

Drilling update from Yinnetharra and Mt Ida

Highlights:

- The **Yinnetharra Lithium Project** is an early stage exploration project that covers a **large 505km**² **area** within the Gascoyne Lithium Province of **Western Australia**
 - Maiden Resource Estimate (MRE) of 25.7Mt @ 1% Li₂O reported in December 2023¹
 - This MRE is located within a 1.6km section of the 40km strike length of Delta's prospective stratigraphy at the broader Yinnetharra Lithium Project.
 - Drilling at the next target area (Jameson) is scheduled to commence in the current Quarter
- The Mt Ida Lithium Project is located in the Goldfields region of Western Australia
 - Existing MRE of 14.6Mt @ 1.2% Li₂O reported in October 2023²
 - Additional Gold MRE of 3.1Mt @ 4.1 g/t Au for 412 koz reported in November 2023³
 - o Initial Open Pit Phase 1 is shovel ready with all environmental and mining permits in place
- New drilling results include⁴:

<u>Yinnetharra</u>

- o **26m @ 1.7% Li₂O** from 180m in YDRD033 at Malinda
- **17m @ 1.4% Li**₂**O** from 187m in YRRD274 at Malinda
- o **19m @ 1% Li₂O** from 232m in YRRD286 at Malinda

<u>Mt Ida</u>

- **27m @ 1.6% Li**₂**O** from 575.3m in SSRD058 at Sister Sam
- o **20m @ 1.5% Li**₂**O** from 79m in GCS0025 at Sister Sam
- **3m @ 41g/t Au** from 87m in MNGC087 at Meteor North
- o 2.4m @ 51.6g/t Au from 55.6m in AURD026 at Meteor North
- o 15m @ 6.17g/t Au from 42m in MNGC154 at Meteor North
- o 1m @ 113.6g/t Au from 86m in MNGC080 at Meteor North

Delta Lithium Limited (ASX: DLI) ("Delta" or the "Company"), is pleased to announce an update for drilling activities at both its 100% owned Lithium Projects at Yinnetharra and Mt Ida, in the Gascoyne region and Goldfields region of Western Australia respectively.

Four drill rigs are currently undertaking drilling activities onsite at Yinnetharra with extensive field work being undertaken across both projects.

At Yinnetharra, new drilling assay results show further high-grade mineralisation from the M1, M36 and M47 pegmatites at Malinda. Recent extensional drilling has shown the M1 and M36 pegmatites both have a strike extent of 1.6km and are both open along strike. A total of 5 mineralised pegmatites were included in the maiden resource estimate reported in December 2023.

- 1. Refer ASX Announcement 27 December 2023 titled 'Yinnetharra Lithium Project Maiden Mineral Resource Estimate'
- 2. Refer ASX Announcement 3 October 2023 titled 'Mt Ida Mineral Resource Estimate Update'
- 3. Refer ASX Announcement 11 October 2023 titled 'Mt Ida Maiden Gold Mineral Resource Estimate'
- 4. Refer to Appendix 1 for full drill hole information

At Mt Ida, further infill drilling assay results exceed expectations with thicker and higher grade than expected intercepts for both Lithium and gold intercepted, including an additional pegmatite that sits within the Sister Sam pit area and is mineralised from surface.

Commenting on the results Managing Director, James Croser said;

"Our exploration success carries on at Yinnetharra and Mt Ida, as Delta continues to build confidence in our geological models, both within and outside the existing MRE's.

The team at Yinnetharra has 4 rigs in at Malinda, and is diligently and systematically mapping and doing soils across the wide expanse of our project tenure including early reconnaissance at Lyons River. All this to build up multiple additional firm targets along and adjacent to our 40kms+ strike of target lithology.

Heritage surveys to commence next week at Jamesons will enable us to mobilise a drill to that very prospective target in short order.

And at Mt Ida, pleasing results with consistent Lithium grades and widths in resdef drilling. And everyone loves high-grade gold assays!"

Yinnetharra Exploration

Ongoing drilling at the Yinnetharra Project has continued to demonstrate thick continuous lithium mineralisation from surface. Drilling has been utilising three (3) Reverse Circulation (RC) rigs and one (1) Diamond Drill (DD) rig, testing Malinda pegmatites along strike and down dip.

