

ASX RELEASE

29 October 2015

QUARTERLY ACTIVITIES REPORT END 30 SEPTEMBER 2015

QUARTERLY PRODUCTION				
HIGHLIGHT	S			
Copper Produced				
30 Sept 2015	143 t			
30 June 2015	386 t			
31 Mar 2015	365 t			
31 Dec 2014	407 t			
Gold Produced				
30 Sept 2015	1,713 oz			
30 June 2015	1,279 oz			
31 Mar 2015	884 oz			
31 Dec 2014	1,053 oz			
Silver Produced				
30 Sept 2015	32,208 oz			
30 June 2015	29,352 oz			
31 Mar 2015	17,289 oz			
31 Dec 2014	17,970 oz			
Lead Produced				
30 Sept 2015	709 t			
30 June 2015	778 t			
31 Mar 2015	436 t			
31 Dec 2014	372 t			
Zinc Produced				
30 Sept 2015	531 t			
30 June 2015	586 t			
31 Mar 2015	289 t			
31 Dec 2014	66 t			

LISTED SECURITIES

As at 30 September 2015 Ordinary Shares 620,930,783 Convertible Notes 28,954,51

KE	Y	P	0	IN	TS

Mineral Hill - Transformed to Gold and Silver Producer

- First gold concentrate was produced during September for sale in October
- Currently the open pit ore is being processed through the flotation circuits with latest results achieving 60 to 70% recovery of gold in line with testwork and with commencement of the CIL plant a further 15% recovery of gold and silver into dore is expected
- A total of 561,738 BCM has been excavated from the Pearse open pit to the end of September
- Pearse open pit produced and delivered some 20,000 tonnes of ore to the plant. On average, pit gold grades have been at 6.1 g/t with a range of 4 g/t to 14 g/t
- Construction of the leaching section of the CIL gold plant was completed in October, with first ore processing scheduled in November 2015
- During the quarter, the flotation plant capacity was doubled, a new thickener added and a cleaner circuit installed to improve metal recovery. This created three defined circuits for gold/silver or copper/gold, lead and zinc

Securing the Future

- Within the Southern Ore Zone (SOZ) underground drives have progressed for over 200 metres of strike length in the G Lode, preparing for an upper stoping level between 1025 and 1060 RL. The SOZ decline is now at the deepest point accessed in the field at over 350 metres below surface
- Underground grade control drilling to support mine planning in the G Lode (1060 to 1000 levels) is planned to start in January 2016
- Extensive work was carried out at Jacks Hut, where a copper gold resource has the potential to be the next mining option for Mineral Hill. A total of 11 new holes were drilled, old holes re-assayed and mine modelling commenced
- Applications were made to the Department of Industry, Resources & Energy to allow for infill and extension drilling of the Pearse North deposit which currently has an estimated inferred resource of 203kt @ 2.1 g/t gold and 21.1 g/t silver¹

Sorby Hills Project

KBL's immediate priority has been establishing gold production at Mineral Hill, which will be complete by year end. We can then turn our attention to expanding the company through completion of the Sorby Hills feasibility study. Discussions are underway with potential financiers and equipment suppliers to optimise the project value.

¹ As released 25 July 2013 in ASX Announcement 'Pearse and Pearse North Update'

MANAGING DIRECTOR'S OVERVIEW

In August 2014 we laid out a plan to our shareholders in which we would raise funds to repay the Capri debt and develop the Pearse high grade/low cost open cut at Mineral Hill while building a gold plant, doubling the flotation plant to three dedicated circuits for gold/silver or copper/gold, lead and zinc. The last months have been intense as we have developed, drilled and mined more than at any time in the history of KBL. The Capri/RIKID debt was paid in March and after several sessions in the Supreme Court the matters were resolved in KBL's favour. Once the funding was available the gold plant and all the above projects moved forward and I am proud to announce we have achieved all the goals with the Pearse open cut in production and the gold plant in commissioning scheduled to treat ore in November.

KBL and its shareholders and stakeholders have endured tough times with Capri/Kidman pushing the stock down from 7 cents to 1.8 cents; the variable performance of underground resources has not helped operations or the share price. Mineral Hill has significant mineral resources on surface and underground, however, the underground resources need tight space drilling for mine planning to reduce dilution and manage the grade. Over the months we ramped up the underground geological activity but it was evident that we could not mine 1,000 tonnes a day of good ore while keeping geological information at a level to have strong confidence in production grades. The next lode to be mined underground will be the G lode which has had parallel drives developed on 1060mRL level and 1025mRL level with a bottom drill access on 1000mRL. The G lode was well drilled at between 12 and 25 metre spacing's but we will ring drill it from 25 up and down for mining planning purposes and to negate the future risk in grade. The resource grade of G lode is 2.1 g/t Au and 1.3% Cu² making it a strong future mining area to be prepared.

Photograph 1. Cyanide unloading pad, and CIL gold room construction

² Average estimated grades are inclusive of measured, indicated and inferred resource categories as released 19 August 2014 in ASX Announcement 'Mineral Hill Resource Upgrade'.

Mill and Mine Performance

Mir	Neral Hill Pe	rformance				
	Quarter	Sep-15	Jun-15	Mar-15	Dec-14	Sep-14
Open Pit Ore Mined	t	24,654	0	0	0	0
Open Pit Movement	BCM	551,738	5,300	0	0	0
UG Ore Mined	t	64,801	73,892	59,460	61,569	56,550
Development Metres	m	500	566	508	470	301
Total Ore Mined	t	89,455	73,892	59,460	61,569	56,550
		00,100		00,100	02,000	00,000
Ore Processed [Au/Ag)	t	19,728				
Au Grade	g/t	6.1				
Recovery (by weight)	%	36.0				
Ag Grade	g/t	23.0				
Recovery (by weight)	%	50.0				
Ore Processed (Cu/Pb/Au)	t	23,963	42,809	42,636	53,102	55,346
Cu Grade	%	0.9	1.0	0.9	1.0	1.5
Recovery	%	69.0	87.1	87.8	78.7	85.0
Au Grade	g/t	0.5	1.3	0.7	1.0	0.7
Recovery (by weight)	%	34.0	57.2	63.1	54.8	59.0
Ag Grade	g/t	16.2	9.1	8.6	14.9	20.0
Recovery (by weight)	%	34.0	51.4	65.7	58.3	68.7
Pb Grade	%	1.0	0.5	0.6	0.8	1.1
Recovery	%	37.0	2.4	29.0	47.6	52.8
Ore Processed (Pb/Zn)	t	27,878	32,690	18,778	6,168	0
Pb Grade	۲ %	27,878	32,090	2.3	3.4	0.0
	%	83.4	78.5	2.3 82.4	3.4 83.0	0.0
Recovery Zn Grade	%	2.9	3.3	2.3	2.1	0.0
				2.3 66.6		
Recovery	%	64.5	54.3		50.0	0.0
Au Grade	g/t	0.4	0.6	0.5	0.6	0.0
Recovery (by weight)	%	48.4	41.2	55.9	55.0	0.0
Ag Grade	g/t	23.6	29.6	20.8	24.0	0.0
Recovery (by weight)	%	96.6	74.1	76.9	65.0	0.0
Au Concentrate Production	DMT	562				
Au Grade	g/t	75.9				
Ag Grade	g/t	405				
Cu Concentrate Production	DMT	580	1,483	1,336	1,478	2,559
Cu Grade	%	24.7	25.9	25.5	27.6	27.7
Au Grade	g/t	6.7	21.6	14.1	17.2	8.1
Ag Grade	g/t	227	135	136	212	201
Pb Concentrate Production	DMT	1,327	1,690	1,049	923	773
Pb Grade	%	47.0	46.0	41.5	40.3	42.1
Au Grade		47.0	46.0	41.5 7.1	40.3 7.9	42.1
Ag Grade	g/t	4.3 374	4.6 378	7.1 310	7.9 257	4.0 332
-	g/t DMT				177	552
Zn Concentrate Production		1,010	1,121	552		
Zn Grade	%	52.5	52.2	52.3	37.3	
Ag Grade	g/t	65	74	56	54	
Contained Metal	0	4.42	200	265	407	700
Cu	t	143	386	365	407	709
Pb	t	709	778	436	372	326
Zn	t	531	586	289	66	
Au	Oz	1,713	1,279	844	1,053	768
Ag	Oz	32,208	29,352	17,289	17,970	24,822

 Table 1: Mineral Hill – Detailed Mine and Mill Performance

During the quarter, KBL continued moving the focus of mining operations from maintaining an ore supply from the developed underground base metal deposits at the SOZ to the rich open cut gold/silver Pearse deposit and in turn bringing forward higher value production for the later part of 2015. During the transition, underground development continued in the SOZ decline, on the 1060 mRL and 1025 mRL levels where G and H lodes are being developed. This will provide stoping areas and exploration drilling platforms during the Pearse open pit mining phase.

For July and August, 100% of the ore production was extracted from the underground copper-gold (Cu–Au), polymetallic (Cu–Pb–Zn–Ag–Au) and lead-zinc (Pb–Zn) zones within the SOZ lodes. Geological issues resulted in the overall ore grades from underground being below expectations for both base and precious metals.

In parallel with the underground operations, open cut activities at the Pearse deposit continued at an accelerated rate. Pre-stripping of waste material continued in earnest during the quarter, along with haul road and waste dump construction. Monthly total movements of up to 205,000 BCM per month have been achieved at a low unit cost.

Ore production from Pearse was fast tracked with the open pit delivering suitable grade material to the plant stockpiles for processing to commence on the 31st August. During September, 100% of the ore production feed was from the Pearse deposit, with some 19,728 tonnes mined at average grades of 6.1 g/t gold and 23 g/t silver. To date, the ore production and grades correlate well with KBL's mine models and plans.

Photograph 2. Mining Operations in the Pearse Open cut pit

For July and August, production of separate copper, lead and zinc concentrates continued from the sequential flotation process on a campaign basis. As such, 143 tonnes of copper, 709 tonnes of lead and 531 tonnes of zinc metal were produced and sold through metal traders.

