ASX Announcement

21 August 2018

ASX Code: KSN

Share Price: A\$0.022 Shares Outstanding: 1,223,198,383 Market Capitalisation: A\$26.9m Cash: A\$4.4m (30 June 2018)

Board and Management

Anthony Wehby Chairman

Andrew Corbett Managing Director

Mick Wilkes Non-Executive Director

Andrew Paterson Technical Director

Stuart Rechner Non-Executive Director

Chris Drew Chief Financial Officer

Contact Details

205/283 Alfred Street North, North Sydney, NSW 2060 +61 2 8021 7492

info@kingstonresources.com.au www.kingstonresources.com.au

Drilling confirms high grade gold zones at Livingstone

Highlights

- Final assays from drill program confirm broad gold zones at Livingstone. Intersections include:
 - o 5m @ 6.56g/t Au from 49m in KLAC008
 - 3m @ 5.82g/t Au from 8m in KLAC006
 - $\circ~$ 5m @ 2.73g/t au from 13m in KLAC030
- Two mineralised structures identified at Kingsley 2km long and open along strike
- New RC and air-core drill program to commence in September across broader project area

Kingston Resources Limited (Kingston or the Company) is pleased to report final assay results from the recently completed air-core drilling at the 75% owned Livingstone Gold Project in Western Australia.

The Kingsley Prospect is 2 km long and currently has 900m of defined mineralisation (Figure 1), the prospect is open along strike to the west. Intersections such as **5m @ 6.56g/t Au including 1m at 21.8 g/t Au** (KLAC008) and **3m @ 5.82g/t Au** (KLAC006) highlight the potential of this structure, with the current broad-spaced drilling suggesting it sits parallel to and south of the western-most line of old workings previously known as Mt Seabrook 1 & 2. The significance of parallel lodes is that they have not been previously identified or developed by the old workings nearby.

Hole KLAC030 (**5m @ 2.73g/t Au**, **including 2m @ 5.27g/t Au**) drilled mid-way between the two groups of old workings suggests there may be potential for additional mineralisation linking the groups of shafts together. The two zones of mineralisation now span over 2km of known strike and are open to the east and west. The interpreted trends of mineralisation at Kingsley are shown in Figure 2 below.

The final assay results also confirm mineralisation on several holes at the Dampier, Drake and Stanley prospects. Initial results at these prospects are encouraging and the Company will continue work to determine the size and scale of each prospect.

Kingston Resources Limited Managing Director, Andrew Corbett said:

"The assay results from the drill program at Livingstone are encouraging as the project continues to provide the Company with highly prospective areas of mineralisation.

Assays from the Livingstone's Find area continue to show significant grade, thickness and continuity. Gold mineralisation occurs at multiple prospects within the area. Further drilling will commence in September.

KSN KINGSTON RESOURCES LIMITED

ASX Announcement – 21 August 2018

Livingstone is proving to be a valuable asset with real upside potential. The Board and management also look forward to updating shareholders on results from drilling at our flagship Misima Gold Project and the commencement of additional drilling at Livingstone in the coming weeks."

Figure 1: Map of the broader Livingstone's Find area showing maximum assay (g/t Au) in each hole.

Competent Persons Statement

The information in this report that relates to Exploration Results, Mineral Resources or Reserves is based on information compiled by Mr Andrew Paterson, who is a member of the Australian Institute of Geoscientists. Mr Paterson is a full-time employee of the Company and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Paterson consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

Figure 2: Kingsley Prospect map showing interpreted mineralised trends. The groups of old workings shown are Mt Seabrook 1 and 2.

Figure 3: The Livingstone Gold Project is located on the western limb of the Bryah Basin, northwest of Meekatharra in Western Australia.

Figure 4: Livingstone prospects occur along a prospective strike length of over 30km.

