

ASX Announcement

14 August 2018

ASX Code: KSN Share Price: A\$0.024 Shares Outstanding: 1,223,198,383 Market Capitalisation: A\$29.2m Cash: A\$4.4m (30 June 2018)

Board and Management

Anthony Wehby Chairman

Andrew Corbett Managing Director

Mick Wilkes Non-Executive Director

Andrew Paterson Technical Director

Stuart Rechner Non-Executive Director

Chris Drew Chief Financial Officer

Contact Details

205/283 Alfred Street North, North Sydney, NSW 2060 +61 2 8021 7492

info@kingstonresources.com.au www.kingstonresources.com.au

Positive Sampling Results at Ginamwamwa Prospect

Highlights

- New sampling highlights Ginamwamwa potential at Misima Gold Project
- Surface mineralisation identified over a strike of 500m with results including:
 - 25m @ 1.67g/t in channel sampling including samples up to 16.9g/t
 - Southern zone of high grades averaging 4.91g/t Au
- Sampling and structural mapping ongoing
- Auger sampling now completed at Misima North initial target areas T2 & T3
- More assay results from Misima drill program expected in coming weeks

Kingston Resources Limited (Kingston or the Company) is pleased to report encouraging exploration results from the Ginamwamwa Prospect (Ginamwamwa), located south of the Umuna Pit at the Company's flagship Misima Gold Project.

Ginamwamwa was identified during fieldwork in early 2018¹ with reported samples returning gold grades as high as 39g/t¹ and is developing into a significant discovery with surface mineralisation identified over +500m strike length.

Recent mapping and channel sampling has extended the prospect 200m to 300m northeast along the previously identified structural corridor. An intensively sampled area of closely spaced artisanal workings on the southern side of Ginamwamwa has averaged 4.91g/t Au, within an area of ~40m in diameter. (Figure 1 overleaf).

Approximately 200m northeast, a channel dug perpendicular to the interpreted strike of mineralisation has intersected a 25m mineralised zone averaging 1.67g/t Au including samples up to 16.9g/t.

Channel sampling and structural mapping over Ginamwamwa continues with a view to generating future drilling targets. The Company is currently excavating costeans with an excavator to accelerate the progress.

Further, Kingston advises that two structural targets over the Umuna Shear at Misima North have now been tested for geochemical anomalism by initial gridded auger sampling programs. Targets T2 and T3 were highlighted in early 2018 during the regional review conducted by Dr Greg Cameron. Both areas contain interpreted local flexures in the strike of the Umuna Shear characteristic with dilation – a classic structural setting for gold mineralisation in this environment. Assay results from this work are expected this quarter.

Kingston Resources Limited Managing Director, Andrew Corbett said:

"Recently completed work at Ginamwamwa is uncovering a highly prospective new area of mineralisation just south of the Umuna Pit. Our very capable in-country team has been

¹ ASX:KSN announcement 27 March 2018

ASX Announcement – 14 August 2018

working closely with artisanal miners and are beginning to develop a broader understanding of the area."

"The initial high-grade results that we have received over a +500m strike length are most encouraging. Channel sampling and structural mapping activities continue at the prospect which will pinpoint future drilling targets. It is also important to note that this area is a new discovery so none of the mineralisation is included in our current 2.8Moz resource."

"Our exploration activities are progressing well across the Misima Project, which include more mapping, channel sampling, auger sampling and drilling. Next assay results from recent drilling will be finalised towards the end of the month after which time we will be able to provide shareholders with a steadier stream of results. Misima is shaping up as a great asset with significant upside."

Figure 1: New assay results in the southern and eastern areas of Ginamwamwa.

Assay samples from drill program pending:

Samples from the initial two drill holes are now undergoing final analysis in Townsville and are expected to be finalised very soon. These initial samples had been held up with the service provider in Townsville while clearing a backlog of work. Going forward, the provider has assured Kingston that turnaround times are expected to be reduced. More samples are currently in transit to Lae for sample preparation, following which they will be shipped to Townsville for final analysis. These results are expected in the coming weeks.