Leading up to and during September the plant was reconfigured to allow a gold concentrate to be produced. On the 31st August, the change-over was implemented and production of a high value gold and silver product commenced. During September, some 1,371 ounces of gold and 7,318 ounces of silver was produced in concentrate and stockpiled in readiness for sale in October.

During the initial ramp up period, recoveries were lower than expected as a result of optimising full scale plant operations for both oxide and sulphide ores with respect to grinding, flotation/reagents and filtration. These effects have been partially off-set by the high feed grades, particularly within the fresher sulphide ore. The Pearse flotation tailings are being stored separately in the recently completed tailings compartment within the existing Tailings Storage Facility No. 2 footprint, in readiness for re-introduction into the CIL processing stream.

Recent gold production results received in the second half of October show a step up in recoveries with the average around 60%, with peaks in line with the targeted 70%. The current mining plan has ore supply from the Pearse open pit continuing to be delivered to the ROM over the forthcoming 10 to 12 months.

Overall recoveries are set to increase once the CIL plant is commissioned, with overall recoveries of 85% for gold and 75% for silver. The CIL component of the plant is expected to have ore feed in November with the first gold/silver doré expected shortly thereafter.

During the Pearse mining phase, it is anticipated that underground operations will continue with development access to future production sources, such as the G and A lodes. Exploration drilling programmes will be fast tracked during this period.

Photograph 3. Gold Concentrate Stocks (Late October)

Mineral Hill Exploration

Overview

KBL continued to advance near-mine exploration during the quarter with assay results received for the Jacks Hut RC drill program completed in June and July 2015 targeting copper–gold mineralisation less than 100m from surface.

Significant results include:

- 4m at 1.6% Cu & 5.1g/t Au (KMHRC149)
- 7m at 2.7% Cu & 0.2g/t Au (KMHRC150)
- 7m at 1.9% Cu & 0.1g/t Au (KMHRC152)
- 6m at 2.6% Cu & 0.5g/t Au (KMHRC154)
- 5m at 1.6% Cu & 1.7g/t Au (KMHRC156)

The new results and review of historical drilling, assay and geological data have led to the estimation of a nearsurface sulphide conceptual Exploration Target comprising **500–550kt @ 1.4–1.6% Cu** (at a 1% Cu cut-off). The potential quantity and grade of the target is conceptual in nature. There has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in determination of a Mineral Resource.

Jacks Hut

Eleven reverse circulation holes were drilled in June and July 2015 for a total of 916m, focussed on defining the Jacks Hut hanging wall system and testing continuity between widely spaced historical (20-40m) drilling in the northern part of the deposit (between 1360mN and 1480mN). The drilling intersected disseminated chalcopyrite \pm pyrite grading to sulphide \pm quartz breccia veining within a broad envelope of chlorite-altered volcanics. Significant mineralised intercepts are presented in Table 2.

After the completion of drilling, KBL engaged consultants, Geos Mining, to undertake a preliminary review of the drilling and geological data and provide a revised Exploration Target estimate, focused on the near surface (to approximately 200mRL or <130m from surface) sulphide component of the considerably larger Jacks Hut system. The potential quantity and grade of this exploration target is conceptual in nature — there has been insufficient exploration to estimate a Mineral Resource and it is uncertain if further exploration will result in the estimation of a Mineral Resource.

The resulting revised Jacks Hut sulphide conceptual exploration target comprises **500–550kt @ 1.4–1.6% Cu** (at a 1% Cu cut-off). The target comprises vein-style and stockwork mineralisation on Mining Lease ML 5278, adjacent to the high grade breccia core mined by Triako Resources Ltd which yielded 11.9kt of copper and over 80,000oz of gold.

The new results augment a considerable assay database derived from approximately 18,000 metres of historical drilling (diamond, RC, and percussion) at Jacks Hut hanging wall, main lode (mined out) and footwall. The significant intercepts, location and orientation of historical drill holes deemed to be material to the definition of the exploration target have been included in Appendix 1.

On the back of the considerable historical and recent drilling, KBL intend to undertake additional geological modelling and drilling in early 2016, in particular to gain a better understanding of the controls on high-grade gold within the system. This will allow the Company to undertake a more comprehensive Mineral Resource estimate for the Cu–Au mineralisation and assess the viability of this deposit to support an open pit operation.

Table 2. Significant intercepts from recent surface RC drilling at Jacks Hut.

Hole	Interval (m)	Cu %	Pb %	Zn %	Ag g/t	Au g/t	From (m)	Zone
KMHRC149	4	1.6	0	0	5.1	5.1	42	Hanging Wall
	3	1	0	0	4.3	0.3	74	Hanging Wall
KMHRC150	5	1.4	0	0.1	3.9	0.4	63	Hanging Wall
	7	2.7	0.1	0.1	6.1	0.2	83	Hanging Wall
KMHRC151	1	1.8	0	0.1	4.4	0.2	81	Hanging Wall
KMHRC152	7	1.9	0.1	0.1	5	0.1	86	Hanging Wall
KMHRC153	5	0.9	0	0.1	3.2	0.1	27	Supergene
KMHRC154	1	1.7	0	0	3	0.1	34	Hanging Wall
	1	1.3	0	0	3	0.2	41	Hanging Wall
	1	2.6	0	0.1	6.2	0.1	46	Hanging Wall
	2	1.3	0.2	0.2	6.3	0.1	52	Hanging Wall
	6	2.6	0	0.1	7.5	0.5	62	Hanging Wall
KMHRC155	2	1.5	0	0	5.7	0.3	40	Footwall
	1	3	0	0.1	8.6	0.2	47	Footwall
	5	0.4	0.3	0.6	6.5	0.5	85	Footwall
KMHRC156	7	1.1	0.1	0.1	3.8	0.1	17	Supergene
	1	2.1	0	0	4.8	0.3	30	Main Lode
	4	0.9	0	0	3.9	0.3	38	Main Lode
	5	1.6	0.1	0.2	12.6	1.7	45	Footwall
	2	0.7	0	0.1	2.7	0.6	54	Footwall
KMHRC157	1	0.6	0.1	0.1	13.2	0.7	24	Supergene
	2	1.1	0	0	4.9	0.2	34	Main Lode
	6	1	0	0.1	6.1	0.3	48	Footwall
KMHRC158	2	4.1	0.1	0	2.7	0.2	23	Supergene
	9	0.8	0	0	2.5	0.3	30	Hanging Wall
	4	1.5	0.1	0.1	5.3	0.3	42	Hanging Wall
	5	3	0.1	0.3	10.7	0.3	56	Hanging Wall
KMHRC159	9	6.2	0	0	8.6	2.9	24	Supergene
including	4	12.3	0.1	0	17	6.1	24	Supergene
and	2	2.1	0	0	2.7	0.6	31	Supergene
	3	3	0	0	6.9	2.2	38	Hanging Wall
	9	0.7	0	0.1	2.7	0.2	45	Hanging Wall
	4	1	0	0.1	2.4	0.2	61	Hanging Wall
	2	2.8	0	0.1	5.2	0.3	71	Hanging Wall

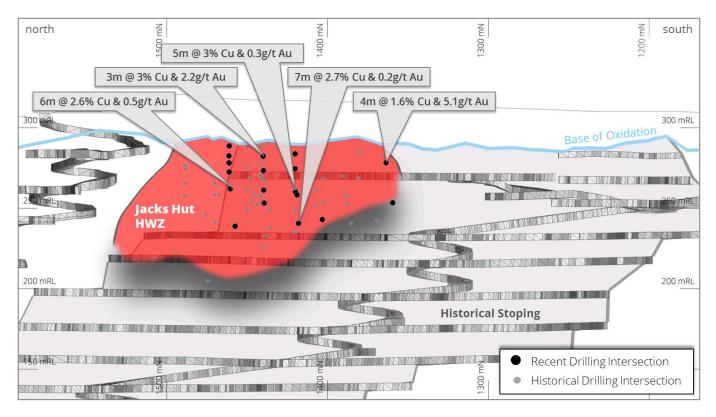


Figure 1. Jacks Hut hanging wall zone (HWZ) long section looking east toward the historically mined high grade breccia core. Selected intersections from recent surface drilling are illustrated though intersections from the footwall are not depicted on this section

SORBY HILLS, WESTERN AUSTRALIA (KBL 75%)

Project and Approvals

The Sorby Hills Project, located in the East Kimberley Region of Western Australia, is a joint venture between KBL 75% (Manager) and Henan Yuguang Gold & Lead Co., Limited 25% (Yuguang). Yuguang was established in 1957; listed on the Shanghai Stock Exchange in 2002 (exchange code: 600531), and is the biggest electrolyzed lead and silver producer in China.

The Project consists of nine shallow high grade deposits within a linear north-south mineralised trend extending over a 10 kilometre strike length. To date, the total Resource of the trend, as defined by KBL stands at **16.5 Mt at 4.7% Pb, 0.7% Zn and 53 g/t Ag³**, which has the potential to support a multi decade operation.

In late 2013, KBL announced a maiden Ore Reserve estimate for the Sorby Hills DE deposit. The Probable Ore Reserve of **2.4 Mt @ 5% lead and 54g/t silver**⁴ (applying a cut off of 2% lead), underpins the plan for an initial 10 year open cut operation, processing over 400ktpa. In conjunction with the Reserve, a new Mineral Resource estimate for DE Deposit totalled **5.8 Mt @ 3.5% lead, 0.4% zinc and 41g/t silver**⁵ (applying a cut off of 1% lead). The Mineral Resource is inclusive of the Ore Reserve and consists of both Indicated and Inferred Mineral Resources.

While the Company is focused on the Mineral Hill mine for short to medium term production the Sorby Hills project is the focus for development of new long life lead-silver production. A recent gap analysis indicated that there are no significant issues for the project to progress to a full feasibility study.