Hole ID	Easting (MGA94)	Northing (MGA94	Prospect	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval (m)	Au (g/t)
KLAC001	566242	7171168	Kingsley	-60	180	0	4	4	0.64
					and	26	30	4	1.50
					including	26	27	1	4.21
					and	70	71	1	5.25
KLAC002	566242	7171199	Kingsley	-60	180	1	2	1	9.20
					and	26	28	2	1.73
					and	32	33	1	1.70
KLAC005	566403	7171152	Kingsley	-60	180	4	5	1	0.61
and						8	11	3	5.82
					including	8	9	1	2.69
					including	9	10	1	12.18
					including	10	11	1	2.58
KLAC006	566405	7171098	Kingsley	-60	180	35	36	1	0.52
KLAC007	566398	7171174	Kingsley	-60	180	17	18	1	0.79
					and	20	21	1	1.41
KLAC008	566702	7170980	Kingsley	-60	180	5	8	3	0.79
					and	15	19	4	1.77
					and	22	23	1	1.73
					and	26	27	1	0.93

Table 1: Significant	intersections	>0.5a/t A	u includina	a maximum	of 1m internal	dilution.
rabio il orginitoant		P OIO g/ C /	a moraamy	amaximum	•••••••••••••••••••••••••••••••••••••••	anation

KSN KINGSTON RESOURCES LIMITED

ASX Announcement – 21 August 2018

Hole ID	Easting (MGA94)	Northing (MGA94	Prospect	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval (m)	Au (g/t)
					and	32	33	1	1.36
	38	39	1	0.58					
					and	43	44	1	4.35
					and	49	54	5	6.56
					including	49	50	1	21.82
					including	51	52	1	4.18
					including	53	54	1	4.92
KLAC009	566701	7171012	Kingsley	-60	180	17	20	3	0.65
KLAC013	567197	7170891	Kingsley	-60	180	24	25	1	2.36
KLAC014	567186	7170979	Kingsley	-60	180	4	7	3	1.21
KLAC020	567019	7170767	Kingsley	-60	180	17	18	1	1.30
KLAC022	567022	7170968	Kingsley	-60	180	25	26	1	0.84
					and	58	59	1	0.52
KLAC023	566875	7170911	Kingsley	-60	180	71	72	1	1.04
KLAC029	567505	7170768	Kingsley	-60	180	24	25	1	0.75
KLAC030	567484	7170839	Kingsley	-60	180	13	18	5	2.73
					including	15	16	1	5.20
					including	16	17	1	5.34
and						21	22	1	0.58
-	r	r.			and	37	39	2	2.05
KLAC033	567660	7170814	Kingsley	-60	180	2	3	1	0.61
-		1			and	24	25	1	2.60
KLAC047	568454	7170895	Kingsley	-60	180	3	4	1	0.77
KLAC051	567822	7170533	Kingsley	-60	180	15	16	1	0.70
					and	18	19	1	1.24
					and	31	32	1	0.58
	[and	35	36	1	0.97
KLAC053	567980	7170438	Kingsley	-60	180	29	30	1	0.62
KLAC066	567021	7170720	Kingsley	-60	180	25	26	1	0.76
KLAC069	567497	7170811	Kingsley	-60	180	16	17	1	0.80
-					and	31	33	2	1.26
					and	35	36	1	0.61
KLAC070	567668	7170579	Kingsley	-60	180	5	6	1	0.93
KLAC071	567657	7170779	Kingsley	-60	180	5	6	1	1.02
KLAC078	568292	7170372	Kingsley	-60	180	14	15	1	1.00
					and	18	20	2	0.76
KLAC079	568297	/1/040/	Kingsley	-60	180	1/	18	1	0.59
KLAC092	566067	/1/2//3	Drake	-60	180	47	50	3	0.88
KLAC094	566055	/1/2851	Drake	-60	180	23	24	1	3.68
1/1 0 0005	566944	7470746		60	and	55	56	1	0.54
KLAC095	566214	/1/2/46	ргаке	-60	180	52	56	4	1.33
KI A COOC	FCF004	7172025	Durch	60	including	54	55	1	3.53
KLAC098	565901	/1/2825	Drake	-60	180	5	6	1	0.53
KLAC102	569684	/1/2631	Stanley	-60	. 081	22	23	1	2.78
KLACIOF	FC0422	7172050	Charalass	60	and	35	36	1	2.26
KLAC105	209122	/1/2950	stanley	-DU	. 081	12	13	1	0.50
					and .	24	20	2	0.98
					and	36	3/	1	1.52