Wide spaced step out drilling has been used to define the edges of known pegmatites at Malinda. Pegmatites are forming shallow dipping sheets within which thickened zones (up to 70m thick in places) that contain spodumene have a shallow easterly plunge, with emplacement and morphology of the pegmatites controlled by a series of structures and contacts between amphibolite and schist units.

The Malinda target represents only a very small area of the 40km strike length at Yinnetharra. Heritage surveys are planned to commence in the coming week focusing on the Jamesons prospect with drilling of that prospect due to commence shortly after Heritage surveys and POW approvals.

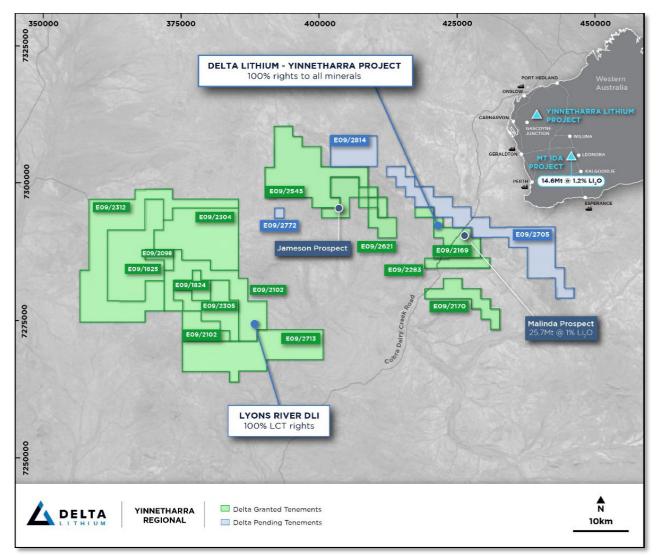


Figure 1: Yinnetharra plan showing general location of drilling at the Malinda Prospect and the Jamesons Prospect.

Drilling results from the Malinda Prospect show thick, consistent, and strike extensive pegmatite bodies

Drilling on site at the Malinda Lithium Prospect is focussing on defining and extending known pegmatites and searching for additional pegmatites.

Pegmatites are open to the east with a diamond drill rig dedicated to testing easterly extents.

Multiple positions south of the main Malinda footprint are being followed up with RC drilling.

Broad spaced slimline RC drilling is being undertaken around the outside of the Malinda footprint where cover prevents surface geochemical sampling from being effective.

A heritage survey is due to start next week at the Jamesons prospect, with drilling due to start shortly after to test outcropping pegmatites, bearing high-grade coarse spodumene rock chips up to 4.1% Li₂O.

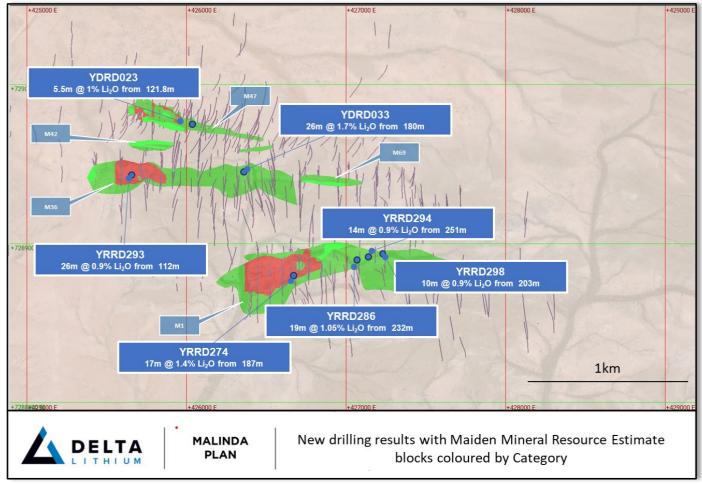


Figure 2: Plan showing drilling at Malinda

Table 1: Significant Intercepts from Yinnetharra >0.5% Li₂O (See Appendix 1 for full list of intercepts)

HoleID	From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
YDRD033	180	206	26	1.7	112	0.57
YRRD293	112	138	26	0.89	70	0.59
YRRD286	232	251	19	1.05	55	0.95
YRRD274	187	204	17	1.43	27	1.14
YRRD292	229	245	16	0.99	39	1.29
YRRD294	251	265	14	0.92	49	1.43
YRRD298	203	213	10	0.9	47	6.14
YDRD023	121.85	127.4	5.55	1.01	290	4.65

Mt Ida Exploration

Infill Drilling results from Mt Ida outlined an additional pegmatite within the Sister Sam area that is lithium mineralised from surface as well as demonstrating thicker than anticipated pegmatite intercepts.