KBL expects a range of funding options will be available for its share of the development costs due to the robust project economics, the low risk of development and operating parameters, well developed infrastructure, proximity to port, and strong international demand for the off take. The development task will be assisted by the Company's operating experience and expertise already in place with the Mineral Hill operation and the support of its 25% Joint Venture partner, Yuguang with its large lead, zinc and copper smelting facilities in China.

The receipt of environmental approval for the project from the WA Minister for Environment; Heritage in April 2014 has opened the way for the completion of licensing and an accelerated development program.

³ Resource Estimate released 22 December 2011. Updated to incorporate 29 November 2013 DE Resource Estimate

⁴ Reserve estimate released 29 November 2013

⁵ Updated Resource estimate released 29 November 2013

For further information, please contact:

Brian Wesson Managing Director KBL Mining Limited Ph: +61 2 9927 2000

About KBL Mining

KBL Mining is an Australian resource Company listed on the ASX (KBL and KBLGA) with a focus on producing precious and base metals. KBL's main assets include the Mineral Hill copper-gold-silver-lead-zinc mine near Condobolin in New South Wales and Sorby Hills lead-silver-zinc project in Western Australia. The Company has been operating the refurbished processing plant at Mineral Hill since October 2011 to produce copper concentrates, lead concentrates and zinc concentrates. Sorby Hills (KBL holds 75% with Henan Yuguang Gold & Lead Co. Ltd (HYG&L) holding 25%) is one of the world's largest near surface undeveloped silver-lead deposits, close to port infrastructure and a short distance from Asian markets. The project received environmental approval on 2 April 2014 and the Joint Venturers are now progressing the Project to development

More information can be found on KBL's website at www.kblmining.com.au.

Competent Persons Statement

The information in this report that relates to Exploration Results and Exploration Targets, Mineral Resources and Ore Reserves based on information compiled by Owen Thomas, BSc (Hons), who is a Member of the Australasian Institute of Mining and Metallurgy and is a full-time employee of the Company. Mr Thomas has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Thomas consents to the inclusion in the announcement of the matters based on his information in the form and context that the information appears.

JORC Code, 2012 Edition – Table 1 report

Southern Ore Zone Diamond Drilling

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Pre-Triako (1969-1986) percussion/reverse circulation drilling at Jacks Hut was used to obtain rock chip samples, 1-6.09m (20ft) in length, from which a representative split was routinely submitted for gold analysis by fire assay and AAS finish. Base metals were variably analysed by aqua regia leach followed by AES, with a pressed powder XRF used for some bismuth analyses. Sample splitting techniques are poorly documented though it is assumed standard industry practice was applied. During the Triako era, rock chip samples from RC drilling were first collected and assayed as four metre composites. Composite samples returning significant assay results were then resampled in1m intervals using a riffle splitter and re-assayed. Subsequently (CBH and KBL era), samples were either submitted in one metre intervals, split off the cyclone; or a portable XRF analyser was used to determine the sampling intervals. In the latter case, samples with XRF readings regarded as anomalous were submitted for assay as one metre intervals with at least two metres either side also collected as one metre samples. The remainder of samples were submitted for assay in 4m composites collected by spearing or riffle splitting. Any four metre composites returning anomalous laboratory assays were re-submitted for assay as one metre samples. Representative chip samples for each metre of RC drilling at Mineral Hill are collected in trays and stored at site. Historical diamond drilling at Jacks Hut typically utilised standard core diameters (HQ/NQ) to obtain samples, 0.2-1m in length, which were generally sawn in half for the provision of half core for assay and retention of half core (except in the case of metallurgical test work

Criteria	JORC Code explanation	Commentary
		whereby one quarter would be retained). Samples were routinely submitted for gold analysis by fire assay and AAS finish. Base metals were analysed by aqua regia leach followed by ICP-AES with pressed powder XRF used for some bismuth analyses.
Drilling techniques	rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling carried out at Mineral Hill has been predominantly reverse- circulation percussion (RC) and diamond core (typically with RC precollars of varying lengths). Core diameters are mostly standard diameter HQ and NQ.
		The Jacks Hut dataset (relevant to the conceptual exploration target presented in this release) primarily contains drill holes collared between 900mE-1100mE and 1100mN-1500mN (local mine grid) that intersect the Mineral Hill Volcanics host rocks.
		This dataset (pre-2015) comprises 46 diamond holes, 23 diamond holes with reverse circulation pre-collars, 107 reverse circulation holes and 33 percussion holes
		In addition, as mentioned in this release, 11 reverse circulation holes were completed by KBL in June 2015.
		A proportion of the historical drill core is orientated. Methods used over time have included traditional spear and marker and modern orientation tools attached to the core barrel.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure 	For historical diamond drilling, core was typically measured (actual measured core recovered vs. drilled intervals) to accurately quantify sample recovery.
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Methods implemented to maximise sample recovery during historical drilling are poorly documented though it is assumed standard industry practice was applied.
		There is no known relationship between sample recovery and grade. The lowest recoveries are typically associated with fault and shear zones which may or may not be mineralised.
		During current reverse circulation drilling, intervals of poor recovery are generally noted on geologists' logs but sample bags are not routinely weighed for quantification of sample recovery.

Criteria	JORC Code explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	During current drilling a qualified geoscientist logs the geology of all holes in their entirety (including geotechnical features). Drill core/reverse circulation chips are geologically and routinely geotechnically (diamond only) logged to a level of detail considered to accurately support Mineral Resource estimation. The parameters logged include lithology with particular reference to veining, mineralogy, alteration, and grain size. Magnetic susceptibility measurements are available for some recent drill holes.
		Some core holes have down-hole core orientation and these holes are subject to detailed structural logging. Routine structural logging is carried out on all core holes recording bedding, schistosity and fault angles to core.
		All core and RC chip trays are photographed in both wet and dry states. Recent digital photos and scans of film photography are stored electronically.
		For historical drilling, holes were typically logged in their entirety with the exception of some early percussion/reverse circulation pre-collars which were variably logged. On review 92.7% of metres drilled within the Jacks Hut target area (between 900mE-1100mE and 1100mN-1500mN) have been logged. Where no record of logging is available, KBL has assumed the drill hole was not logged.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness 	Historical Jacks Hut core sampling was based on geological logging and in most cases only core regarded as significantly mineralised was cut in half for subsequent assay. This approach has the potential to miss finely disseminated gold mineralisation and in some cases low grade copper mineralisation was regarded as uneconomic and ignored.
	 of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	Historical core sizes and percussion/reverse circulation hole diameters are deemed by KBL to have adequately provided representative sample of the Jacks Hut mineralisation which generally comprises a fine to medium grained intergrowth of crystalline sulphide phases including chalcopyrite and pyrite within a broader volcaniclastic gangue.
		Sampling of historical core was typically achieved by cutting with a core saw or equivalent to obtain half core for assay while the remaining half was retained in the original core trays (except in cases where half core was used for metallurgical test work and one quarter retained).

Criteria	JORC Code explanation	Commentary
		Details of sample splitting in historical (1969-1986) percussion/reverse circulation drilling are poorly documented and assumed by KBL to be industry standard at the time.
		Field duplicates were periodically assayed by Triako and CBH, but KBL has not routinely submitted duplicates for analysis.
		Quality control procedures for sub-sampling of historical drilling (1969- 1986) are poorly documented and assumed by KBL to be industry standard at the time of sample collection.
		During the recent program, sub sampling RC chips was achieved using a riffle splitter directly off the cyclone. Dry sampling is ensured by use of a booster air compressor when significant groundwater is encountered in RC drilling.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, 	All drilling samples are currently assayed at Australian Laboratory Services (ALS) in Orange, NSW. ALS is a NATA Accredited Laboratory and qualifies for JAS/ANZ ISO 9001:2008 quality systems. ALS maintains robust internal QA/QC procedures (including the analysis of standards, repeats and blanks) which are monitored with the analytical data by KBL geologists through the Webtrieve [™] online system.
	 calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	KBL routinely assay for copper, lead, zinc, silver, arsenic, antimony, and bismuth using ALS Method ME-ICP41, with pulps returning over 10000ppm for Cu, Pb, Zn or 100ppm for Ag, reanalysed with the ore- grade method ME-OG46. The aqua regia ME–ICP41 and ME-OG46 methods are regarded as a total digestion technique for the ore minerals present at SOZ. Gold is analysed with the 50g fire-assay–AAS finish method Au-AA26.
		KBL typically insert two standards for every 30 samples in the sample stream. During the recent RC drilling four standards were inserted for every 50 samples in the sample stream. The standards comprise Certified Ore Grade base and precious metal Reference Material provided by Geostats Pty Ltd. The analysis of standards is checked upon receipt of batch results.
		Historical drill samples from Jacks Hut were submitted for analysis at Australian Laboratory Services (ALS), Australian Assay Laboratories (AAL) and Classic Comlabs Ltd. Samples were routinely analysed for gold by fire assay-typically AAS flame finish. Samples were typically, but

Criteria	JORC Code explanation	Commentary
		not comprehensively, analysed for copper, silver, lead, zinc and bismuth by aqua regia leach with a pressed powder XRF used for some bismuth analyses.
		For historical drilling from 2001–2005, standards were inserted at the start and end of each batch of samples sent to ALS. The laboratory was requested to repeat any high grade standards which returned values > 10% from the quoted mean, and >20% for the low grade standards.
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections are checked by the Senior Exploration Geologist and Chief Geologist.
and assaying	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Original laboratory documents from historical drilling exist in hard copy though have not been reviewed by KBL for completeness.
		The Mineral Hill drilling database exists in electronic form as a Microsoft Access database. The assay data are imported into the database from digital results tables sent by the laboratory, without manual data entry. The Senior Mine Geologist and Chief Geologist manage the drill hole assay database.
		3D validation of drilling data and underground sampling occurs whenever new data is imported for visualisation and modelling by KBL geologists in Micromine [™] and Surpac [™] software.
		No adjustment has been made to assay data received from the laboratory.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	The collar positions of holes drilled by Triako have been surveyed by mine surveyors and are consistent with surveyed underground workings. The holes were surveyed in Mineral Hill mine grid and also the national grid. The CBH drill hole collars have been established by GPS using the national grid and converted to mine grid using the conversion established by Triako.
		KBL Mining Ltd collar locations are either surveyed by qualified mine surveyors or by real-time differential GPS (DGPS) in areas at surface distant from reliable survey stations.
		Coordinates are recorded in a local Mine Grid (MHG) established by Triako in which Grid North has a bearing of 315 relative to True North (MGA Zone 55). The local grid origin has MGA55 coordinates of 498581.680 mE, 6394154.095 mN.

