASX announcement dated 15 March 2021). This is significant because hematite alteration is the characteristic alteration of the adjacent Northern Star's Karari and Whirling Dervish Gold Mines. The hematite alteration observed is indicating oxidised fluids from an intrusive complex suggesting proximity to the mineralising centrelikely to be within OzAurum's 100% owned Mulgabbie North tenure. Recent drilling at Mulgabbie North has now intersected intrusive porphyry in RC holes.

High Priority Targets for future Mulgabbie North RC and Diamond Drilling

The current AC gold drill results have clearly defined significant zones of gold mineralisation along and adjacent to the Relief Shear within the Keith Kilkenny fault zone. Of particular interest, is the area immediately along strike to the south of the Ben Prospect where a number of AC holes have intersected extensive significant supergene gold mineralisation including MNOAC 536 has intersecting **17m @ 0.80 g/t Au** (from 56m) including **4m @ 1.68 g/t Au** and **1m @ 1.52 g/t Au** from 72m to EOH.

A number of these exciting new targets that have been identified for future RC drilling coincide with an extensive zone of magnetic destruction and the co-incident, strong and steep gravity gradient that extends the length of the Mulgabbie North Project. Interpretation of the recently completed detailed drone magnetic survey and close spaced gravity survey at Mulgabbie North is ongoing.

OzAurum's Chief Executive Officer, Andrew Pumphrey, said:

"The Company is proud to announce these additional high-grade AC intercepts uncovered by our large-scale AC drilling campaign. The discovery of a new widespread zone of gold mineralisation within the Mulgabbie North project, which now extends over 4.2 km, provides us with even greater confidence in the large-scale potential of the Project. In particular, we are excited by the potential of this area where the host rocks are intermediate-felsic volcaniclastic units - very similar to the Northern Star Carosue Dam Karari and Whirling Dervish Gold Mines.

"Extensive supergene gold mineralisation situated with the magnetic destruction zone on the very steep gravity gradient makes for exciting new targets to be tested with future RC and diamond drilling.

"Lastly, this area is under transported cover that has prevented previous effective exploration and now represents a significant exploration opportunity for the Company."

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
MNOAC522	442636.289	6663896.021	377.5	69	-60	225	48	4	1.02	
MNOAC523	442664.909	6663924.933	377	75	-60	225	40	4	1.47	
MNOAC524	442695.154	6663955.518	376.7	73	-60	225	48	4	0.36	
							52	4	0.68	
							56	4	1.25	
							60	4	1.17	
MNOAC534	442708.518	6663827.025	379.2	56	-60	225	40	4	1.21	
							44	4	2.00	
MNOAC535	442731.053	6663852.079	378.9	55	-60	225	44	4	1.20	
							48	4	1.05	
MNOAC536	442761.091	6663886.646	378.6	73	-60	225	56	17	0.80	
						including	56	4	1.68	
						including	60	4	0.62	
						including	64	4	0.37	
						including	68	4	0.37	
						including	72	1	1.52	EOH
MNOAC546	442780.738	6663760.924	380.6	67	-60	225	24	4	0.52	
							28	4	1.61	
MNOAC548	442836.645	6663816.049	380.9	81	-60	225	80	1	0.84	ЕОН
MNOAC559	442847.092	6663688.088	381.2	93	-60	225	68	4	1.65	

Table 1: Mulgabbie North AC Drill Holes Selected 4m Composite Results

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
MNOAC560	442877.037	6663716.916	381.8	100	-60	225	32	4	0.67	
							48	4	0.70	
							60	4	0.40	
							64	4	3.03	
							68	4	0.65	
MNOAC570	442862.313	6663562.269	380.5	77	-60	225	68	4	0.88	EOH
							76	1	2.15	
MNOAC571	442891.328	6663589.438	381.1	79	-60	225	56	4	1.21	
							60	4	0.50	
							72	4	0.84	
MNOAC572	442921.051	6663618.49	381.8	102	-60	225	48	4	0.42	
							52	4	0.62	
MNOAC573	442945.965	6663642.006	382.3	97	-60	225	96	1	1.65	EOH
MNOAC579	442797.125	6663376.14	378.4	81	-60	225	52	4	0.68	
							56	4	1.68	
MNOAC583	442950.355	6663518.574	381.1	81			76	4	0.79	
MNOAC585	442980.142	6663547.186	381.7	102	-60	225	76	4	0.68	
MNOAC597	443061.645	6663474.195	381.8	90	-60	225	56	4	1.41	
MNOAC598	443092.899	6663503.971	382.4	90	-60	225	56	4	0.99	
							68	4	0.62	
MNOAC604	443034.394	6663316.798	380.3	75	-60	225	52	4	0.78	
MNOAC606	443096.053	6663373.627	381.3	63	-60	225	52	4	1.40	
MNOAC615	443145.123	6663277.164	381	69	-60	225	12	4	3.09	
MNOAC617	443203.574	6663334.513	382	71	-60	225	68	3	0.98	EOH
MNOAC618	443232.855	6663363.112	382.7	77	-60	225	60	4	1.05	
MNOAC628	443173.594	6663017.766	379.3	49	-60	225	40	4	0.84	
MNOAC636	443295.237	6663001.692	383.2	58	-60	225	36	4	1.59	
MNOAC648	443457.633	6663023.79	379.3	62	-60	225	60	2	0.96	EOH