Infill gold drilling from the Meteor North and Baldock 086 continue to demonstrate excellent high grade near surface results.

Figure 3: Detailed plan from Mt Ida showing latest results from infill drilling

HoleID	From	То	Length	Li2O %	Ta2O5 ppm	Fe2O3 %
SSRD058	575	602	27	1.6	95	1.01
GCS0019	68	95	27	0.78	67	3.09
SPRD059	487	510	23	0.85	88	1.68
GCS0025	79	99	20	1.47	256	0.87
GCS0277	130	145	15	1.17	181	2.03
GCS0278	139	154	15	1.37	258	0.69
GCT273	103	118	15	1.35	167	1.07
GCT274	113	127	14	1.48	144	0.91
GCT278	111	125	14	1.39	168	0.86
GCS0260	1	14	13	0.7	81	0.82
GCS0281	134	147	13	0.76	265	0.84
GCS0133	115	127	12	1.02	209	1.56
GCS0276	127	139	12	1.18	199	1.56
GCS0280	128	139	11	0.6	280	0.57
GCS0287	122	133	11	1.39	292	1.08
GCS0288	126	137	11	1.54	292	0.95
SSRD058	622	632	10	1.54	168	0.97
GCS0283	124	134	10	1.53	240	0.74
GCS0282	141	150	9	1.63	268	0.87
GCS0284	130	139	9	1.48	279	0.69

Table 2: Significant Li intercepts from Mt Ida >0.5% Li₂O (See appendix 2 for full list)

Table 3: Significant Au intercepts from Mt Ida above 1g/t Au (See Appendix 2 for full list)

HoleID	From	То	Length	Au_gpt	Cu_ppm
AURD026	55.61	57.98	2.37	51.63	9420
MNGC080	87	88	1	113.55	
MNGC154	42	57	15	6.17	2097
GCT216	43	46	3	30.32	2857
MNGC088	84	87	3	13.86	313
GCS0118	153	156	3	13.6	1479
MNGC058	50	51	1	39.79	
GCS0215	52	54	2	17.06	8100
MNGC387	78	80	2	14.74	2405
MNGC063	38	47	9	3.24	1001
GCS0315	118	126	8	3.64	318
MNGC069	55	59	4	6.71	2792
IDRD300	63.95	65.69	1.74	14.47	681
AURD022	46	47.35	1.35	17.87	1215
GCS0005	100	105	5	4.48	1217
GCS0118	147	148	1	22.21	
GCS0281	164	167	3	6.35	3627

Release authorised by the Managing Director on behalf of the Board of Delta Lithium Limited.

For further information, please contact: **Delta Lithium** James Croser, Executive Director Peter Gilford, CFO & Company Secretary +61 8 6109 0104 info@deltalithium.com.au

Investor/Media Enquiries

Citadel-MAGNUS Michael Weir +61 402 347 032 Jono van Hazel +61 411 564 969

About Delta Lithium

Delta Lithium (ASX: DLI) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With current global JORC compliant resources of 40.4Mt@1.1%Li₂O, strong balance sheet and an experienced team driving the exploration and development workstreams, Delta Lithium is rapidly advancing its Lithium Projects. The Mt Ida Lithium Project holds a critical advantage over other lithium developers with existing Mining Leases and an approved Mining Proposal. Delta Lithium is pursuing a development pathway to unlock maximum value for shareholders.

Delta Lithium also holds the highly prospective Yinnetharra Lithium Project that is already showing signs of becoming one of Australia's most exciting lithium regions. The Company is currently recommencing exploration activities at Yinnetharra after the Christmas break, and an extensive multi-rig campaign will be ongoing throughout 2024 to test additional targets and build on the Maiden Resource released in December 2023.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Charles Hughes, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr. Hughes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Hughes is an employee of Delta Lithium Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Refer to www.deltalithium.com.au for past ASX announcements.

Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Delta Lithium in accordance with JORC 2012. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.deltalithium.com.au for details on past exploration results and Mineral Resource Estimates.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on Delta Lithium management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Delta Lithium, which could cause actual results to differ materially from such statements. Delta Lithium makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing

Refer to www.deltalithium.com.au for past ASX announcements.