ASX Announcement – 14 August 2018

Competent Persons Statement

The information in this report that relates to Exploration Results, Mineral Resources or Reserves is based on information compiled by Mr Andrew Paterson, who is a member of the Australian Institute of Geoscientists. Mr Paterson is a full-time employee of the Company and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves" (JORC Code). Mr Paterson consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

ASX Announcement – 14 August 2018

About Kingston Resources

Kingston Resources is a metals exploration company. Currently the Company's priority is the world-class Misima Gold Project in PNG, which contains a JORC resource of 2.8Moz Au, a production history of over 3.7Moz and outstanding potential for additional resource growth through exploration success. Kingston currently owns 49% of the Misima Gold Project and is earning in to 70%.

In addition, Kingston owns 75% of the Livingstone Gold Project which holds a 50koz resource and is the site of a number of high grade historic intersections.

KSN project locations.

ASX Announcement – 14 August 2018

Table 1: Sample details for surface channel samples assaying >0.5g/t Au. Coordinates are in GDA94 Zone 56 projection. All assay values are shown in parts per million.

Sample No	Easting	Northing	RL	Width	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm
792531	479880	8820440	171	2	2.35	3.7	115	110	304
792582	479962	8821409	199	2	1.18	<0.1	130	189	291
792585	479968	8821407	200	2	2.56	<0.1	524	89	708
792587	479972	8821406	201	2	0.68	<0.1	682	96	567
792590	479983	8821407	204	2	0.67	<0.1	161	254	254
792592	479987	8821407	206	2	0.68	<0.1	322	761	695
792593	479989	8821407	206	2	1.45	<0.1	375	2723	768
792594	479991	8821407	207	2	0.88	0.5	322	2445	678
792604	480012	8821405	213	2	1.05	0.7	473	1800	190
792605	480014	8821405	214	2	1.38	4.4	380	2133	223
792619	478024	8819035	NR	2	0.50	<0.1	108	558	226
792622	478026	8819037	NR	2	0.59	<0.1	85	536	233
792624	478027	8819039	NR	2	0.87	6.5	489	1967	192
792625	478028	8819041	NR	2	0.93	3.4	537	2627	392
792626	478026	8819041	NR	2	1.44	6.1	233	1869	241
792627	478025	8819041	NR	2	4.65	3.5	240	602	124
792628	478027	8819042	NR	2	0.98	4.8	524	1764	316
792629	478030	8819042	NR	2	1.60	1.7	181	462	218
792630	478029	8819042	NR	2	0.86	1.1	94	744	131
792640	478031	8818619	NR	2	2.67	21.8	288	7565	150
792641	478032	8818619	NR	2	2.39	16.9	384	8444	170
792642	478034	8818619	NR	2	3.41	47.4	292	8976	392
792643	478037	8818619	NR	2	0.56	5.4	119	898	340
792644	478039	8818619	NR	2	13.20	173	851	5068	398
792645	478042	8818620	NR	2	3.95	30	846	993	240
792647	478048	8818621	46	2	0.67	3.3	123	168	602
792649	478029	8818596	46	2	0.76	2.7	66	198	405
792651	478031	8818596	46	2	1.09	66.4	154	2224	312
792652	478032	8818597	46	2	3.64	6.1	154	1430	251
792654	478037	8818600	46	2	7.11	5.8	207	1243	349
792659	478071	8818618	44	2	0.57	4.7	142	2133	488
792660	478036	8818609	58	2	14.80	58.8	813	4946	644
792662	478036	8818607	59	2	16.80	40.6	219	4285	380
792663	478038	8818606	59	2	0.70	4.8	154	823	320
792666	478042	8818610	59	2	8.77	55.8	631	2266	275
792667	478043	8818607	59	2	3.17	10.9	379	2143	277
792668	478082	8818954	NR	2	4.64	18	1017	1737	592
792669	478092	8818956	NR	2	7.09	18.7	779	3985	346
792690	480068	8821392	204	2	0.67	1.9	37	267	134
792702	480086	8821387	200	2	0.53	2.3	295	681	212
792784	478070	8818940	113	2	0.88	2.3	251	3796	1531
792785	478072	8818940	114	2	0.74	2.8	116	915	2941
792789	478058	8818934	106	2	1.30	2.5	228	778	546
792795	478054	8818924	100	2	1.12	1.3	97	218	1426
792802	478053	8818916	99	1.1	0.79	2.5	197	455	387
792808	478045	8818911	93	2	0.92	3.2	504	884	1207
792819	478051	8818954	76	2	0.95	2	247	425	445
792820	478052	8818952	76	2	0.78	2.2	165	150	267
792826	478054	8818946	79	2	0.93	2.7	390	88	134