Criteria	JC	DRC Code explanation	Commentary
			Topographic control is good with elevation surveyed in detail over the mine site area and numerous survey control points recorded.
Data spacing and	•	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to	Historical surface drilling at Jacks Hut, like most of the Mineral Hill field, was mainly designed on an east-west grid (relative to Mine Grid).
distribution		establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Underground drilling at Jacks Hut has also occurred from numerous sites and drill holes have a greater range of orientations.
	•	Whether sample compositing has been applied.	As a whole, the drilling has typically intersected mineralisation at a spacing of $25m \times 25m$ below 270RL (approximately 50m below surface) with closer drill spacing in many areas. Drilling has intersected the mineralisation at an average spacing of approximately $15 \times 20m$ above 270RL (approximately 50m below surface). Below 200RL, only sporadic drilling has been carried out.
			The majority of historical drill holes were selectively sampled. Only intervals that showed signs of mineralisation were assayed.
			No sample compositing has been applied to the drill holes reported in the release.
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and	Mineralisation at Mineral Hill occurs around discrete structures in a series of en echelon dilational zones within a NNW/SSE ¹ trending corridor up to 1.5km wide. There is a variety of mineralisation styles present within the corridor, reflecting multiple phases of mineralisation. Most drilling occurs with an east-dipping orientation and -60 to -80 degrees dip in an attempt to best intersect the mineralisation.
		Historical surface drill hole designs at Jacks Hut mostly vary between -90 and -60 degrees inclination with angled holes predominantly drilled toward 90 degrees azimuth. The main Jacks Hut lode is interpreted to dip steeply west and as such vertical drill holes are not considered to intersect this lode at an optimal angle. The orientation of the hanging wall and footwall mineralisation is not yet known and as such estimated true thicknesses have not been provided.	
			¹ Bearings in this document are given relative to the Mineral Hill Mine Grid (MHG) in which north is oriented towards a bearing of 315 degrees (NW) relative to MGA Grid north.
Sample security	•	The measures taken to ensure sample security.	Specific records of historical sample security measures are not recorded, however the methods were regarded as normal industry practice during

Criteria	JORC Code explanation	Commentary
		an external audit of Triako's historical data base, quality control procedures, survey, sampling and logging methods in 2005.
		For RC drilling completed by KBL, representative samples from the rig are deposited into individually numbered calico bags which are then tied at the top. Samples are couriered by independent contractors from the mine site to the ALS Laboratory.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	The historical data base, quality control procedures, survey, sampling and logging methods were reviewed by Barret, Fuller and Partners (BFP) in June 2005 on behalf of Triako Resources Ltd. The BFP report was authored by C.E. Gee and T.G. Summons and concluded that the Triako database and procedures were of "normal industry practice".
		CBH Resources, and subsequently KBL Mining Ltd have maintained the Triako drilling and sampling procedures, with numerous improvements such as those outlined in this document.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria		RC Code planation	Commentary
Mineral tenement and land tenure status	•	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Jacks Hut exploration target is located within Mining Leases ML5278 and ML5267 located in central NSW and which are due to expire on 14 March 2033.
Exploration done by other parties		Acknowledgment and appraisal of exploration by other parties.	The Jacks Hut deposit was discovered by Triako Resources Ltd. The majority of drilling at Jacks Hut to date was carried out by Triako with earlier exploration attributed to Getty Oil Development Company Ltd.
Geology		Deposit type, geological setting and style of mineralisation.	Jacks Hut comprises an epithermal to mesothermal (Cu–Au) vein and breccia system hosted by the Late Silurian to Early Devonian Mineral Hill Volcanics, a pile of proximal rhyolitic volcaniclastic rocks with minor reworked volcaniclastic sedimentary rocks. The mineralisation is structurally controlled and is surrounded by a halo of sulphide (Cu–Au) vein stockwork mineralisation which forms the core of the conceptual exploration targets presented in this release.
Drill hole	• .	A summary of all	Locations and orientations of historical drill holes supporting the Jacks Hut conceptual exploration target are tabulated

Criteria	JORC Code explanation	Commentary	/						
Information	information material to the understanding of the exploration results including a tabulation of the following information	of individual version of individual version of the misleading	ein and breccia . It can be assu	zones, penc umed that the	ling further work	k, means the less than t	at providing tr he reported d	ue width estima	tainty in the orientation ates at this stage could s. The main Jacks Hut
	for all Material drill holes:		Max Depth	Hole C	oordinates (MH	Grid)	Hole O	rientation	
	 easting and 	Hole ID	(m)	East	North	RL	Inclination	Azimuth	Hole Type
	northing of the drill hole collar	2001	100	1010.7	1488.9	321.4	-90	NA	DDH (RC PRECOLLAR)
	\circ elevation or RL	2002	99.5	1016	1470	320	-90	NA	DDH (RC PRECOLLAR)
	(Reduced Level –	2003	76.5	1037.63	1467.1	321.25	-90	NA	DDH (RC PRECOLLAR)
	elevation above sea level in	2004	99.5	1066.36	1470.37	320.32	-90	NA	DDH (RC PRECOLLAR)
	metres) of the drill	2005	99.5	1016.1	1435.3	319	-90	NA	DDH (RC PRECOLLAR)
	hole collar	2006	99.3	1038.19	1425.75	318.56	-90	NA	DDH (RC PRECOLLAR)
	 dip and azimuth of the hole o down hole length 	2007	99.3	1061.8	1427.35	318.88	-90	NA	DDH (RC PRECOLLAR)
		2008	99.5	1073.75	1395.4	319.33	-90	NA	DDH (RC PRECOLLAR)
	and interception depth	2009	75	1041.14	1340.18	315.88	-70	90	DDH
	\circ hole length.	2009	112.64	990	1175	308	-70	90	RC
	If the exclusion of	2010	80	1059.89	1299.97	315.6	-70	92	DDH
	this information is justified on the basis	2011	75.2	1020.29	1232.81	311.76	-70	90	DDH
	that the information is	2012	80	996.1	1190.9	309.9	-70	91	DDH
	not Material and this exclusion does not	4017	30	1000.6	1398.7	316	-90	NA	RC
	detract from the	4018	30	982	1402.8	315.4	-90	NA	RC
	understanding of the	4019	30	1001.1	1378.7	315.9	-90	NA	RC
	report, the Competent Person	4020	30	982.6	1382.5	315	-90	NA	RC
	should clearly explain	4022	30	926.4	1499.9	319.4	-90	NA	RC
	why this is the case.	4024	30	961.9	1498.7	320	-90	NA	RC
		4056	30	1080.63	1380.84	319.94	-90	NA	RC
		4057	30	1060.6	1401.35	318.55	-90	NA	RC

Criteria	JORC Code explanation	Commentary							
	_	4058	30	1080.58	1401.01	320.16	-90	NA	RC
		4059	45	1080.67	1421.11	320.36	-90	NA	RC
		4068	40	942.1	1461.4	316.9	-90	NA	RC
		4069	40	942	1442	315.5	-90	NA	RC
		4070	20	961.7	1441.5	316.5	-90	NA	RC
		4071	39.4	1000.7	1361.7	315.3	-60	90	RC
		4072	35	1010.6	1391.2	316.9	-90	NA	RC
		4073	35	1020.83	1381.28	316.52	-90	NA	RC
		4074	38	1030.23	1371.31	316.35	-90	NA	RC
		4075	38	1040.68	1381.1	317.26	-90	NA	RC
		4076	75.5	1001.4	1452.3	318.7	-90	NA	RC
		4077	75	1021.53	1456.63	320.24	-90	NA	RC
		4078	75	1020.81	1441.72	319.51	-90	NA	RC
		4079	105.7	1040	1450	319.9	-90	NA	DDH (RC PRECOLLAR)
		4080	81.5	1040.93	1436.75	319.21	-90	NA	RC
		4081	78	1061.1	1440.9	319.34	-90	NA	RC
		4082	88	1080.89	1440.81	320.13	-90	NA	RC
		4107	102	1030.59	1447.18	320.19	-90	NA	RC
		4108	93.8	1041.19	1427.37	318.56	-77	359	RC
		4109	85	1056.16	1427.01	318.75	-77	90	RC
		4148	93	1050.96	1452.13	319.44	-90	NA	DDH
		4149	85	1050.79	1462.05	320.56	-90	NA	RC
		4150	70	1050.82	1437.19	319.03	-90	NA	RC
		4151	63	1051	1427.29	318.61	-90	NA	RC
		4193	120	1010.26	1268.98	311.97	-90	NA	RC
		4194	90	1029.96	1269.41	312.57	-90	NA	RC
		4195	50	1050.23	1269.23	313.55	-90	NA	RC