Appendix 1: Drill hole information

Yinnetharra results

HoleID		From	То	Length	Li ₂ O %	Ta₂O₅ ppm	Fe ₂ O ₃ %
YDRD033		180	206	26	1.7	112	0.57
YRRD293	and	112	138	26	0.89	70	0.59
YRRD317	and	121	145	24	0.66	91	0.70
YRRD301		121	144	23	0.68	84	1.12
YDRD023	and	135.89	157.74	21.85	0.38	61	7.50
YRRD286		232	251	19	1.05	55	0.95
YDRD023	and	168.06	186.8	18.74	0.86	67	3.98
YRRD274		187	204	17	1.43	27	1.14
YRRD292		229	245	16	0.99	39	1.29
YRRD294		251	265	14	0.92	49	1.43
YRRD309		90	102	12	0.34	54	2.10
YRRD298		203	213	10	0.9	47	6.14
YRRD291		91	99	8	0.67	68	0.82
YRRD307		171	178	7	0.34	86	3.59
YRRD286	and	258	264	6	0.86	25	0.84
YRRD299		88	94	6	0.37	51	4.39
YDRD023		121.85	127.4	5.55	1.01	290	4.65
YRRD290		159	164	5	0.99	13	12.95
YRRD295		159	164	5	0.83	65	0.71
YRRD317	and	103	108	5	0.58	64	6.30
YRRD288		261	265	4	0.98	53	1.15
YRRD303		163	167	4	0.81	77	0.63
YRRD317	and	43	45	2	0.38	19	13.27
YRRD287		134	135	1	0.58	6	12.20
YRRD287	and	138	139	1	0.33	42	1.97
YRRD293		26	27	1	0.39	12	9.59
YRRD301		112	113	1	0.36	59	5.29
YRRD309		45	46	1	0.8	190	0.93
YRRD317		1	2	1	0.34	76	1.19
YRRD317	and	5	6	1	0.35	132	3.22
YRRD317	and	37	38	1	0.34	74	15.73
YDRD023	and	129.87	130.85	0.98	0.37	7	14.10
YDRD028							
YDRD029							
YDRD030	no signif	icant results					

HoleID	From	То	Length	Li ₂ O %	Ta₂O₅ ppm	Fe ₂ O ₃ %
YDRD031	no significant results					
YDRD031a	no significant results					
YDRD032	no significant results					
YDRD034	results outstanding					
YDRD035	no significant results					
YDRD036	results outstanding					
YDRD037	results outstanding					
YDRD038	results outstanding					
YDRD039	results outstanding					
YDRD040	results outstanding					
YDRD041	results outstanding					
YDRD042	results outstanding					
YREX070	no significant results					
YREX072	no significant results					
YREX076	no significant results					
YREX078	no significant results					
YREX080	no significant results					
YREX082	no significant results					
YREX084	no significant results					
YREX085	no significant results					
YREX086	no significant results					
YREX087	no significant results					
YREX088	no significant results					
YREX089	no significant results					
YREX090	no significant results					
YREX091	no significant results			1		
YREX092	no significant results			1		
YREX093	no significant results					
YRRD272	no significant results					
YRRD289	no significant results					
YRRD296	no significant results					
YRRD297	no significant results					
YRRD300	no significant results					

Yinnetharra collars

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YDRD023	213.67	426031.00	7289843.00	322.8	179.74	-55.66
YDRD028	189.9	425791.00	7289330.00	327.3	358.68	-59.63