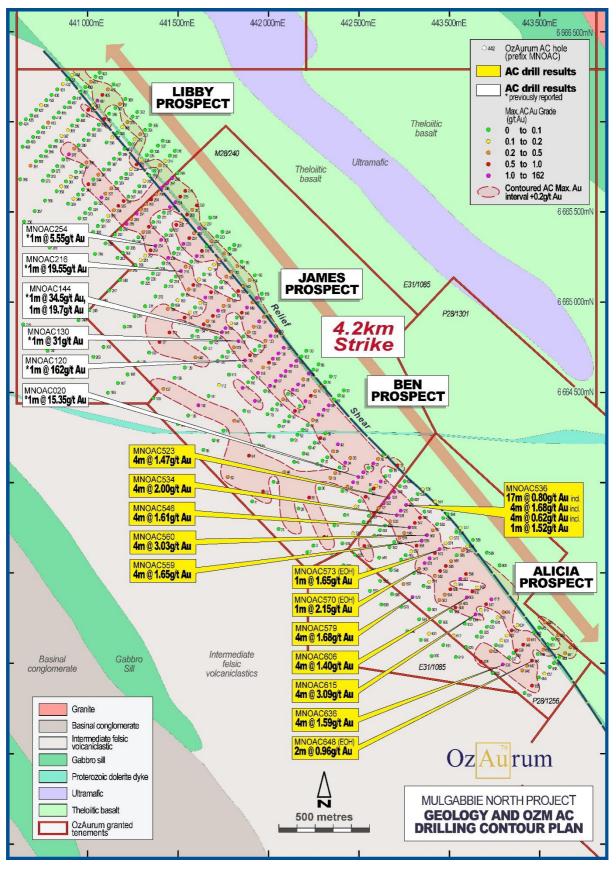


Figure 1: Mulgabbie North AC drill collar plan with Max Au g/t AC 1m and composite intervals

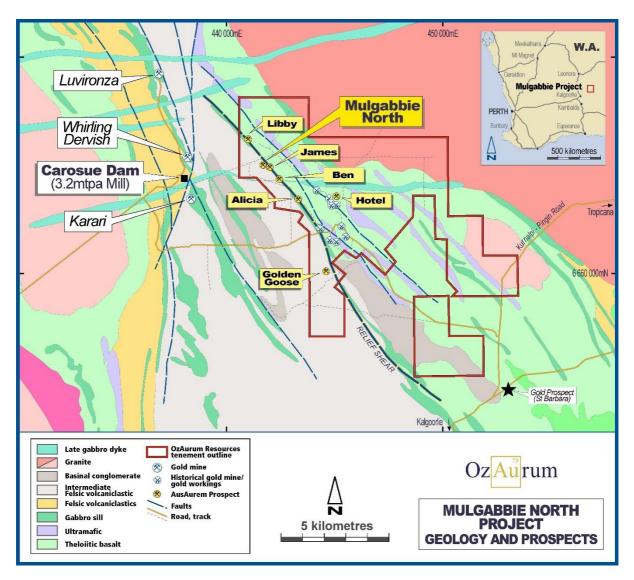
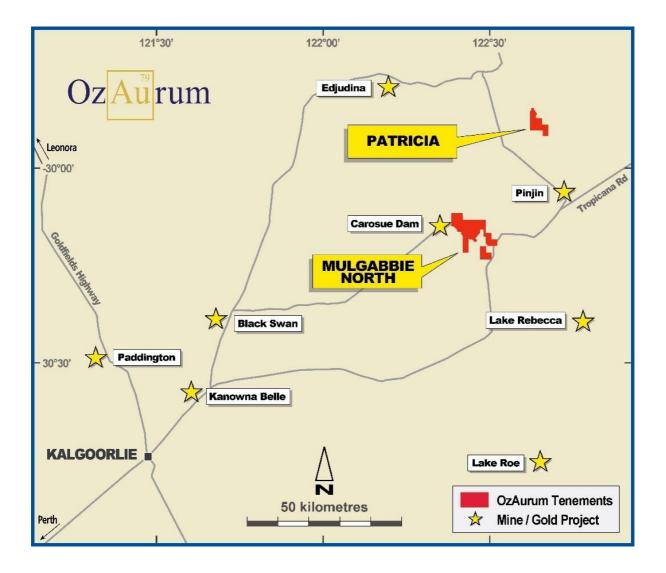


Figure 2: Mulgabbie North Projects and Prospects

For Further Information please contact;

Andrew Pumphrey Managing Director + CEO Mob +61 419 965 976 Office +61 8 9093 0039


This ASX Announcement was approved and authorised by OzAurum's Managing Director, Andrew Pumphrey.

About OzAurum

OzAurum Resources Ltd (ASX: OZM) is a Western Australian gold explorer with two advanced gold projects located 130 km north east of Kalgoorlie. The Company's main objective is to make a significant gold discovery that can be brought to production.

For more information on OzAurum Resources Ltd and to subscribe to our regular updates, please visit our website at www.ozaurumresources.com or contact our Kalgoorlie office via email on info@ozaurumresources.com.