Criteria	JORC Code explanation	Commentary							
	_	4196	70	1034.04	1247.26	311.91	-90	NA	RC
		4197	50	1054.09	1246.95	312.9	-90	NA	RC
		4198	50	1035.75	1227.46	311.02	-90	NA	RC
		4199	84	1015.16	1227.36	310.48	-90	NA	RC
		4200	50	1053.93	1227.17	311.72	-90	NA	RC
		4201	50	1034.62	1208.95	310.22	-90	NA	RC
		4205	61.8	984.2	1209.2	309.1	-70	86.5	RC
		4206	84	989.85	1220	309.37	-70	90	RC
		4207	78	984.7	1241.8	310.5	-70	87.7	RC
		4208	100	985.1	1261.9	311.5	-70	89	RC
		4209	100	1005.4	1296.7	312.8	-70	96	RC
		4210	100	985.2	1281.8	312.1	-70	90	RC
		4222	100	965.1	1238.4	310.08	-72	103	RC
		4223	100	970.1	1219.3	309.13	-71	106	RC
		4224	100	984.28	1198.1	308.88	-70	94	RC
		4225	100	993.4	1167.7	308.78	-71	96	RC
		4226	100	989.9	1135.9	308.62	-71	106	RC
		4227	100	984.9	1102.6	308.13	-70	96	RC
		4249	80	1007.28	1270.23	312.77	-68	90	RC
		4250	80	1010.2	1239.94	311.78	-70	90	RC
		4251	100	1010.62	1214.73	311.1	-72	93	RC
		4252	75	1011.06	1195.29	310.72	-72	92	RC
		4253	100	986.72	1125.19	308.51	-69	90	RC
		4254	96	989.51	1155.73	308.94	-69	91	RC
		4255	100	990.13	1179.79	308.87	-69	85	RC
		4286	70	1040.15	1359.85	316.31	-70	90	RC
		4287	70	1059.98	1359.82	317.71	-70	90	RC

Criteria	JORC Code explanation	Commentary							
		4288	70	1080.19	1359.77	319.68	-70	90	RC
		4289	70	1079.96	1339.7	319.1	-70	90	RC
		4290	60	1060.29	1249.74	312.5	-60	125	RC
		4291	60	1020.03	1320.59	314.2	-60	90	RC
		4292	60	1019.15	1340.31	314.91	-60	90	RC
		4293	65	1059.76	1269.87	314.13	-60	90	RC
		4294	60	1059.36	1290.5	315.09	-60	90	RC
		4295	60	1060.04	1310.76	316.13	-60	90	RC
		4296	30	1026.1	1260.8	312.41	-60	90	RC
		4297	30	1025.3	1249.8	311.89	-60	90	RC
		4298	35	1025.4	1240.3	311.42	-60	90	RC
		4299	30	1030.9	1230.9	311.31	-60	90	RC
		4300	29	1033.8	1201.2	309.83	-70	90	RC
		4301	30	1011.2	1180.6	310.67	-60	90	RC
		4302	30	1011.6	1169.9	310.57	-58	90	RC
		4303	35	1010.4	1149.8	310.28	-60	90	RC
		4304	30	1010.5	1137.9	310.36	-60	90	RC
		4305	30	1009.9	1126.6	310.07	-60	90	RC
		4306	30	994.68	1221.29	309.42	-60	90	RC
		4307	30	999.86	1231.47	310.88	-60	90	RC
		4308	30	1000.73	1200.07	309.84	-60	90	RC
		4309	30	1003.43	1190.6	309.98	-60	90	RC
		4310	30	999.7	1180.72	309.56	-60	90	RC
		4311	70	1021.01	1359.58	315.54	-70	90	RC
		4312	70	1060.18	1339.94	317.29	-70	90	RC
		4313	70	1017.23	1340.37	315.22	-70	90	RC
		4314	105	999.7	1340.2	315.1	-70	90	DDH (RC PRECOLLAR)

Criteria	JORC Code explanation	Commentary							
		4318	70	1079.52	1279.94	315.78	-70	90	RC
		4319	70	1079.33	1299.7	317.05	-69	87	RC
		4320	70	1079.87	1319.77	318.35	-69	90	RC
		4321	70	1059.22	1320.12	316.53	-69	90	RC
		4322	70	1040	1319.97	314.91	-71	90	RC
		4323	70	1018.84	1320.14	314.35	-71	88	RC
		4324	108.5	999.7	1320	314.3	-70	89	RC
		4325	70	1013.97	1299.79	313.8	-70	89	RC
		4326	70	1059.72	1280.02	314.39	-70	89	RC
		4327	70	1040.85	1279.77	313.37	-70	90	RC
		4328	70	1045.74	1299.64	314.54	-70	90	RC
		4329	70	1007.07	1259.76	312.75	-70	90	RC
		4331	70	1075.26	1229.63	312.75	-70	87	RC
		4332	70	1055.17	1249.66	312.24	-70	90	RC
		CMHDD009	237.9	910.42	1146.88	308.83	-70	90	DDH
		CMHDD010	133.1	950.4	1148.38	308.65	-60	90	DDH
		CMHDD044	168	986.01	1353.08	314.2	-90	NA	DDH
		D1	102	1009.82	1440.92	318.7	-69	90	DDH
		D10	94.75	1024.39	1419.85	318.4	-70	89.5	DDH
		D11	123.55	985.5	1420.55	316.2	-70	88.5	DDH
		D12	141.6	995.11	1380.35	316.15	-68	90	DDH (RC PRECOLLAR)
		D13	165.5	951.11	1440.89	316.82	-70	89.5	DDH
		D16	146.75	960.03	1318.07	312.5	-70	79	DDH
		D17	156	949.42	1281.78	311.31	-70	85.5	DDH
		D18	141.5	949.69	1240.69	309.86	-75	85	DDH
		D21	140	969.6	1370.66	314.03	-70	90	DDH
		D22	96	970.24	1200.03	309.14	-70	86.5	DDH (RC PRECOLLAR)

Criteria	JORC Code explanation	Commentary							
		D23	72.55	993.12	1199.76	309.18	-70	89	DDH (RC PRECOLLAR)
		D24	90.55	979.63	1310.77	312.86	-67	88.5	DDH (RC PRECOLLAR)
		D25	111.25	976.95	1350.07	313.87	-67	86	DDH (RC PRECOLLAR)
		D26	120.3	990	1439.98	317.28	-70	86.5	DDH (RC PRECOLLAR)
		D27	108.2	1009.25	1490.14	321.2	-60	85.5	DDH (RC PRECOLLAR)
		D29	94	969.42	1180.14	309.08	-70	86	RC
		D3	175.6	907.72	1241.66	309.7	-70	90.5	DDH (RC PRECOLLAR)
		D30	114	950.32	1200.82	309.31	-70	85.75	RC
		D4	210	914.22	1321.84	311.4	-70	90	DDH
		D5	249.2	935.93	1358.26	312.6	-75	90.5	DDH
		D7	181.3	901.21	1401.04	312.8	-70	89.5	DDH
		D8	90.1	1036.77	1380.6	316.9	-70	96	DDH (RC PRECOLLAR)
		D9	90.5	1035.07	1398.99	317.3	-70	79.5	DDH (RC PRECOLLAR)
		GD1	426.72	1026	1269	312.7	-75	273	DDH
		GD107	91.44	1074	1383	319.74	-90	NA	PERC
		GD169	91.44	1057.7	1324.61	324.61	-90	NA	PERC
		GD170	91.44	1087.1	1322.48	322.48	-90	NA	PERC
		GD180	106.68	1074.5	1456.56	320.04	-90	NA	PERC
		GD181	91.44	1019.06	1449.62	320.04	-90	NA	PERC
		GD183	82.3	956	1470	317.6	-90	NA	PERC
		GD184	70.1	995.7	1391.9	315.6	-90	NA	PERC
		GD185	91.44	916	1489	317.3	-90	NA	PERC
		GD191	94.49	1048.5	1444	319.64	-90	NA	PERC
		GD193	76.2	1023.41	1326.06	314.86	-90	NA	PERC
		GD194	91.44	1084	1325	318.91	-90	NA	PERC
		GD2	351.74	1042	1406	318.2	-75	273	DDH
		GD3	292.31	924	1279	311.1	-60	95	DDH

Criteria	JORC Code explanation	Commentary							
		GD56	131.06	1077.5	1465.82	320.34	-90	NA	PERC
		GD57	121.92	930.1	1408.7	314	-90	NA	PERC
		GD58	111.25	966	1362	314	-90	NA	PERC
		GD59	111.25	1020.57	1282.62	312.82	-90	NA	PERC
		GD67	67.06	1040.68	1252.62	312.44	-90	NA	PERC
		GD68	76.2	999.9	1310.9	313.8	-90	NA	PERC
		GD70	60.96	1058.5	1492.5	321.96	-90	NA	PERC
		GD72	106.68	1023.18	1402.63	317.16	-90	NA	PERC
		GD76	79.25	1011	1190	309.04	-90	NA	PERC
		GD77	64.01	1042	1190	309.95	-90	NA	PERC
		GD78	68.58	1018	1108	308.61	-90	NA	PERC
		GD79	60.96	981	1188	309.3	-90	NA	PERC
		GD80	60.96	1074	1190	310.68	-90	NA	PERC
		GD82	60.96	1048	1100	308.36	-90	NA	PERC
		GD83	60.96	987	1116	308.7	-90	NA	PERC
		GMH13	86	1066.49	1449.06	319.52	-90	NA	PERC
		GMH17	71	1041.6	1445.38	319.59	-90	NA	PERC
		GMH19	90	1016.5	1449.9	319.4	-90	NA	DDH
		GMH20	90	1047.76	1446.64	319.3	-90	NA	DDH
		GMH22	120	969.7	1398.1	314.7	-56	105	DDH
		GMH25	90	1014.32	1247.59	311.28	-90	NA	PERC
		GMH26	100	1001.3	1269	311.7	-90	NA	PERC
		GMH33	90	1084.96	1240.4	313.88	-90	NA	PERC
		GMH36	90	1045.44	1352.27	316.33	-90	NA	PERC
		GMH37	150	969.3	1462.2	317.7	-60	120	DDH
		GMH40	84	978.7	1488.2	319.5	-90	NA	PERC
		GMH47	60	967	1398	314.7	-60	148	DDH