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YDRD029	204.4	426031.00	7289323.00	325.6	358.73	-60.25
YDRD030	174.7	425808.00	7289422.00	313.0	334.65	-55.67
YDRD031	81.34	426311.00	7289283.00	318.0	359.02	-60.39
YDRD031a	248.9	426311.00	7289283.00	318.0	359.02	-60.39
YDRD032	258.5	426271.00	7289303.00	321.0	1.79	-60.97
YDRD033	261.56	426531.38	7289342.66	320.0	358.6	-60.2
YDRD034	279.66	426351.00	7289283.00	319.0	356.89	-60.01
YDRD035	226.75	426391.00	7289363.00	319.0	0.95	-59.97
YDRD036	321.76	426371.00	7289243.00	318.0	11.24	-60.57
YDRD037	246.54	426351.38	7289383.00	320.0	4.8	-63.94
YDRD038	264.4	426271.00	7289347.00	324.0	0.38	-60.9
YDRD039	243.7	426446	7289337	319.6	359.15	-59.75
YDRD040	150.78	425671	7289410	324.3	1.03	-64.21
YDRD041	192.41	425711	7289323	326.4	3.24	-61.5
YDRD042	237.8	425951	7289323	326.6	0.24	-59.81
YREX022	745.82	427602.27	7288262.37	332.32	1.33	-60.44
YREX024	750.9	427750.05	7288285.31	337.81	359.39	-60.57
YREX070	199	425217.00	7289545.00	321.0	4.34	-55.62
YREX072	199	425217.00	7289385.00	324.3	3.16	-55.52
YREX076	246.0	425057	7289625	319.64	3.81	-56.11
YREX078	174.0	424897	7289705	318.87	176.5	-56.98
YREX080	228.0	424897	7289865	317.99	181.7	-55.47
YREX082	240.0	424737	7289785	318.22	357.67	-55.54
YREX084	104.0	424737	7289625	319.26	13.3	-56.01
YREX085	240.0	424417	7289797	315.87	1.92	-54.23
YREX086	240.0	423970	7289865	315.87	183.22	-54.45
YREX087	240.0	424417	7289625	322.9	3.65	-54.73
YREX088	234.0	424630	7289864	317.62	180.87	-52.6
YREX089	228.0	424577	7289705	318.34	182.04	-53.27
YREX090	204.0	423777	7289935	314.97	1.25	-53.03
YREX091	216.0	423777	7289785	315.33	1.39	-53.36
YREX092	240.0	423777	7289625	315.73	2.38	-53.06
YREX093	198.0	423777	7289465	315	1.41	-53.39
YRRD272	186	426400.00	7288579.00	314.5	349.43	-54.64
YRRD274	252	426685	7288677	318.65	0.04	-60.39
YRRD286	306	427090	7288717	323	0.41	-55.98
YRRD287	210	427165	7288858	324	2.62	-55.19
YRRD288	312	427005	7288658	322	1.15	-55.06
YRRD289	108	425631	7289463	324	2.23	-58.34
YRRD290	228	427165	7288818	325	0.94	-54.91
YRRD291	138	425631	7289423	324	358.43	-58.38
YRRD292	288	427165	7288738	326	1.63	-54.98
YRRD293	156	425631	7289343	324	1.25	-58.02
YRRD294	324	427165	7288698	325	358.73	-53.61
YRRD295	174	425638	7289299	326	358.42	-58.19
YRRD296	210	427244	7288860	326	1.77	-53.6

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YRRD297	102	425671	7289483	325	0.25	-58.68
YRRD298	288	427245	7288773	329	1.39	-53.46
YRRD299	120	425671	7289443	325	359.06	-64.03
YRRD300	210	427326	7288900	326	1.93	-55.14
YRRD301	163	425671	7289363	325	358.84	-61.72
YRRD302	210	427325	7288858	327	358.55	-55.92
YRRD303	181	425671	7289323	326	0.71	-62.03
YRRD304	240	427325	7288818	329	358.96	-55.01
YRRD305	108	425711	7289493	326	0.03	-56.71
YRRD306	270	427325	7288778	331	0.89	-54.09
YRRD307	192	425751	7289333	327	359.35	-57.05
YRRD308	312	427325	7288738	331	353.88	-47.65
YRRD309	132	425751	7289443	326	358.07	-61.89
YRRD310	360	427325	7288700	330	0	-55
YRRD311	192	425791	7289483	327	355.41	-62.42
YRRD312	180	426525	7288707	317	357.93	-60.27
YRRD313	138	425791	7289443	327	1.06	-62.78
YRRD314	54	426476	7288891	317	0.7	-59.92
YRRD315	90	425831	7289463	327	357.99	-62.2
YRRD316	102	426481	7288819	317	2.83	-59.3
YRRD317	174	425831	7289383	328	355.23	-61.93
YRRD318	210	426476	7288771	316.7	3.01	-59.21
YRRD319	180	425871	7289503	328	356.53	-62.61
YRRD320	240	426476	7288731	316	0.38	-60.96
YRRD321	180	425871	7289463	327	358.35	-61.95
YRRD322	156	426564	7288907	319	359.75	-61.08
YRRD323	138	425871	7289423	327	358.62	-61.74
YRRD324	186	426564	7288867	319	357.54	-60.18
YRRD325	174	425871	7289383	327.9	1.07	-63.14
YRRD326	210	426564	7288827	319.3	357.08	-58.16
YRRD327	203	425871	7289343	328.1	1.85	-60.43
YRRD328	192	426564	7288787	310	0.4	-60.05
YRRD329	215	425871	7289303	328.5	358.44	-66.33
YRRD330	210	426827	7288876	322	341.74	-62.12
YRRD331	150	425911	7289403	327.8	357.2	-60.99
YRRD332	168	426853	7288910	321.2	350.67	-59.79
YRRD333	197	425911	7289343	327.7	359.12	-60.46
YRRD334	102	426890	7288943	320.8	345.65	-60.11
YRRD335	161	425951	7289503	326.8	358.35	-61.26
YRRD336	114	426872	7288931	320.9	10.28	-59.72
YRRD337	108	425951	7289443	327.3	359.75	-60.95
YRRD338	198	426844	7288870	321.8	0.43	-56.16
YRRD339	132	425951	7289403	327.9	357.7	-60.13
YRRD340	168	426883	7288884	322	0.25	-54.96
YRRD341	200	426191	7289443	325.8	0.25	-59.95
YRRD342	108	426954.67	7288916.13	322	14.17	-55.52