ASX Announcement – 14 August 2018

Comula Na	Fasting.	N authina	ы	14/:	A	Δ <i>σ</i> . 10 10 10 0	C.,	Dia variana	7
	Easting	Northing	KL 70	width	Au ppm	Ag ppm	Cu ppm	Po ppm	Zn ppm
792827	478053	8818948	/8	2	2.00	1.8	419	101	197
792845	478035	8818861	102	2	0.92	1.6	192	591	863
792846	478035	8818859	102	2	1./4	4.4	190	304	347
792851	478035	8818855	105	2	1.02	1.5	47	167	470
792858	478047	8818849	115	2	6.16	10.9	234	741	543
792863	478034	8818851	115	2	3.26	5.4	597	2070	1070
792868	478032	8818841	109	2	2.54	3.4	445	1421	1918
792869	478029	8818841	109	2	6.24	4.7	514	832	891
792874	478024	8818836	107	2	0.59	22.3	1472	1384	1040
792895	478014	8818810	101	2	0.62	9.5	918	590	417
792901	479822	8821309	165	2	0.50	0.6	119	237	234
792947	479921	8821605	222	2	1.30	0.6	285	124	1064
793001	478014	8818801	102	2	4.94	30.9	609	3455	587
793002	478014	8818800	101	2	1.57	19.8	521	5003	480
793005	478011	8818794	100	2	0.66	2.1	52	251	593
793006	478011	8818792	99	2	2.30	36.4	1019	15955	2279
793017	478004	8818772	95	2	1.20	4.8	131	240	823
793018	478004	8818770	95	2	1.24	2.6	143	142	375
793062	478026	8818634	65	2	5.76	6.3	175	2382	289
793063	478025	8818632	65	2	14.10	16.9	959	2984	2563
793064	478024	8818631	66	2	1.27	7.6	230	2185	431
793065	478037	8818604	54	2	1.99	2.5	72	1460	232
793067	478040	8818602	53	2	3.55	8.3	160	1376	218
793072	478047	8818601	52	2	6.85	5.9	228	1617	346
793073	478048	8818601	51	2	0.95	1.4	67	109	248
793076	478038	8818622	54	2	1.38	2.3	130	442	436
793084	478005	8818623	63	2	0.59	3.7	69	250	284
793085	478003	8818623	64	2	2.93	2.6	108	766	383
793086	478001	8818624	64	2	0.58	5.2	76	165	219
793087	477999	8818625	65	2	2.17	8.9	210	77	494
793089	477994	8818627	65	2	1.36	2	68	34	263
793099	478256	8818716	79	2	1.03	7.1	162	2779	82
793101	478254	8818714	77	2	1.59	3.7	221	3011	106
793102	478252	8818713	75	2	0.74	3.9	333	4145	234
793103	478250	8818712	73	2	0.51	4.6	318	2825	179
793104	478248	8818711	71	2	3.17	4.3	209	1687	126
793105	478246	8818711	69	2	1.15	4.3	257	2940	130
793106	478243	8818710	68	2	0.89	3.1	109	755	49
793107	478241	8818709	66	2	3.13	2.9	89	2512	85
793108	478239	8818708	64	2	9.21	18.5	238	5030	356
793109	478215	8818740	71	2	0.58	4.5	732	1786	664
793110	478216	8818741	71	2	10.10	17.2	764	2606	724
793111	478217	8818742	71	2	1.09	33.8	1151	3902	447
793112	478216	8818740	72	2	0.88	70.9	1212	11457	1225
793113	478215	8818738	73	2	1 78	29.6	1024	5547	289
793114	478213	8818736	74	2	3 19	9.8	1113	7316	397
793127	479951	8821610	235	2	0.59	4	10	223	417
793137	479971	8821610	200	2	0.86	1 7	17	261	177
793144	478018	8818601	56	2	6 30	9.2	44	76	51
793145	478016	8818600	56	2	0.30	1.6	3/	20	110
793158	47799/	8818601	57	2	0.72	2.0	6	21	110
, , , , , , , , , , , , , , , , , , , ,	-,,,,,, ,	0010001	57	2	0.70	5.2	5	31	110