Competent Persons Statement

The information is this report that relates to exploration results is based on information compiled by Andrew Pumphrey who is a Member of the Australian Institute of Geoscientists and is a Member of the Australasian Institute of Mining and Metallurgy. Andrew Pumphrey is a full-time employee of OzAurum Resources Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Pumphrey has given his consent to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
MNOAC517	442468.318	6663727.379	377.2	57	-60	225	52	4	0.12	
MNOAC520	442582.19	6663841.309	378	74	-60	225	40	4	0.25	
							44	4	0.69	
MNOAC521	442610.012	6663867.978	377.8	72	-60	225	48	4	0.2	
MNOAC522	442636.289	6663896.021	377.5	69	-60	225	12	4	0.16	
							40	4	0.44	
							44	4	0.24	
							48	4	1.02	
							52	4	0.13	
MNOAC523	442664.909	6663924.933	377	75	-60	225	24	4	0.1	
							32	4	0.1	
							40	4	1.47	
							44	4	0.1	
MNOAC524	442695.154	6663955.518	376.7	73	-60	225	48	4	0.36	
							52	4	0.68	
							56	4	1.25	
							60	4	1.17	
							64	4	0.13	
MNOAC529	442531.306	6663657.36	377.6	72	-60	225	52	4	0.76	
MNOAC533	442673.123	6663795.199	379.2	64	-60	225	0	4	0.27	
MNOAC534	442708.518	6663827.025	379.2	56	-60	225	0	4	0.49	
							12	4	0.19	
							40	4	1.21	
							44	4	2	
							48	4	0.32	
							52	4	0.16	
MNOAC535	442731.053	6663852.079	378.9	55	-60	225	0	4	0.56	
							44	4	1.2	
							48	4	1.05	
MNOAC536	442761.091	6663886.646	378.6	73	-60	225	44	4	0.45	
							48	4	0.22	
							56	17	0.8	
						including	56	4	1.68	
						including	60	4	0.62	
						including	64	4	0.37	
						including	68	4	0.37	
						including	72	1	1.52	
MNOAC539	442854.751	6663973.572	377.9	90	-60	225	32	4	0.1	
MNOAC540	442552.015	6663528.591	377.3	89	-60	225	88	1	0.12	
MNOAC544	442724.017	6663703.92	379.9	83	-60	225	0	4	0.23	
							56	4	0.1	

Table 2: Mulgabbie North AC Drill Holes – All 4m composite or lessor interval Intercepts greater than 0.1 g/t Au and no more than 2 metres of internal waste. Greater than 1.0 g/t Au and 5.0 g/t Au reported separately.

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
							68	4	0.17	
MNOAC545	442750.154	6663729.948	380.2	67	-60	225	0	4	0.28	
							52	4	0.25	
							60	4	0.29	
							64	3	0.26	
MNOAC546	442780.738	6663760.924	380.6	67	-60	225	0	4	0.47	
							24	4	0.52	
							28	4	1.61	
							36	4	0.18	
							40	4	0.11	
							44	4	0.16	
							48	4	0.28	
							64	3	0.31	
MNOAC547	442807.896	6663787.455	380.9	83	-60	225	28	4	0.1	
							48	4	0.18	
							52	4	0.47	
							56	4	0.54	
							60	4	0.5	
MNOAC548	442836.645	6663816.049	380.9	81	-60	225	80	1	0.84	EOH
MNOAC551	442921.986	6663903.564	379.4	100	-60	225	80	4	0.11	
MNOAC557	442788.803	6663629.159	380.2	73	-60	225	60	4	0.12	
MNOAC558	442819.039	6663659.83	380.7	75	-60	225	0	4	0.15	
							52	4	0.52	
							56	4	0.41	
							60	4	0.38	
							64	4	0.15	
							72	3	0.18	
MNOAC559	442847.092	6663688.088	381.2	93	-60	225	52	4	0.16	
							56	4	0.18	
							64	4	0.15	
							68	4	1.65	
							80	4	0.23	
							84	4	0.15	
MNOAC560	442877.037	6663716.916	381.8	100	-60	225	20	4	0.17	
							32	4	0.67	
							40	4	0.11	
							48	4	0.7	
							52	4	0.12	
							60	4	0.4	
							64	4	3.03	
							68	4	0.65	
							72	4	0.19	
MNOAC561	442908.629	6663746.961	382.3	66	-60	225	0	4	0.1	

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
							20	4	0.34	
MNOAC567	442746.09	6663446.862	378.5	73	-60	225	68	4	0.44	
MNOAC569	442832.772	6663532.388	379.9	72	-60	225	0	4	0.21	
							68	4	0.1	
MNOAC570	442862.313	6663562.269	380.5	77	-60	225	0	4	0.27	
							20	4	0.11	
							60	4	0.44	
							64	4	0.15	
							68	4	0.88	
							72	4	0.19	
							76	1	2.15	EOH
MNOAC571	442891.328	6663589.438	381.1	79	-60	225	52	4	0.27	
							56	4	1.21	
							60	4	0.5	
							72	4	0.84	
							76	3	0.44	
							44	4	0.26	
MNOAC572	442921.051	6663618.49	381.8	102	-60	225	48	4	0.42	
							52	4	0.62	
							56	4	0.2	
							80	4	0.18	
							84	4	0.22	
							88	4	0.15	
MNOAC573	442945.965	6663642.006	382.3	97	-60	225	0	4	0.12	
							36	4	0.1	
							92	4	0.15	
							96	1	1.65	EOH
MNOAC574	442977.085	6663673.872	383.1	89	-60	225	88	1	0.17	
MNOAC575	443008.412	6663704.036	384.3	85	-60	225	80	4	0.12	
MNOAC577	443061.343	6663757.229	386.2	77	-60	225	0	4	0.1	
MNOAC579	442797.125	6663376.14	378.4	81	-60	225	52	4	0.68	
							56	4	1.68	
							64	4	0.15	
							68	4	0.15	
MNOAC581	442888.885	6663461.461	380	77	-60	225	8	4	0.11	
MNOAC582	442921.034	6663492.783	380.5	74	-60	225	8	4	0.14	
							64	4	0.25	
MNOAC583	442950.355	6663518.574	381.1	81	-60	225	0	4	0.56	
							72	4	0.33	
							76	4	0.79	
							80	1	0.4	
MNOAC584	443010.006	6663575.065	382.4	110	-60	225	0	4	0.27	
							36	4	0.25	