Criteria	JORC Code explanation	Commentary							
		GMH48	121.6	997.2	1331	314.2	-60	105	DDH
		JHUG01	42	1023	1150	233.7	0	272	DDH
		JHUG02	40.4	1016	1170	231.7	-30	274.3	DDH
		JHUG03	51.9	1035.2	1368	191.2	-33	245	DDH
		JHUG04	50.1	1035	1370.5	191.2	-30	311	DDH
		JHUG05	47.1	1058.2	1316	266	18	114	DDH
		JHUG06	48.9	1036.8	1357	268.5	-10	90	DDH
		JHUG07	67.6	1035.4	1367.8	191.2	-41	281	DDH
		JHUG08	82.1	1034.6	1353.6	176.5	-16	229	DDH
		JHUG09	81.2	1034.4	1353.6	177	-30	240	DDH
		JHUG10	70	1027.9	1375.5	157.4	-25	247	DDH
		JHUG11	60.2	1029.8	1379.4	157.4	-27	282	DDH
		JHUG12	118.2	1036.2	1352.5	175.7	-14	218	DDH
		JHUG13	49.4	1006.1	1386.3	138	-35	292.5	DDH
		JHUG14	52.1	1006.7	1385.9	138.5	-36	249.5	DDH
		JHUG15	63	1007.3	1387.7	138	-39	306	DDH
		TMH102	200	1098.86	1402.05	321.51	-62	84.5	RC
		TMH106	204	1082.543	1342.925	319.32	-60	85	RC
		TMH110	210	1080.322	1343.143	319.17	-80	90	RC
		TMH111	210	1097	1402.17	321.4	-80	90	RC
		TMH204	120.4	1090	1420	321	-70	86	DDH (RC PRECOLLAR
		TMH215	275.6	1067	1440	319.5	-82	89	DDH (RC PRECOLLAR
		TMH76	65.2	1003	1465	120	-45	257	DDH
		TMH77	47.4	1002	1400	172	27	270	DDH
		TMH78	67	1002	1400	172	38	323	DDH
		TMH8	222	920.5	1140	308.7	-60	86	DDH (RC PRECOLLAR)

Criteria	JORC Code explanation	Commentary							
			Max	Hole Coo	rdinates (MH G	Grid)	Hole Orien	tation	Usis Trucs
		Hole ID	Depth (m)	East	North	RL	Inclination	Azimuth	Hole Type
		KMHRC149	78	975.8001	1368.9654	315.0683	-57	90	RC
		KMHRC150	110	945.0820	1419.2721	315.5606	-60	90	RC
		KMHRC151	110	935.3840	1401.7002	314.5430	-60	90	RC
		KMHRC152	110	942.0037	1462.5275	318.1174	-62	90	RC
		KMHRC153	62	1021.8093	1483.3295	322.1305	-70	90	RC
		KMHRC154	79	1008.0083	1462.8958	320.0893	-62	90	RC
		KMHRC155	90	1031.3791	1359.4105	316.6787	-67	90	RC
		KMHRC156	72	1036.3958	1386.2196	317.5835	-68	90	RC
		KMHRC157	60	1030.3312	1403.4227	318.0483	-60	90	RC
		KMHRC158	64	1020.7953	1421.3678	318.8495	-80	90	RC

81

998.3758

KMHRC159

Hole	Interval (m)	Cu %	Pb %	Zn %	Ag g/t	Au g/t	From (m)
2001	3	2.4	NA	NA	NA	0.5	43
	1	1.5	NA	NA	NA	1.4	51
2002	1	3.2	NA	NA	NA	1.0	19
	1	2.6	NA	NA	NA	0.4	55
	3	1.2	NA	NA	NA	2.6	60

318.3962

-65

90

RC

1440.8565

Criteria	JORC Code explanation	Commentary							
			1	0.7	NA	NA	NA	3.9	98
		2003	1	3.8	NA	NA	NA	0.4	23
			6	1.9	NA	NA	NA	0.7	60
		2004	2	1.9	NA	NA	NA	1.7	66
		2005	2	2.0	NA	NA	NA	0.2	29
			1	3.0	NA	NA	NA	1.0	51
			1	1.8	NA	NA	NA	0.4	68
			1	2.0	NA	NA	NA	0.7	82
		2006	1	1.8	NA	NA	NA	0.4	22
			5	2.0	NA	NA	NA	0.8	76
			2	1.8	NA	NA	NA	0.5	87
		2007	4	0.9	NA	NA	NA	8.5	39
			1	0.4	NA	NA	NA	2.5	74
			1	0.1	NA	NA	NA	2.6	78
			1	0.3	NA	NA	NA	2.6	98
		2008	6	2.0	NA	NA	NA	0.6	3
			4	1.9	NA	NA	NA	3.5	12
			1	2.7	NA	NA	NA	0.1	28
		2009	2	2.5	0.1	0.1	24	1.5	28
			2	3.9	0.2	0.1	10	0.6	40
			4	2.0	0.3	0.1	24	1.0	64
		2011	2	2.0	0.6	0.1	6	0.3	21
		2012	5	0.3	0.6	0.1	7	5.7	19
			5	0.3	0.2	0.0	7	3.8	28
			1	2.4	0.6	3.1	26	0.0	45
			3	0.8	0.1	0.2	5	1.7	57
			3	1.2	0.1	0.1	10	7.2	64
		4019	3	3.6	0.1	0.1	16	6.5	27
		4057	2	1.1	NA	NA	NA	5.3	28
		4059	3	3.8	0.2	0.4	5	2.4	21

Criteria	JORC Code explanation	Commentary							
		4078	1	2.4	0.0	0.0	5	0.2	32
			6	2.3	0.2	0.2	9	1.1	39
			2	2.1	0.0	0.1	3	0.1	62
		4079	8	1.5	0.0	0.1	5	1.5	85
			1	2.6	1.5	1.5	28	1.0	96
		4080	2	4.6	0.1	0.0	7	0.2	18
			1	1.1	0.1	0.0	6	2.3	36
			4	1.3	0.1	0.2	9	16.5	72
		4081	1	1.8	0.1	0.2	6	0.4	25
			1	0.6	0.2	0.3	7	4.9	51
		4082	3	0.6	0.5	1.3	16	2.9	67
		4107	1	2.5	0.0	0.1	3	0.1	44
			1	2.3	0.0	0.2	6	0.3	50
			1	2.4	0.0	0.3	5	0.4	54
			4	2.3	0.1	0.1	5	0.4	64
			2	1.2	0.1	0.0	6	16.8	94
		4108	1	2.1	0.0	0.0	1	0.6	22
			2	1.6	0.1	0.1	7	0.6	33
			5	1.1	0.0	0.1	4	1.2	50
			3	1.0	0.0	0.1	4	1.4	62
			12	1.6	0.1	0.1	7	8.5	77
		4109	21	1.0	0.1	0.1	4	2.1	37
		4148	2	2.3	0.0	0.2	5	0.2	46
			3	4.1	0.1	0.3	12	0.8	51
			8	2.7	0.1	0.2	14	7.6	63
			1	1.9	0.3	0.4	14	0.3	80
			1	0.2	0.1	0.1	2	3.0	82
			4	1.7	0.2	0.3	15	0.9	87
		4149	4	2.1	0.0	0.0	2	0.1	23
			4	2.0	0.1	0.0	6	0.1	36

Criteria	JORC Code explanation	Commentary							
	_		2	2.3	0.2	0.3	10	0.3	64
			7	1.8	0.2	0.2	14	9.4	75
		4150	1	1.8	0.0	0.1	7	0.4	16
			8	2.1	0.1	0.0	11	0.5	29
			12	1.1	0.1	0.1	9	6.9	47
		4151	3	0.8	0.0	0.0	5	15.7	26
			2	2.6	0.0	0.0	8	0.5	34
			11	1.2	0.0	0.1	7	3.0	45
		4193	17	2.2	0.1	0.2	8	1.0	67
			2	1.0	0.1	0.0	4	2.1	99
			1	0.3	0.0	0.0	1	5.8	114
		4194	1	1.9	0.5	1.7	7	0.3	34
			1	2.5	0.0	0.0	4	0.4	73
		4195	1	2.4	0.2	0.4	11	0.9	31
			1	2.3	0.0	0.3	9	0.8	44
		4196	1	3.2	0.0	0.5	8	1.7	36
			1	3.1	0.0	0.1	6	0.4	45
			2	1.5	0.0	0.1	3	0.9	49
			2	2.0	0.0	0.1	5	0.2	56
		4198	3	2.7	0.0	0.1	8	2.3	11
		4199	16	2.3	0.3	0.5	19	2.4	41
			5	1.6	0.1	0.1	8	12.9	60
		4201	4	1.4	0.1	0.0	5	1.1	15
			1	1.9	0.4	0.0	17	1.5	21
		4205	3	0.5	0.0	0.0	3	5.9	24
			1	1.2	0.1	0.0	6	1.1	36
			3	0.5	0.0	0.1	2	2.2	40
			1	1.0	0.1	0.2	5	5.3	46
		4206	1	0.9	0.3	0.1	9	1.6	36
			6	2.6	0.2	0.3	10	2.5	60