Hole ID	Easting (MGA94)	Northing (MGA94	Prospect	Dip	Azimuth	Depth From (m)	Depth To (m)	Interval (m)	Au (g/t)
KLAC117	568314	7173198	Stanley	-60	180	32	33	1	0.98
KLAC122	566932	7173355	Stanley	-60	180	4	5	1	0.54
KLAC123	566933	7173376	Stanley	-60	180	38	41	3	1.06
KLAC131	565959	7172254	Drake	-60	180	19	20	1	2.44
KLAC133	565867	7172261	Drake	-60	180	3	4	1	0.54
KLAC143	567389	7172376	Dampier	-60	180	4	5	1	0.63
KLAC144	567522	7172200	Dampier	-60	180	13	14	1	0.57
					and	20	21	1	0.50
					and	26	27	1	0.68
KLAC145	567538	7172240	Dampier	-60	180	0	1	1	0.52
KLAC146	567541	7172266	Dampier	-60	180	27	29	2	1.18
KLAC147	567713	7172164	Dampier	-60	180	20	21	1	0.58
KLAC148	567702	7172205	Dampier	-60	180	15	17	2	1.26
					and	41	43	2	0.99
KLAC149	567704	7172250	Dampier	-60	180	7	8	1	1.06
					and	10	13	3	0.93
KLAC150	567699	7172279	Dampier	-60	180	9	10	1	1.07
					and	31	32	1	0.62
KLAC151	567855	7172240	Dampier	-60	180	6	8	2	0.54
					and	12	13	1	1.56
KLAC152	567869	7172268	Dampier	-60	180	7	8	1	0.51
					and	10	11	1	0.66

About Kingston Resources

Kingston Resources is a metals exploration company. Currently the Company's priority is the world-class Misima Gold Project in PNG, which contains a JORC resource of 2.8Moz Au, a production history of over 3.7Moz and outstanding potential for additional resource growth through exploration success. Kingston currently owns 49% of the Misima Gold Project and is earning in to 70%.

In addition, Kingston owns 75% of the Livingstone Gold Project which holds a 50koz resource and is the site of a number of high grade historic intersections.

KSN project locations.

JORC Code, 2012 Edition – Table 1 report

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
		-
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 NQ diameter aircore drilling used to collect a ~25 kg sample per metre. Drill cutting (chips) samples placed in 1m piles on the ground in order of downhole progress. Industry-standard technique.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	• Aircore drilling was used with blade drill bit used for the majority of drilling. Where hard rock layers prevented penetration a reverse circulation hammer was used to penetrate layer, then return to blade, until blade refusal at base of weathering.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample quality (including wet vs. dry and qualitative recovery) is logged at the drill site. Duplicate samples are collected at the drill site (see below) to enable analysis of data precision. Aircore system maximises sample recovery as opposed to open hole/RAB technique.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or 	All samples were geologically logged. Logging is qualitative in nature