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YRRD343	187	426191	7289403	327.3	358.5	-59.53
YRRD344	354	427005	7288578	324	358.18	-57.76
YRRD345	204	426191	7289363	328.2	359.4	-58.99
YRRD346	384	427243	7288690	329	359.59	-69.45
YRRD347	204	426191	7289263	322.5	1.49	-59.25
YRRD348	378	427325	7288668	330	357.95	-57.74
YRRD349	198	426231.38	7289402.66	325.48	359.61	-68.79
YRRD350	486	427310	7288540	330	1.6	-57.77
YRRD351	186	426231	7289442	324	357.83	-65.81
YRRD352	276	427399	7288789	333	5.59	-58.09
YRRD355	216	426271	7289443	323.1	357.95	-65.04
YRRD357	210	426271	7289403	323.1	355.93	-63.83
YRRD359	282	426271	7289263	321	359.43	-62.79

Mt Ida Results

HoleID		From	То	Length	Au_gpt	Cu_ppm
AURD021		27	33.58	6.58	1.81	2222
AURD022		46	47.35	1.35	17.87	1215
AURD022	and	52	54.17	2.17	2.02	281
AURD023		68.67	69.2	0.53	8.3	1230
AURD024		46.2	46.72	0.52	17.9	3560
AURD024		47.06	48	0.94	2.12	1800
AURD025		45.85	47.93	2.08	6.68	2436
AURD026		55.61	57.98	2.37	51.63	9420
AURD026	and	62.96	66.03	3.07	5.05	1213
AURD027		21.96	28	6.04	1.78	1103
AURD027		32.96	34	1.04	1.76	247
AURD028		56.73	60.36	3.63	1.77	1083
GC\$0005		100	105	5	4.48	1217
GC\$0005	and	114	115	1	13.11	404
GC\$0019		23	24	1	1.09	12
GC\$0025	no significant resu	lts				
GC\$0028	no significant resu	lts				
GC\$0035		17	21	4	1.29	564
GC\$0035	and	107	111	4	4.08	778
GC\$0042		34	36	2	1.69	224
GC\$0042	and	148	149	1	1.07	286
GC\$0043		113	114	1	2.8	1360
GC\$0044	no significant resu	lts				
GC\$0092		55	56	1	2.21	76
GC\$0092	and	90	91	1	1.44	313
GC\$0102		43	45	2	3.15	313
GC\$0103		52	53	1	2.34	464
GC\$0103	and	58	59	1	1.42	351
GC\$0103	and	147	148	1	3.82	305