Criteria	JORC Code explanation	Commentary							
	_	4207	21	3.3	0.3	0.3	9	0.8	57
		4208	6	2.2	0.3	0.4	11	2.0	57
			1	4.1	0.1	0.1	9	2.8	86
		4209	2	3.0	0.1	0.1	8	0.7	41
			10	2.1	0.1	0.2	5	0.4	47
		4210	3	0.9	0.1	0.1	5	2.0	62
			1	0.8	0.0	0.0	5	7.7	74
			1	0.1	0.1	0.0	1	13.6	96
		4222	1	0.1	NA	NA	NA	3.7	64
			1	0.2	NA	NA	NA	2.8	68
			1	0.7	NA	NA	NA	2.3	85
			6	2.4	NA	NA	NA	3.8	90
		4223	8	4.5	NA	NA	NA	4.1	77
		4224	1	0.9	NA	NA	NA	1.7	25
			1	0.9	NA	NA	NA	3.0	28
			7	1.2	NA	NA	NA	7.7	50
			12	1.7	NA	NA	NA	1.4	63
		4225	12	1.3	NA	NA	NA	6.5	24
			5	0.9	NA	NA	NA	1.6	46
			1	2.1	NA	NA	NA	0.3	57
			5	1.6	NA	NA	NA	1.7	65
		4226	1	2.8	NA	NA	NA	0.9	31
			1	1.8	NA	NA	NA	2.0	36
			3	0.5	NA	NA	NA	2.1	58
			2	2.0	NA	NA	NA	0.2	86
		4249	1	0.1	0.0	0.0	1	8.8	15
			1	1.2	0.1	0.1	2	1.6	31
			3	1.6	0.2	0.3	6	0.8	40
		4250	8	3.8	0.2	0.5	9	2.7	30
		4251	2	0.0	0.0	0.0	1	4.3	4

Criteria	JORC Code explanation	Commentary							
			9	1.4	0.0	0.0	1	3.4	30
			2	1.1	NA	NA	NA	1.3	59
		4252	5	2.7	NA	NA	NA	22.9	27
			1	2.0	NA	NA	NA	0.4	42
		4254	1	0.8	NA	NA	NA	2.7	36
			3	1.7	NA	NA	NA	1.0	41
			1	0.8	NA	NA	NA	2.3	46
			1	1.6	NA	NA	NA	0.7	50
			1	0.6	NA	NA	NA	3.5	59
			2	2.3	0.2	0.5	13	0.0	86
		4255	1	0.1	NA	NA	NA	11.0	21
			1	1.1	0.0	0.0	1	1.4	32
			10	0.9	0.2	0.1	3	27.0	38
			5	2.2	NA	NA	NA	0.8	70
		4286	1	3.0	0.3	0.6	4	0.3	20
			4	1.5	0.7	0.2	8	0.7	23
			1	3.1	0.3	0.3	8	0.2	29
			1	2.8	0.2	0.4	24	0.9	37
			8	3.0	0.0	0.1	10	0.8	54
		4287	1	1.5	0.4	0.3	6	0.8	26
			2	0.2	0.5	0.2	18	23.2	31
			5	1.5	0.3	0.7	7	1.4	58
			3	1.7	0.0	0.0	3	0.6	66
		4288	3	1.4	0.0	0.0	2	1.5	53
		4290	2	1.2	1.8	2.7	108	0.1	36
		4291	3	3.0	0.3	0.2	14	0.3	29
			5	2.0	0.3	0.1	8	0.3	35
		4292	1	2.6	0.1	0.1	10	2.7	37
		4293	4	1.7	0.3	0.5	18	0.3	55
		4294	1	2.8	0.0	0.1	9	0.2	46

Criteria	JORC Code explanation	Commentary							
	_	4295	1	3.9	0.1	0.1	3	0.1	55
		4296	1	2.0	0.1	0.0	5	0.6	24
		4305	1	0.0	0.1	0.1	54	5.8	13
		4306	12	0.7	0.2	0.1	7	3.9	15
			1	0.2	0.2	0.0	13	3.5	29
		4308	2	0.5	0.3	0.1	13	9.0	8
			2	0.1	0.2	0.0	40	3.0	13
		4311	4	2.5	0.1	0.1	12	3.5	44
		4312	8	1.9	0.1	0.2	12	0.3	36
		4313	14	2.9	0.1	0.1	12	1.0	38
			1	2.0	0.0	0.1	3	0.3	54
			1	2.6	0.0	0.1	7	0.4	62
		4314	9	3.5	0.1	0.2	11	0.4	57
			3	2.5	0.0	0.1	9	0.2	69
		4318	1	2.2	0.2	0.2	3	0.1	27
			1	6.7	0.3	0.1	13	0.3	34
			2	3.4	0.0	0.1	8	0.1	40
			2	1.9	0.1	0.1	5	0.2	45
		4319	1	2.0	0.1	0.0	2	0.1	32
			8	3.9	0.5	0.1	5	0.3	37
		4320	3	3.0	0.1	0.0	3	0.1	29
			2	2.8	0.0	0.0	5	0.1	45
			2	2.0	0.0	0.1	2	0.0	48
		4321	1	2.5	0.9	0.1	6	0.3	16
		4322	1	3.6	1.2	0.2	12	0.3	13
			2	1.9	0.5	0.1	13	0.4	19
			2	1.8	0.3	0.1	7	0.4	31
			1	2.3	0.8	0.2	19	0.3	35
		4323	10	1.7	0.5	0.4	17	8.7	32
			2	1.9	0.1	0.1	8	0.3	45

Criteria	JORC Code explanation	Commentary							
	_	4324	24	5.3	0.1	0.1	18	0.4	49
			5	2.5	0.1	0.1	9	1.1	93
		4325	3	2.0	0.0	0.1	9	2.0	35
			6	1.7	0.1	0.1	6	0.8	50
		4327	1	2.3	0.1	0.1	7	0.3	29
		4329	2	1.9	0.1	0.1	12	4.4	34
			1	1.3	0.1	0.2	4	1.1	44
			4	2.2	0.1	0.1	4	0.3	62
		CMHDD009	14.75	1.4	5.9	3.1	28	6.8	132.25
		CMHDD044	1	1.9	0.0	0.1	6	0.3	121
			1	1.2	0.0	0.0	3	2.3	161
		D1	1	4.9	0.1	0.0	6	0.4	29
			7	2.6	0.0	0.1	4	1.6	36
			10	5.7	0.7	0.1	28	0.5	48
			1	2.1	0.0	0.1	5	0.3	63
			3	4.7	0.1	0.2	19	3.7	82
			1	0.9	0.1	0.0	5	2.0	91
		D3	1	3.2	0.1	0.1	7	0.7	104
			1	1.0	0.0	0.0	6	1.7	125
		D4	1	7.9	0.4	0.3	31	0.2	160
		D5	2.3	9.3	2.7	0.1	24	0.7	150.7
		D8	4.8	2.6	0.2	0.4	11	0.2	18.2
			2	2.2	0.0	0.4	6	0.2	26
			1.3	2.9	0.1	0.2	14	0.8	40.7
			2.44	3.4	0.0	0.1	12	1.3	56.56
			1	3.7	0.3	0.4	22	1.1	71
			1	0.2	0.0	0.0	1	5.3	78
		D9	3.62	1.6	0.0	0.2	10	2.4	45.38
			2	3.0	0.0	0.1	9	0.8	52
			2	0.8	0.0	0.1	5	1.7	60

Criteria	JORC Code explanation	Commentary							
		D10	3	7.0	0.1	0.7	16	1.0	28
			5.75	1.3	0.0	0.0	8	2.5	59
			1	0.4	0.1	0.1	6	2.5	92
		D11	1	2.0	0.0	0.1	81	0.1	58
			2	0.1	0.0	0.0	206	0.0	60
			6	2.0	0.0	0.1	4	0.2	70
			2	2.1	0.0	0.0	6	4.6	87
			4.3	2.3	0.0	0.1	6	1.3	102.7
		D12	3.6	3.9	0.1	0.0	10	0.8	32
			1	1.8	0.0	0.2	4	0.5	51
			1	2.6	0.1	0.2	7	0.3	56
			2	1.3	0.1	0.2	6	1.0	65
			9	2.9	0.0	0.1	8	0.4	71
		D13	11	2.6	0.0	0.1	4	0.1	93
			1	2.7	0.0	0.1	3	0.1	106
			1	1.5	0.0	0.0	6	1.8	116
			1	3.9	0.0	0.1	12	1.0	157
		D16	7.55	4.6	0.9	0.3	14	3.6	100.45
		D17	3.8	7.5	0.1	0.2	13	1.2	110.2
		D18	3.2	1.6	0.0	0.2	3	2.4	111.8
			1.4	4.8	0.1	0.1	11	0.8	120.6
		D21	1	2.3	0.0	0.1	7	0.1	60
			4	2.3	0.0	0.1	7	0.5	75
			2	2.1	0.1	0.1	8	0.2	108
			4.3	6.0	0.5	0.2	20	0.4	115.7
		D22	1.7	6.0	2.9	3.2	77	10.9	37
			5.62	2.0	0.2	0.3	9	0.9	60
			13	2.7	0.3	0.1	13	1.3	76
		D23	10.78	3.1	0.2	0.4	14	3.6	58
		D24	8.4	2.8	0.0	0.0	7	0.3	69.6

Criteria	JORC Code explanation	Commentary							
		D25	1.44	2.0	0.0	0.1	8	1.9	85.3
			2.23	4.1	0.2	0.1	14	0.4	92.77
			1.4	2.4	0.0	0.1	12	0.3	101
		D26	6	2.2	0.1	0.0	9	0.7	107
		D27	1.56	2.4	0.2	0.3	16	6.8	100.44
		D29	1	1.8	1.6	0.2	14	0.6	54
			1	2.5	0.3	0.2	10	0.4	70
			1	1.4	0.8	0.0	13	1.1	78
		D30	3	1.6	0.4	0.1	9	0.6	73
			3	2.8	0.1	0.1	10	0.5	80
			16	1.7	0.1	0.1	8	1.3	86
			1	2.2	0.0	0.1	8	0.6	106
		GD1	1.83	2.0	0.3	0.1	4	0.1	194.16
			1.22	3.5	0.3	0.3	1	0.9	216.71
			1.67	2.0	0.0	0.1	1	0.1	319.13
		GD2	4.57	2.5	0.0	0.1	3	0.1	56.69
			4.42	3.1	0.1	0.2	2	0.3	66.6
			1.83	3.0	0.1	0.1	4	0.6	73.76
		GD3	3.5	1.6	0.0	0.0	4	1.2	132.44
		GD59	10.67	2.8	0.2	0.2	9	1.8	30.48
			10.67	1.1	0.0	0.0	4	3.6	86.87
		GD67	1.52	2.3	0.1	0.0	0	0.1	25.91
		GD72	1.53	1.6	0.0	0.0	3	0.6	42.67
			1.53	1.8	0.0	0.0	4	0.3	47.24
			7.62	2.6	0.0	0.1	4	0.3	59.44
			6.1	2.2	0.1	0.0	0	0.1	96.01
		GD76	7.62	2.0	0.1	0.3	6	1.0	59.44
		GD107	6.09	0.1	0.4	0.6	11	5.3	67.06
		GD181	18.29	2.0	0.0	0.1	3	0.2	54.86
		GD184	6.1	0.1	0.0	0.0	1	11.8	24.38