Criteria	JORC Code explanation	Commentary
	 quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Anomalous 4m composite samples with assays greater than 0.1ppm Au were reassayed in individual 1m samples (See ASX Announcement 03/07/2018 Drilling confirms broad gold zone at Livingstone) A ~500g spear sample was taken from every 1m downhole and composited into a maximum 4m sample (total ~2.5kg) and placed into uniquely numbered bags. Duplicate samples (field duplicates) collected at drill site 1 in every 40 samples.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Samples were analysed at Intertek Genalysis in Perth. Samples were dried at approximately 120°C with the sample then being presented to a robotic circuit. In the robotic circuit, a modified and automated Boyd crusher crushes the samples to –2mm. The resulting material is then passed to a series of modified LM5 pulverisers and ground to a nominal 85% passing of 75µm. The milled pulps were weighed out (25g) and analysed by Aqua Regia (method AR25/MS). Samples KRC005218, KRC001294 KRC005500, reported above sample detection limits and were re-assayed using Fire Assay (method FA25/OE). E.O.H samples were submitted for 33 multi element suit (method AR25/MS33) Kingston submitted standards and blanks along with field duplicates. These were inserted at a ratio of approximately 1-in-40 samples into the sampling sequence as part of the QAQC process.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 An independent geologist was engaged to verify results. Kingston's project geologists are supervised by Kingston's Chief Geological Officer. Field data is entered into spreadsheets and copies sent to head office each day

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Kingston drill hole location coordinate information was collected by Kingston personal. Using handheld Garmin 64S GPS utilising GDA 94 Zone 50. Positions are accurate to +/- 3m horizontal and +/- 10m vertical. Coordinates are referenced to the Map Grid of Australia (MGA) zone 50 on the Geographic Datum of Australia (GDA94)
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Significant intervals are reported as indicated in the relevant figure(s) and table(s) in the body of the announcement, note downhole intervals quoted. Regional-scale aircore drilling program designed to inform geological interpretation and identify geochemical anomalies. Drill hole and sample spacing is appropriate for the purpose and context in which the exploration results are reported. Additional data from any future closer-spaced (infill) drilling may change the shape and tenor of stated anomalies and geological interpretation.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralisation is interpreted to be on west- northwest-trending structures dipping to the north, and as such, the primary drill direction of 180° is appropriate to achieve practical intersection angles.
Sample security	The measures taken to ensure sample security.	 Chain of custody was managed by Kingston. No issues were reported.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	No audits have been undertaken.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to 	 Kingston Resources Limited owns 75% of the Livingstone Gold Project in JV with Trillbar Resources Pty Ltd. Livingstone, (E52/3403) located northwest of Meekatharra in Western Australia, is an advanced exploration project with an existing JORC2004 Inferred Au resource of 49,900 ounces and a number of high-grade drilling intersections that indicate excellent potential for additional discoveries.

Criteria	JORC Code explanation	Commentary
	operate in the area.	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	• The project has been subject to exploration by several companies over the past 30 years. This work has been built upon by successive explorers, culminating most recently in the work done by Talisman Mining Ltd pursuant to the resource estimation at the Boundary prospect.
Geology	 Deposit type, geological setting and style of mineralisation. 	The target area sits within a west-northwest trending, western arm of the Palaeoproterozoic Padbury and Bryah Basins, enclosed to the north, west and south by Archaean rocks of the Yilgarn Craton. The sedimentary, volcanic and intrusive basin rocks lie in faulted contact with the Yarlarweelor Domain of the Yilgarn Craton to the north, and the Narryer Terrane to the south. Gold deposits within the basins are typically structurally-controlled orogenic lodes, with the major deposits associated with units of the Narracoota Formation and its contacts with the adjacent formations of the Bryah Group (Harmony mine) and Padbury Group (Labouchere, Horseshoe and Fortnum mines). Structurally, there is a spatial correlation between known gold mineralisation and a series of west to north-northwest trending strike-parallel faults of the Livingstone shear zone.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 See Tables 1 and 2 within this report body for the details of the hole locations.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used 	 Majority of samples are 4m composites. EOH samples are 1m. There is no weighting applied. Intervals are reported as a simple arithmetic mean grade.

Criteria	JORC Code explanation	Commentary
	 for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Only down hole lengths are reported. All drill holes are angled to MGA grid south which is approximately perpendicular to the orientation of the mineralised trend.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Included in the body of announcement.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Appropriate plans are included in this release
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All exploration results are reported
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further AC and RC drilling is planned to follow up on current results.