GCS0110 45 46 1 2.54 941 GCS0111 58 59 1 3.84 4240 GCS0113 142 144 2 2.66 1783 GCS0114 no significant results GCS0115 no significant results GCS0116 no significant results GCS0118 and 106 107 1 4.41 4700 GCS0118 and 147 148 1 22.21 GCS0118 and 153 156 3 13.6 1479	HoleID		From	То	Length	Au_gpt	Cu_ppm
GCS0110 45 46 1 2.54 941 GCS0111 58 59 1 3.84 4240 GCS0113 142 144 2 2.66 1783 GCS0114 no significant results GCS0115 no significant results GCS0118 and 147 148 1 22.21 GCS0118 and 147 148 1 22.21 GCS0118 and 153 156 3 13.6 1479 GCS0124 30 32 2 1.74 312 GCS013 117 118 1 2.02 854 GCS014 no significant results GCS0215 and 63 644 1 1.25 82 GCS0215 and 63 644 1 1.25 82 </td <td>GC\$0104</td> <td>no significant resu</td> <td>lts</td> <td></td> <td></td> <td></td> <td></td>	GC\$0104	no significant resu	lts				
GCS0111 58 59 1 3.84 4240 GCS0113 no significant results 142 144 2 2.66 1783 GCS0115 no significant results </td <td>GC\$0107</td> <td></td> <td>62</td> <td>63</td> <td>1</td> <td>3.45</td> <td>2370</td>	GC\$0107		62	63	1	3.45	2370
GCS0113 142 144 2 2.66 1783 GCS0114 no significant results	GC\$0110		45	46	1	2.54	941
GCS0114 no significant results Image: constraint of the sults Image: constraint of the sults GCS0115 no significant results Image: constraint of the sults Image: constraint of the sults Image: constraint of the sults GCS0118 and 1106 107 1 4.41 4700 GCS0118 and 1133 156 3 13.6 1479 GCS0118 and 1133 156 3 13.6 1479 GCS0118 and 117 118 1 2.02 854 GCS0134 no significant results Image: constraint of the sults Imag	GC\$0111		58	59	1	3.84	4240
GCS0115 no significant results Image: constraint of the second s	GC\$0113		142	144	2	2.66	1783
GCS0115 no significant results Image: constraint of the second s	GCS0114	no significant resu	lts				
GCS0116 no significant results Image: constraint of the second s	GC\$0115						
GCS0118 Ind							
GCS0118 and 153 156 3 13.6 1479 GCS0119 73 74 1 4.34 4520 GCS0124 30 32 2 1.74 312 GCS0133 117 118 1 2.02 854 GCS0134 no significant results				107	1	4.41	4700
GCS0118 and 153 156 3 13.6 1479 GCS0119 73 74 1 4.34 4520 GCS0124 30 32 2 1.74 312 GCS0133 117 118 1 2.02 854 GCS0134 no significant results	GCS0118	and	147	148	1	22.21	
GCS0119 73 74 1 4.34 4520 GCS0124 30 32 2 1.74 312 GCS0133 1117 118 1 2.02 854 GCS0134 no significant results		and	153	156	3		1479
GCS0124 30 32 2 1.74 312 GCS0133 117 118 1 2.02 854 GCS0134 no significant results 52 54 2 17.06 8100 GCS0215 and 63 64 1 1.25 82 GCS0217 644 65 1 2.38 1925 GCS0228 no significant results							4520
GCS0133 117 118 1 2.02 854 GCS0134 no significant results 52 54 2 17.06 8100 GCS0215 and 63 64 1 1.25 82 GCS0217 and 64 65 1 2.38 1925 GCS0226 no significant results				32	2	1.74	312
GCS0134 no significant results Image: constraint of the system of the s							
GCS0215 and 52 54 2 17.06 8100 GCS0215 and 63 64 1 1.25 82 GCS0217 on significant results 2.38 1925 GCS0228 no significant results 1 1.76 1095 GCS0228 and 94 95 1 1.3 268 GCS0237 70 71 1 1.93 4490 GCS0239 75 76 1 1.21 8060 GCS0241 and 127 128 1 1.46 67 GCS0241 and 127 128 1 1.46 67 GCS0248 no significant results GCS0250 no significant results GCS0252 and 122 123 1 1.17 132		no significant resu	lts				
GCS0215 and 63 64 1 1.25 82 GCS0217 on significant results 1 2.38 1925 GCS0226 no significant results 1 1.76 1095 GCS0228 and 94 95 1 1.3 268 GCS0237 70 71 1 1.93 4490 GCS0239 75 76 1 1.21 8060 GCS0241 99 101 2 4.92 2540 GCS0241 and 127 128 1 1.46 67 GCS0250 no significant results GCS0252 and 122 123 1 1.17 132				54	2	17.06	8100