ASX Announcement – 14 August 2018

Sample No	Easting	Northing	RL	Width	Au ppm	Ag ppm	Cu ppm	Pb ppm	Zn ppm
793208	478188	8818790	NR	2	2.03	2.9	316	2776	251
793209	478189	8818788	NR	2	16.90	12.3	478	5149	299
793210	478189	8818787	NR	2	0.68	1.4	286	3110	147
793215	478190	8818780	NR	2	0.95	6.3	572	1890	280
793216	478190	8818778	NR	2	0.80	9.8	643	2445	318
793217	478190	8818777	NR	2	2.84	120	1309	8479	414
793218	478190	8818775	NR	2	1.35	10.1	276	2837	138
793221	478190	8818772	NR	2	0.71	2.8	260	4535	647
793226	478190	8818766	NR	2	3.74	5.8	780	1447	5712
793227	478190	8818764	NR	2	0.60	<0.1	149	695	226
793228	478205	8818737	NR	2	0.54	1.7	277	647	166
793232	478194	8818759	NR	2	0.59	<0.1	119	296	169
793239	478202	8818745	NR	2	1.52	<0.1	184	944	446
793242	478203	8818741	NR	2	0.58	0.6	86	232	471
793272	479150	8820494	NR	2	2.73	15.6	195	575	707
793273	479161	8820490	NR	2	0.64	9.1	65	116	524
793279	479147	8820495	NR	2	11.80	39.1	183	1302	620
793281	479143	8820496	NR	2	4.23	13	112	561	813
793282	479141	8820497	NR	2	1.98	14.2	100	411	792

JORC Code, 2012 Edition – Table 1 Umuna Gold Deposit, Misima Island

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	The samples were channel samples, sampled by hand using geo-picks along 2m intervals after soil, vegetation and debris had been cleared away with shovels. Samples were air-dried before being sent to Intertek, where gold fire assays were performed using a 50g charge. The sample pulps were assayed for a 34-element suite using a 4-acid digest followed by OES and MS analysis.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Not applicable
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain	Not applicable

Criteria	JORC Code explanation	Commentary
	of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged.	Samples were logged for lithology as far as possible given the weathered conditions of most samples. Measurements were also recorded for any structures present within each sampled interval.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Not applicable
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Standard reference materials were inserted at a frequency of one per 20 samples Field duplicates were inserted at a frequency of one per 20 samples No blank materials were used.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	No independent data verification procedures were undertaken other than the QA/QC mentioned above.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Sample locations were recorded using a hand-held Garmin GPS, recording X,Y,Z positions in GDA94 datum (Zone 56).
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	Each channel sample represents an interval of approximately 2m. Some variances occur due to gradients (apparent horizontal sample width less than down-slope measured width). No compositing has been applied.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	This set of channel sampling was conducted within artisanal workings rather than on a pre-planned trench alignment. As such, there is no set orientation with respect to local geology or structure. Some samples are taken along the strike of mineralisation. Contiguous samples are not intended to reflect true widths of mineralisation. There is insufficient data to estimate the true or apparent widths of mineralised structures. The significance of these samples is in their assay values that demonstrate high-grade gold mineralisation in the area, and they have no implication on potential size or tonnages of material present.
Sample security	The measures taken to ensure sample security.	Samples were submitted to Air PNG by Gallipoli Exploration (PNG) personnel for freight from Misima to Lae, and collected from Lae airport by Intertek staff. There were no other specific sample security protocols in place.