MNOAC587 4 MNOAC588 4 MNOAC598 4 MNOAC593 4 MNOAC594 4	442980.142 443073.696 443100.454 442944.924 442975.253 442075.253	6663547.186 6663632.339 6663656.317 6663359.287 6663389.266 6663389.265	381.7 384.6 385.3 379.8 380.4	102 73 81 74 64	-60 -60 -60 -60	225 225 225 225 225	68 72 76 80 60 76 44 52	4 4 4 4 4 4 4 4	0.38 0.3 0.68 0.22 0.2 0.11 0.22	
MNOAC588 4 MNOAC593 4 MNOAC594 4 MNOAC594 4 MNOAC594 4	443100.454 442944.924 442975.253	6663656.317 6663359.287 66663389.266	385.3 379.8 380.4	81 74	-60 -60	225 225	76 80 60 76 44	4 4 4 4 4	0.68 0.22 0.2 0.11 0.22	
MNOAC588 4 MNOAC593 4 MNOAC594 4 MNOAC594 4 MNOAC594 4	443100.454 442944.924 442975.253	6663656.317 6663359.287 66663389.266	385.3 379.8 380.4	81 74	-60 -60	225 225	80 60 76 44	4 4 4 4	0.22 0.2 0.11 0.22	
MNOAC588 4 MNOAC593 4 MNOAC594 4 MNOAC594 4 MNOAC594 4	443100.454 442944.924 442975.253	6663656.317 6663359.287 66663389.266	385.3 379.8 380.4	81 74	-60 -60	225 225	60 76 44	4 4 4	0.2 0.11 0.22	
MNOAC588 4 MNOAC593 4 MNOAC594 4 MNOAC594 4	443100.454 442944.924 442975.253	6663656.317 6663359.287 66663389.266	385.3 379.8 380.4	81 74	-60 -60	225 225	76 44	4	0.11 0.22	
MNOAC593 4 MNOAC594 4 	442944.924 442975.253	6663359.287 6663389.266	379.8 380.4	74	-60	225	44	4	0.22	
MNOAC594 4	442975.253	6663389.266	380.4							
				64	-60	225	52	4		
				64	-60	225	-	4	0.18	
MNOAC595 4	443005.615	6663418.259				225	0	4	0.39	
MNOAC595 4	443005.615	6663418.259					4	4	0.13	
MNOAC595 4	443005.615	6663418.259					52	4	0.26	
			380.9	83	-60	225	56	4	0.64	
							60	4	0.21	
							68	4	0.27	
MNOAC596 4	443033.618	6663445.412	381.3	72	-60	225	0	4	0.14	
MNOAC597 4	443061.645	6663474.195	381.8	90	-60	225	0	4	0.3	
							56	4	1.41	
							60	4	0.23	
							64	4	0.25	
							68	4	0.1	
							80	4	0.16	
MNOAC598 4	443092.899	6663503.971	382.4	90	-60	225	56	4	0.99	
							60	4	0.2	
							68	4	0.62	
							72	4	0.16	
MNOAC601 4	442888.275	6663174.968	379.7	74	-60	225	64	4	0.14	
MNOAC604 4	443034.394	6663316.798	380.3	75	-60	225	36	4	0.32	
							48	4	0.45	
							52	4	0.78	
MNOAC605 4	443059.906	6663339.581	380.7	79	-60	225	0	4	0.23	
							40	4	0.14	
							52	4	0.18	
							64	4	0.1	
							68	4	0.15	
MNOAC606 4	443096.053	6663373.627	381.3	63	-60	225	0	4	0.2	
							48	4	0.23	
							52	4	1.4	
							56	4	0.44	
							60	3	0.11	
MNOAC607 4	443128.308	6663406.229	381.9	78	-60	225	0	4	0.22	
							28	4	0.22	
							32	4	0.19	
							56	4	0.24	

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
							68	4	0.51	
							72	4	0.49	
							76	2	0.15	
MNOAC608	443150.566	6663429.324	382.3	70	-60	225	0	4	0.11	
							68	2	0.14	
MNOAC612	443024.337	6663162.264	381.6	63	-60	225	52	4	0.14	
MNOAC615	443145.123	6663277.164	381	69	-60	225	12	4	3.09	
MNOAC616	443172.836	6663303.16	381.4	72	-60	225	0	4	0.14	
							52	4	0.11	
							68	4	0.24	
MNOAC617	443203.574	6663334.513	382	71	-60	225	0	4	0.3	
							16	4	0.4	
							40	4	0.12	
							44	4	0.28	
							48	4	0.16	
							60	4	0.44	
							64	4	0.13	
							68	3	0.98	EOH
MNOAC618	443232.855	6663363.112	382.7	77	-60	225	0	4	0.23	
							52	4	0.31	
							56	4	0.14	
							60	4	1.05	
							64	4	0.36	
							68	4	0.23	
MNOAC625	443266.608	6663261.145	382	102	-60	225	64	4	0.12	
MNOAC626	443298.714	6663290.537	382.4	83	-60	225	0	4	0.15	
							32	4	0.26	
							48	4	0.13	
							52	4	0.2	
							56	4	0.37	
							72	4	0.27	
MNOAC628	443173.594	6663017.766	379.3	49	-60	225	36	4	0.1	
							40	4	0.84	
MNOAC629	443229.604	6663074.889	382.5	74	-60	225	64	4	0.14	
							68	4	0.29	
							72	2	0.17	
MNOAC631	443287.629	6663134.383	382.1	92	-60	225	60	4	0.17	
MNOAC632	443316.275	6663161.551	380.8	71	-60	225	56	4	0.13	
MNOAC633	443344.672	6663189.482	381.1	66	-60	225	60	4	0.48	
							64	2	0.61	
MNOAC634	443375.758	6663219.763	380.1	69	-60	225	60	4	0.1	
MNOAC636	443295.237	6663001.692	383.2	58	-60	225	36	4	1.59	
MNOAC639	443369.458	6663079.667	381.3	84	-60	225	64	4	0.13	