Criteria	JORC Code explanation	Commentary							
	_	GD191	24.38	1.8	0.1	0.1	10	23.3	48.77
		GD193	18.29	1.8	0.0	0.1	5	0.5	42.67
		GMH13	2	4.3	0.7	0.4	14	9.6	48
		GMH17	1	5.3	0.0	0.0	1	0.0	23
			4	3.5	0.1	0.2	21	105.3	66
		GMH19	6	0.9	0.0	0.0	2	5.7	15
			2	1.8	0.0	0.0	3	1.5	30
			3	2.6	0.8	0.2	17	11.2	56
			1	2.2	0.0	0.1	4	0.3	65
			3	1.7	0.1	0.0	6	12.2	69
		GMH20	2	4.9	0.1	0.1	12	0.8	12
			1	5.1	0.0	0.0	5	0.2	19
			2	1.7	0.0	0.0	8	0.7	39
			7	2.0	0.1	0.3	21	56.3	69
			2	0.8	0.0	0.0	5	2.3	79
		GMH22	1	4.3	0.0	0.0	10	0.0	58
			1	8.3	0.0	0.0	18	9.2	63
			3	2.1	0.0	0.0	5	0.5	73
			7	2.5	0.0	0.0	9	0.5	87
			1	1.4	0.0	0.0	3	2.6	99
			1	1.8	0.0	0.0	5	2.5	106
		GMH25	13	1.4	0.3	0.4	NA	1.5	41
			3	1.4	0.0	0.1	NA	2.4	73
		GMH26	3	0.5	0.0	0.1	4	2.3	65
			4	2.3	0.1	0.1	8	1.5	83
		GMH36	1	1.8	0.0	0.1	4	0.4	59
			3	2.0	0.0	0.1	6	0.3	67
		GMH37	5	0.0	0.1	0.0	8	2.8	0
			1	2.0	0.1	0.2	7	2.3	47
			12	3.7	0.1	0.2	9	0.3	51

Criteria	JORC Code explanation	Commentary							
			2	4.3	0.1	0.1	11	0.1	68
			2	3.6	0.0	0.2	9	0.4	74
			3	1.9	0.0	0.0	8	1.6	120
		GMH40	2	4.6	0.1	0.1	14	0.4	44
			3	2.4	0.0	0.1	6	0.2	54
		GMH48	11	1.7	0.0	0.1	5	0.6	52
		JHUG02	8	2.7	NA	NA	NA	4.4	12
			2	3.4	NA	NA	NA	0.7	24
		JHUG03	5	4.0	0.5	NA	NA	2.7	45
		JHUG04	3.5	1.7	0.0	NA	NA	2.5	43
		JHUG06	2	3.0	0.1	NA	NA	0.4	26
		JHUG07	5	4.0	0.1	NA	NA	0.3	53
		JHUG08	3	3.1	0.0	NA	NA	2.7	62
		JHUG10	2	1.1	0.1	NA	NA	2.5	53
		JHUG11	1.25	10.4	0.1	NA	NA	3.5	53.75
		JHUG12	2	2.1	0.9	NA	NA	0.2	96
			5	4.6	0.1	NA	NA	1.3	109
		JHUG13	3.2	6.0	0.0	NA	NA	0.4	33.6
		JHUG14	1.5	1.8	0.0	NA	NA	0.2	46.7
		TMH8	1.55	0.7	23.8	9.6	124	0.9	100.2
		TMH78	1	3.3	0.0	0.1	8	0.2	61.7
		TMH102	1	0.0	0.1	0.0	3	2.8	47
			1	0.0	0.0	0.0	2	24.2	66
			2	0.6	0.0	0.5	3	4.8	112
		TMH106	1	0.3	0.1	0.0	1	2.6	6
		TMH110	3	8.3	0.1	0.0	8	0.4	22
		TMH111	1	0.7	0.0	0.2	1	2.2	77
			4	0.8	0.0	0.1	2	4.0	97
			2	0.4	0.0	0.1	2	12.1	110
		TMH204	1.7	0.0	0.1	0.0	1	5.8	45

Criteria	JORC Code explanation	Commentary								
	<u></u>		5	0.0	0.0		0.0	2	3.3	47
		Hole	Interval (m)	Cu %	Pb %	Zn %	Ag g/t	Au g/t	From (m)	Zone
		KMHRC149	4	1.6	0	0	5.1	5.1	42	Hanging Wall
			3	1	0	0	4.3	0.3	74	Hanging Wall
		KMHRC150	5	1.4	0	0.1	3.9	0.4	63	Hanging Wall
			7	2.7	0.1	0.1	6.1	0.2	83	Hanging Wall
		KMHRC151	1	1.8	0	0.1	4.4	0.2	81	Hanging Wall
		KMHRC152	7	1.9	0.1	0.1	5	0.1	86	Hanging Wall
		KMHRC153	5	0.9	0	0.1	3.2	0.1	27	Supergene
		KMHRC154	1	1.7	0	0	3	0.1	34	Hanging Wall
			1	1.3	0	0	3	0.2	41	Hanging Wall
			1	2.6	0	0.1	6.2	0.1	46	Hanging Wall
			2	1.3	0.2	0.2	6.3	0.1	52	Hanging Wall
			6	2.6	0	0.1	7.5	0.5	62	Hanging Wall
		KMHRC155	2	1.5	0	0	5.7	0.3	40	Footwall
			1	3	0	0.1	8.6	0.2	47	Footwall
			5	0.4	0.3	0.6	6.5	0.5	85	Footwall
		KMHRC156	7	1.1	0.1	0.1	3.8	0.1	17	Supergene
			1	2.1	0	0	4.8	0.3	30	Main Lode
			4	0.9	0	0	3.9	0.3	38	Main Lode
			5	1.6	0.1	0.2	12.6	1.7	45	Footwall
			2	0.7	0	0.1	2.7	0.6	54	Footwall
		KMHRC157	1	0.6	0.1	0.1	13.2	0.7	24	Supergene
			2	1.1	0	0	4.9	0.2	34	Main Lode
			6	1	0	0.1	6.1	0.3	48	Footwall
		KMHRC158	2	4.1	0.1	0	2.7	0.2	23	Supergene
			9	0.8	0	0	2.5	0.3	30	Hanging Wall
			4	1.5	0.1	0.1	5.3	0.3	42	Hanging Wall

Criteria	JORC Code explanation	Commentary								
	<u></u>		5	3	0.1	0.3	10.7	0.3	56	Hanging Wall
		KMHRC159	9	6.2	0	0	8.6	2.9	24	Supergene
		including	4	12.3	0.1	0	17	6.1	24	Supergene
		and	2	2.1	0	0	2.7	0.6	31	Supergene
			3	3	0	0	6.9	2.2	38	Hanging Wall
			9	0.7	0	0.1	2.7	0.2	45	Hanging Wall
			4	1	0	0.1	2.4	0.2	61	Hanging Wall
			2	2.8	0	0.1	5.2	0.3	71	Hanging Wall
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should 	reported intervals equivalent for co depending on the grades. The copper equir copper, lead, silv estimated zinc re estimated transp	s treated pper-rich e particul valent eq ver, and g ecovery a ort costs ng assay	as no grade. mineralisatio ar mineralisa uation used old metal red fter installatio smelter cha intervals the	The cut-o on and 2 x tion style a to select si coveries th on of additi rges, and p incorporat	ff used for Cu% + Pt and contex gnificant ir rough flota ional flotat oayability f ion of mor	selecting signs, $2\% + Zn\% \ge 10\%$ t. No top currentercepts wattion using the tion capacity for these corrected by the tion the tion capacity for the tion the tion capacity for the tion the tion capacity for the tion tion the tion the tion tion the tion tion the tion tion tion the tion tion tion tion tion tion tion tion	gnificant inte 4 for polyme ts have been s derived by ne current M . These data nmodities in	ersections is etallic miner n applied wh v applying m lineral Hill p a were comb concentrate	ecovered core within the typically 1% copper or alisation but may vary nen calculating average neasured and assumed lant configuration, and a bined with known or e form. rade material or internal

Criteria	JORC Code explanation	Commentary
	be shown in detail. • The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Down-hole widths of significant historical drilling intersections are tabulated above. Uncertainty in the orientation of individual vein and breccia zones, pending further work, means that providing true width estimates at this stage could be misleading. It can be assumed that the true widths are less than the reported down-hole widths.
Diagrams	Appropriate maps	Appropriate section views and results tables are provided in the release. The inclusion of a plan view is regarded as

Criteria	JORC Code explanation	Commentary
	and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	unnecessary as collar coordinates and orientations of recent and historical drill holes are provided in the Appendix.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Only mineralised intersections regarded as highly anomalous, and therefore of economic interest, have been included in the results tables. Low grade mineralisation at Jacks Hut is characterised by intervals containing only thin (1-2m) intercepts of potentially economic grades. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the hole depth.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and 	Historical production records at Jacks Hut indicate that 705,067 tonnes of ore was treated between 1993 and 1999 — average recoveries were 94.1% for copper by flotation and 72.4% for gold also using flotation, producing an average 24% copper grade in concentrate.

Criteria	JORC Code explanation	Commentary
	method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	The scope of planned future work is described in the release.