Criteria	JORC Code explanation	Commentary
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Not applicable

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Misima Island is part of the Louisiade Archipelago within Milne Bay Province of PNG. It is situated in the Solomon Sea about 625 km east of Port Moresby, the capital of PNG. The site is located at an approximate latitude of 10° 40' South and longitude of 152° 47' E.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	. The Property consists of a single Exploration Licence, (EL) 1747, comprising 53 sub blocks, covering a total area of 180 km ² . This EL is valid and is currently in the renewal process to extend the licence to 20 March 2019. All conditions pertaining to compliance of the title have been met. The Property is located on the eastern portion of the island and includes the historic mining areas of Umuna and Quartz Mountain. There are no known impediments. KSN holds title via a farm in agreement between WCB Resources Ltd and WCB Pacific Pty Ltd, Pan Pacific Copper Ltd and Gallipoli Exploration Ltd. Gallipoli is the legal entity and tenement holder and is responsible for performing its obligations under the <i>Mining Act</i> 1992.
Exploration done by other	Acknowledgment and appraisal of exploration by other parties.	The project area has been subject to mineral exploration by a number of previous parties, most notably Placer Pacific between 1987 to 2004.
parties		For a detailed summary of previous explorers' work readers are recommended to read the JORC Table 1 released with the November 2017 Misima resource update (ASX:KSN announcement 27 November
		2017).

Criteria	JORC Code explanation	Commentary
Criteria Geology	JORC Code explanation Deposit type, geological setting and style of mineralisation.	Commentary Misima Island forms part of the Louisiade Archipelago which is a continuation of the Papuan Fold Belt of the Papuan Peninsula offshore eastwards through the Papuan Plateau. The oldest rocks on Misima are Cretaceous to Paleogene metamorphic rocks, which can be subdivided into the western Awaibi Association and the younger overthrust eastern Sisa Association that is host to the gold and copper mineralization. The two associations are separated by an original thrust fault with later extensional activation. Mineralisation deposit style on Misima Island is best described as Intermediate Sulphidation Epithermal due to the strong association with porphyry Cu Au style alteration, veining and characteristics, the dominance of Ag Zn Pb Au Cu Mn geochemistry as well as complex alteration styles and geometry. Styles of mineralisation observed include multiphase hydrothermal breccia, stockworks both sheeted and three-dimensional, skarn, jasperoidal replacement, and poorly banded vein infill of quartz and carbonate with associated pyrite, galena, sphalerite, barite and minor tetrahedrite. This mineralisation can be classified as Intermediate Sulphidation Epithermal Style and appears to be laterally zoned from a well-developed complex base metal skarn style affiliation outwards to a base metal fracture stockwork vein breccia style of mineralisation. Surrounding the Umuna lode, and most widely developed on the eastern (footwall) side, is a broad peripheral zone of lower grade mineralisation in quartz veins, often occupying shears, and of linear and irregularly shaped volumes of strongly jointed to brecciated rocks. The schists tend to carry shear or breccia mineralisation with a higher frequency of strong jointing and brecciation in the more compact intrusives and Ara Greenschist. Intrusive contacts are commonly brecciated and mineralised which, with their frequent shallow dips, has
		the effect of spreading mineralisation laterally in contrast to the steep attitude of Umuna lode mineralisation.
		Structurally the Umuna geometry is typical of a complex fault array with
		a large major fault hosting the majority of the precious metal
		mineralisation with numerous ancillary splays developed in the footwall

Criteria	JORC Code explanation	Commentary
Drill hole Information	A summary of all information material to the understanding of the	to the main structure. The intersection of the splays and the dominant Umuna Fault are loci for zones of well-developed mineralisation. Mineralisation has a dominant structural control however strong secondary stratigraphic controls are also observed in particular where skarn style mineralisation is developed in Halibu Limestone – Ara Schist contacts. A series of north west trending splays intersect and control the loci of the higher-grade material within the Umuna fault zone. Drill results not being reported
	 for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No data aggregation used
Relationship between mineralisation widths and	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there	There is insufficient data to estimate true widths of mineralisation in this area.

Criteria	JORC Code explanation	Commentary
intercept lengths	should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See figures in release
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are shown from this batch of channel samples
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Mapping and structural data is not available at this stage
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Further work may involve structural mapping and interpretation, channel sampling orthogonal to mineralised structures, and possibly drilling.