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
							68	4	0.11	
							72	4	0.75	
							80	4	0.11	
MNOAC640	443408.925	6663112.643	379.7	60	-60	225	56	4	0.66	
MNOAC641	443437.279	6663140.546	379	62	-60	225	48	4	0.2	
							56	4	0.26	
MNOAC644	443528.296	6663234.778	379.4	48	-60	225	32	4	0.25	
							36	4	0.27	
							40	4	0.42	
							44	4	0.46	
MNOAC646	443402.556	6662970.325	378.7	73	-60	225	52	4	0.4	
							56	4	0.1	
							60	4	0.18	
							64	4	0.1	
MNOAC647	443428.419	6662994.356	379.9	53	-60	225	44	4	0.15	
							48	4	0.27	
MNOAC648	443457.633	6663023.79	379.3	62	-60	225	60	2	0.96	
MNOAC650	443519.274	6663082.944	378.2	68	-60	225	44	4	0.39	
							48	4	0.11	
							52	4	0.15	
							60	4	0.15	
MNOAC653	443598.337	6663161.875	378.9	33	-60	225	28	4	0.23	
MNOAC655	443457.566	6662886.208	375.8	52	-60	225	40	4	0.62	
MNOAC657	443524.419	6662952.309	378.1	60	-60	225	56	4	0.17	
MNOAC661	443639.199	6663064.943	377.1	17	-60	225	12	4	0.1	
							16	1	0.23	
MNOAC662	443669.394	6663096.433	377.8	29	-60	225	28	1	0.21	

Table 3: Mulgabbie North AC Drill Holes Selected 1m resample Results or previously reported as 4m composite samples

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
MNOAC343	441007	6665656	363	91	-60	225	26	1	1.69	
							28	1	0.62	
MNOAC345	441062	6665709	363	71	-60	225	56	1	0.16	
MNOAC349	441180	6665826	364	49	-60	225	20	1	0.48	
MNOAC352	441263	6665906	366	46	-60	225	38	2	0.27	
							40	1	1.26	
							42	1	0.37	
MNOAC353	441293	6665931	366	58	-60	225	17	2	0.55	
MNOAC365	440995	6665777	362	78	-60	225	41	1	0.25	
							54	1	0.19	
MNOAC367	441137	6665917	365	48	-60	225	44	1	1.14	
								1	0.11	

rum

11

Oz

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
MNOAC369	441193	6665973	368	38	-60	225	28	2	0.30	
MNOAC370	441223	6666000	368	61	-60	225	0	6	0.27	
							16	4	0.32	
MNOAC378	440899	6665823	362	99	-60	225	37	1	0.27	
							40	2	1.94	
							42	2	0.32	
MNOAC379	440927	6665853	362	77	-60	225	26	1	1.15	
MNOAC385	441096	6666019	366	63	-60	225	38	1	0.93	
							43	1	0.57	
MNOAC388	441181	6666103	366	51	-60	225	44	1	0.37	
MNOAC391	440688	6665761	361	86	-60	225	32	4	0.22	
MNOAC397	440859	6665925	361	85	-60	225	21	1	0.12	
							22	1	1.13	
MNOAC398	440891	6665955	362	78	-60	225	29	1	0.46	
MNOAC402	441006	6666068	364	61	-60	225	41	7	0.20	
							43	1	0.14	
							53	3	0.52	
MNOAC403	441030	6666092	364	57	-60	225	12	1	0.83	
MNOAC404	441057	6666120	364	47	-60	225	17	4	0.21	
							22	2	1.20	
							24	4	0.15	
							31	1	0.24	
							38	1	0.69	
MNOAC405	441085	6666152	364	63	-60	225	0	1	0.17	
							54	2	0.18	
							58	1	0.50	
							59	1	1.29	
							60	1	0.61	
MNOAC406	441115	6666181	364	46	-60	225	24	1	0.52	
							29	1	0.30	
							33	10	0.24	
MNOAC413	440786	6665997	361	83	-60	225	27	1	1.07	
MNOAC421	441019	6666223	364	60	-60	225	29	1	0.24	
							30	1	1.16	
							31	1	0.44	
MNOAC428	440746	6666096	361	76	-60	225	27	1	0.41	
		1					49	1	0.15	
							51	1	0.18	
MNORC432	440866.549	6666211.721	362.5	57	-60	225	39	3	0.18	
MNOAC434	440920	6666264	364	65	-60	225	39	3	0.20	
MNOAC481	450272	6656375	335	68	-60	225	48	2	0.34	
MNOAC489	450724	6656809	337	61	-60	225	53	3	0.13	
MNOAC491	450833	6656913	337	93	-60	225	77	2	0.14	

Hole ID	Easting	Northing	mRL	depth (m)	Dip	Azimuth	From (m)	Length (m)	g/t Au	Comments
MNOAC512	451693	6656388	338	93	-60	225	76	1	1.09	
							77	1	0.12	
							79	1	0.33	

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the	The Mulgabbie North Deposit 149 AC holes (MNOAC 515 – 663, 10,556m), azimuth 225° dipping -60°.
measurement tools appropriate to the	
minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of	The RC samples are collected from the drill rig cyclone in a green plastic bag in 1m intervals and are laid out in rows of either 20, 30 or 40 samples. A 2-4kg representative sample is split via the rig mounted cone splitter and placed on top of the green plastic for that metre interval.
sampling.	Diamond drilling completed using one metre sampling lengths, core half cut adjacent to bottom of hole orientation line.
	Aircore samples are laid out in rows of 10.
Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All sampling is undertaken using OzAurum Resources sampling procedures and QAQC in line with industry best practise which includes certified standards on average every 30 samples.
	The RC drill rig provides a sample at the end of each metre of drilling. A 2-4 kg sample is collected from the drill rig via a cone splitter which is representative of that metre.
	PQ diamond core was half cut to produce a 2- 4 kg sample for analysis.
	Aircore composite samples weighing between 2-4 kg are collected from four one metre samples via a sample scoop with even quantities of each 1m sample collected to form the composite sample.
Aspects of the determination of mineralisation that are Material to the Public Report.	Historic hole collars have been recovered where possible and surveyed by a licenced surveyor using a DGPS (0.01 m).
	down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	The RC one metre sample intervals were collected with a 2-4 kg representative sample despatched to the laboratory for gold analysis. The diamond half core sample intervals were typically a 2-4 kg representative sample despatched to the laboratory for gold analysis. The AC composite and one metre sample intervals were collected with a 2-4 kg representative sample despatched to the laboratory for gold analysis. All analysis was by 50g fire assay with AAS finish with the exception of cases where visible gold has been observed or a fire assay grade has exceeded 100 g/t or coarse gold is suspected then a screen fire assay (Au- SCR22AA) has been undertaken on those samples and those results reported instead of the fire assay result.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	The RC drilling was undertaken using a face sampling percussion hammer using 137mm drill bits. The diamond drilling was undertaken using PQ3 (triple tube) and NQ3 (standard tube) techniques. The AC drilling was undertaken using a 75m blade bit and face sampling percussion hammer using 78mm drill bits.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Each metre of RC sample is checked, and an estimate of sample recovery is made. For this program, greater than 80% of samples had a recovery of 70% or higher. Sample weights reported by laboratory can also give an indication of recoveries. Drill core was measured and compared to drilled intervals and recorded as a percentage recovery. Recovery in oxidised rock can be reasonable whereas recovery in fresh rock is excellent. Each metre of AC sample is checked, and an estimate of sample recovery is made. For this program, greater than 80% of samples had a recovery of 70% or higher. Sample weights reported by laboratory can also give an indication of recoveries.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Driller's experience is important. Steady drilling, using modern well maintained drilling equipment, regular cleaning of cyclone and splitter, pausing the drilling at each metre to allow sample to pass through drill string and

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		reducing sample loss. Using a RC rig equipped with auxiliary and booster compressors is critical to maintaining good RC sample recovery.
		Using professional and competent core drilling contractor minimises issues with sample recoveries through the use of appropriate drilling equipment techniques and drilling fluids suited to the particular ground conditions.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	RC sample recoveries from the mineralised zones are generally high although some of the weathered material is lost in drilling (dust) and some natural voids do exist. No sample was lost from 2-4 kg split from cyclone that was submitted for analysis, some loss of sample occurred from large green bags and some bias may have occurred to that sample as water was flowing from sample bag – this sample has not been analysed and therefore will not affect results reported in this release.
		The core sample recovery in the transitional and fresh rock zones is very high and no significant bias is expected. Recoveries in oxidised rock were lower.
		AC sample recoveries from the are generally high although some of the weathered material is lost in drilling (dust).
		Although no exhaustive studies have been undertaken, no significant bias is expected, and any potential bias is not considered material at this stage of resource development.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies	Each RC metre drilled underwent detailed logging through the entire hole with record kept of colour, lithology, degree of oxidation, and type and intensity of alteration veining and sulphide content.
	and metallurgical studies.	Diamond core metres underwent detailed logging through the entire hole with record kept of colour, lithology, degree of oxidation, and type and intensity of alteration, veining and sulphide content. Structural, density and geotechnical data is also collected on drill core.
		Each AC hole drilled underwent general logging through the entire hole with record kept of colour, lithology, degree of oxidation, and type and intensity of alteration veining and sulphide content.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative in nature and included records of lithology, oxidation state and colour with estimates of intensity of mineralisation, alteration and veining.
		Wet and dry photographs were completed on the core.
	The total length and percentage of the relevant intersections logged.	All drill holes were geologically logged in full (100%).
Sub-sampling techniques and sample preparation	<i>If core, whether cut or sawn and whether quarter, half or all core taken.</i>	Core was half cut with a diamond saw with the same half always sampled and the other half retained in core trays. In some instances, oxidised and non- competent clay zones are carefully split in half using sampling wedge and sampled as half core.
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All RC sub-samples are collected via a cone splitter system mounted on the drill rig. An estimated 30% of samples were moist to wet in nature that passed through the cyclone – splitter system.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	All samples were analysed via a 50 gram fire assay. Following that analysis in cases where visible gold has been observed or a fire assay grade has exceeded 100 g/t or coarse gold is suspected then a screen fire assay (Au- SCR22AA) has been undertaken on those samples and those results reported instead of the fire assay result.
		Sample preparation and analysis were completed by ALS in Kalgoorlie. When received, samples are processed by code PREP-31 - logged in tracking system and bar code attached, wet samples dried through ovens, fine crushing to better than 70% passing 2mm, split sample using riffle splitter, split of up to 1000g pulverised to >85% sample passing 75um.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	All sampling equipment and sample bags are kept clean at all times. The RC drill rig mounted cone splitter is adjusted to ensure that the 1m split sample weighs on average between 2-4kg. The cone splitter is cleaned using an air nozzle after every drill rod – 6m. OzAurum Resources sampling procedures
		and QAQC is used to maximise representivity of samples.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	For drill core, the entire core is sampled at one metre intervals to ensure that samples are representative of the entire in-situ rock being tested. The laboratory ensures that the entire sample submitted is crushed and split appropriately to provide a representative sub- sample. No duplicate samples are taken from the core
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes (0.5 kg to 4 kg) are considered appropriate for the style of mineralisation at Mulgabbie North.
		Half cut PQ diamond core samples over 1m length (normally at the end of hole) were up to 4kg.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The nature, quality and appropriateness of the assaying and laboratory procedures are industry standard for Archaean mesothermal lode gold deposits. The fire assay technique will result in a total assay result. In cases where visible gold has been observed or a fire assay grade has exceeded 100 g/t or coarse gold is suspected then a screen fire assay (Au-SCR22AA) has been undertaken on those samples and reported instead of the fire assay result.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	None of these tools are used
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Certified Reference Materials (standards) are purchased from an independent supplier of such materials. Blanks are made up from samples previously collected from other drill programs at Mulgabbie North that have analysed as less than detection Au values.
		A standard sample followed by a blank sample are inserted every 30 th sample. A duplicate sample is taken every 30 samples.
		Evaluation of the OzAurum submitted standards and blanks analysis results indicates that assaying is accurate and without significant drift.
	The verification of significant intersections by either independent	At least two different company personnel visually verified intersections in the collected drill chips. At least two different company

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Verification of sampling and assaying	or alternative company personnel.	personnel visually verified intersections in the diamond core. A representative sample of each metre is collected and stored for further verification if needed. Drill core or core photos are used to verify drill intersections in diamond core samples.
	The use of twinned holes.	The spatial location and assaying accuracy of historical drilling was confirmed with RC and DD twinned holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data collected in the form of spread sheets, for drill hole collars, surveys, lithology and sampling.
		All geological and field data is entered into Microsoft Excel spreadsheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the OzAurum geological code system and sample protocol.
		Data is verified and validated by OZM geologists and stored in a Microsoft Access Database
		Data is emailed to database administrator Geobase Australia Pty Ltd for validation and importation into the database and periodically into a SQL database using Datashed.
	Discuss any adjustment to assay data.	No adjustments are made to the primary assay data imported into the database.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Initial hole collars surveyed by licenced surveyor DGPS (0.01m). Diamond drill line by surveyed back sight and foresight pegs. Dip was checked with clinometer on drill mast at set up on hole. RC holes are surveyed by down hole surveys at 30m intervals using single shot "Reflex Camera +/- 0.10 by drill contractor.
		Diamond holes are surveyed by down hole surveys at 30m intervals using single shot "Reflex Camera +/- 0.10 by drill contractor.
		All holes are surveyed for deviation at end of hole by gyroscope method by drilling contractor using a hired Reflex gyro. This is normally inside rods but may be open hole for RC drilling.
		Final hole collar locations surveyed by licenced surveyor (Minecomp Pty Ltd) DGPS (0.01m).
	Specification of the grid system used.	The grid system used is Geocentric Datum of Australia 1994 (GDA94).

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Quality and adequacy of topographic control.	Historical – Aerial photography used to produce digital surface topographic maps at 1:2500 1m contours.
		Topographic control is from an aerial photographic survey completed during 2018 with accuracy within 0.25m.
Data spacing	Data spacing for reporting of	Drilling at Mulgabbie North is at:
and dia (rith or (in m	Exploration Results.	20m line x 10m hole
distribution		20m line x 20m hole
		40m line x 20m hole
		40m line x 40m hole
		The holes reported in this release were on 20m spaced lines that are 20m apart along the lines and 40m spaced lines and 40m apart along the lines
	Whether the data spacing, and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the current MRE classifications as Measured, Indicated and Inferred according to JORC (2012 Edition) reporting criteria.
	Whether sample compositing has been applied.	No sample compositing has been applied in the field within the mineralised zones.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Diamond drill holes and RC holes were orientated 225°/-60° which is perpendicular to the shear zone hosting gold mineralisation and perpendicular to geology contacts.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not believed that drilling orientation has introduced a sampling bias as the dominant mineralised shear zone at Mulgabbie North hosting mineralisation strikes at 315° and dips 70°NE.
Sample security	The measures taken to ensure sample security.	Chain of custody is managed by OZM. Field samples are stored overnight onsite at site office + camp facility (if not delivered to laboratory) with staff in residence who are employees of OzAurum.
		Field samples are delivered to the assay laboratory in Kalgoorlie by OZM personnel once the hole is completed. Whilst in storage at the laboratory, they are kept in a locked yard. ALS Geochemistry Webtrieve is used

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		online to track the progress of batches of samples through the laboratory.
		Sample pulps and coarse rejects are stored at ALS for a period of time and then returned to OZM.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	No audits or reviews have been undertaken.

JORC Code, 2012 Edition – Table 2 Report

Section 2 Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Mulgabbie North Project is located approximately 135km north east of Kalgoorlie, 2.5km west of Carosue Dam gold mine. The Mulgabbie North project is situated within mining lease M28/240, prospecting licences P28/1356, P28/1357 and exploration licences E31/1085 + E28/3003. This area is accessed from the Kalgoorlie-Pinjin Road via an unsealed access. The tenements are located within the Pinjin Pastoral Station.
		Normal Western Australian state royalties apply.
		No third party royalties exist.
		Situated within the Mulgabbie North Project area are the reserves associated with the Mulgabbie Townsite Common.
		OZM purchased the Mulgabbie North property on 19th October 2020 from A. Pumphrey. The tenements are held by OzAurum Mines Pty Ltd, a wholly owned subsidiary of OzAurum Resources Ltd.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The tenements are in good standing and no known impediments exist.
Exploration done by other	Acknowledgment and appraisal of exploration by other parties.	M28-240 - No historical mining activity is found at Mulgabbie North M28/240.
parties		Freeport of Australia Incorporated in between 1984 -1987 completed 15,101m of RAB drilling, 27 RC holes for 2,793m and 2 diamond holes for 313m.
		Auralia Resources NL in 1988 completed 106 RAB holes for 3,942m and 10 RC holes for 549m.
		Main Reef Gold Ltd estimated a Mineral Resource by a manual polygonal method at a 1 g/t cut- off a non JORC resource of 624,000 tonnes at 2 g/t.
		A. Pumphrey during 2000-2020 drilled 25 RAB holes for 1,274m, 9 AC holes for 593m, 15 RC holes for 1279m and 1 diamond hole 174m.
		A. Pumphrey during 2002-2020 drilled 1092 auger holes for 907m.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		E31/1085- No Historical mining activity is found on E31/1085
		Goldfields Exploration between 1995-1998 drilled 60 RAB holes for 3169m and 7 RC drill holes for 842m
		P28/1356 + P28/1357 - No historical mining activity is found at P28/1356 + P28/1357 other than shallow prospecting pits and shafts.
		Western Reefs 1987- 1988 drilled 150 RAB holes for 3708m and 44 RC holes 2328m.
		Burdekin Resources Ltd 1998 drilled 37 RAB holes 2391m.
		Gutnick Resources Ltd 1999-2000 drilled 82 RAB holes for 3188m and 6 RC holes for 1978m.
		E28/3003 - No Historical mining activity is found on E28/3003.
		Goldfields Exploration between 1995-1998 drilled 228 RAB holes for 7681m and 13 RC drill holes for 1300m
		Saracen gold Mines Pty Ltd 2012-2013 drilled 2 RC holes for 101m.
Geology	Deposit type, geological setting and style of mineralisation.	The Mulgabbie North Au deposit is an Archaean mesothermal Au deposit.
		The Mulgabbie North local geology consists of a sequence of ultramafic, mafic, felsic – intermediate volcanic and volcaniclastic rocks, with interflow carbonaceous sediments found on the lithological boundaries. Archean dolerite intrusions are conformable within the sequence. The metamorphic grade of rocks at Mulgabbie North is lower greenschist facies.
		The alteration assemblage associated with Better Au grades consists of quartz carbonate and sericite. Pyrite and arsenopyrite mineralisation is associated with elevated Au grades at Mulgabbie North.
		Mulgabbie North gold mineralisation is found within the Relief Shear that occurs on a

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
		lithological contact between mafic/ultramafic volcanic/intrusives and Intermediate/felsic volcanic volcaniclastic.
		This contact represents a major trans lithospheric structure situated on the eastern margin of the Carosue Dam basin.
		A late east – west Proterozoic dolerite dyke Dissects mineralization at the Ben Prospect.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 1. easting and northing of the drill hole collar 2. elevation or RL (Reduced Level 	Please refer to table 1 in the report for full details.
	 elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Other relevant drill hole information can be found in Section 1-"Sampling techniques, "Drilling techniques" and "Drill sample recovery".
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All one metre diamond drill results are reported in Appendix 1 Section 2 of JORC table 1. Holes include up to 2m of internal dilution - host unit was intersected in the 2m diluted section with significant alteration. A bottom cut-off grade of 0.1 g/t was used, and no top cut grade was applied. The procedure applied to the aggregate intercepts quoted is length weighted average (sum product of interval x corresponding interval assay grade), divided by sum of interval lengths and rounded by one decimal place.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of	

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results.	These drill holes are designed to drill perpendicular to the Relief Shear that strikes at 315°. The dominant mineralisation geometries seen at the Mulgabbie North gold project are; Shear zone hosted mineralisation on the
	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	lithological contact which strikes 315° and is moderately dipping to the east at -75°. The true width of mineralisation at the Mulgabbie North is reasonably well known from existing drilling and all drilling is designed to intersect the Relief Shear
	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	mineralised envelope at 90° or perpendicular to the strike of the Relief Shear. The -60° planned dip of all drill holes results in the true width being 70% of the downhole intersection. For example, a downhole intersection of 10m has a true width of 7m.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. (NOTE: Any map, section, diagram, or other graphic or photo must be of high enough resolution to clearly be viewed, copied and read without	Please refer to the body of the report.
Balanced reporting	distortion or loss of focus). Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	Please refer to table 1 in the body of the report.

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The diamond holes were also utilised for bulk density measurements.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further RC & Diamond drilling is planned to further test mineralisation associated with this release.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. (NOTE: Any map, section, diagram, or other graphic or photo must be of high enough resolution to clearly be viewed, copied and read without distortion or loss of focus).	Please refer to the body of the report.