GCS0217 64 65 1 2.38 1925 GCS0226 no significant results 77 78 1 1.76 1095 GCS0228 and 94 95 1 1.3 268 GCS0237 70 71 1 1.93 4490 GCS0237 70 71 1 1.93 4490 GCS0239 75 76 1 1.21 8060 GCS0241 and 127 128 1 1.46 67 GCS0248 no significant results GCS0250 no significant results		and					
GCS0226 no significant results Image: constraint of the second s					1		
GCS0228 77 78 1 1.76 1095 GCS0228 and 94 95 1 1.3 288 GCS0237 70 71 1 1.93 4490 GCS0239 75 76 1 1.21 8060 GCS0241 99 101 2 4.92 2540 GCS0248 no significant results		no sianificant resu					
GCS0228 and 94 95 1 1.3 248 GCS0237 70 71 1 1.93 4490 GCS0239 75 76 1 1.21 8060 GCS0241 and 127 128 1 1.46 67 GCS0248 no significant results				78	1	1.76	1095
GCS0237 70 71 1 1.93 4490 GCS0239 75 76 1 1.21 8060 GCS0241 99 101 2 4.92 2540 GCS0241 and 127 128 1 1.46 67 GCS0248 no significant results GCS0250 no significant results GCS0252 97 98 1 1.25 2690 GCS0252 and 122 123 1 1.17 132		and			1		
GCS0239 75 76 1 1.21 8060 GCS0241 and 127 128 1 1.46 67 GCS0248 no significant results 67 GCS0248 no significant results 67 GCS0250 no significant results 67 GCS0252 and 122 123 1 1.17 132 GCS0252 and 122 123 1 1.17 132 GCS0260 no significant results GCS0261 no significant results GCS0262 no significant results GCS0262 no significant results GCS0264 88 89 1 1.5 124 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>					1		
GCS0241 99 101 2 4.92 2540 GCS0241 and 127 128 1 1.46 67 GCS0248 no significant results 67 GCS0250 no significant results 67 GCS0252 97 98 1 1.25 2690 66 2650252 and 122 123 1 1.17 132 66 67 106 66 106 106 106 106 106 106 106 106 106 106 106 <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>					1		
GCS0241 and 127 128 1 1.46 67 GCS0248 no significant results 67 GCS0250 no significant results							
GCS0248 no significant results Image: constraint of the system Image: constraintex of the system		and					
GCS0250 no significant results 97 98 1 1.25 2690 GCS0252 and 122 123 1 1.17 132 GCS0252 and 122 123 1 1.17 132 GCS0260 no significant results GCS0261 no significant results GCS0262 no significant results		no sianificant resu		-			
GCS0252 and 97 98 1 1.25 2690 GCS0252 and 122 123 1 1.17 132 GCS0260 no significant results 1 1.17 132 GCS0260 no significant results <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
GCS0252 and 122 123 1 1.17 132 GCS0260 no significant results 1 1.17 132 GCS0260 no significant results <td< td=""><td></td><td></td><td></td><td>98</td><td>1</td><td>1.25</td><td>2690</td></td<>				98	1	1.25	2690
GCS0261 no significant results GCS0262 no significant results GCS0263 no significant results GCS0264 88 89 1 1.5 124 GCS0274 93 94 1 2.57 1065 GCS0275 114 115 1 1.22 312 GCS0276 114 115 1 2.26 312 GCS0277 73 74 1 6.34 786 GCS0277 and 124 125 1 1.94 1120 GCS0277 and 153 155 2 1.08 3650 GCS0278 169 171 2 6.8 1938 GCS0279 no significant results 5 2 1.08 3650 GCS0279 no significant results 5 5 3 3 3 GCS0280 71 72 1		and			1		
GCS0261 no significant results GCS0262 no significant results GCS0263 no significant results GCS0264 88 89 1 1.5 124 GCS0274 93 94 1 2.57 1065 GCS0275 114 115 1 1.22 312 GCS0276 114 115 1 2.26 312 GCS0277 73 74 1 6.34 786 GCS0277 and 124 125 1 1.94 1120 GCS0277 and 153 155 2 1.08 3650 GCS0278 169 171 2 6.8 1938 GCS0279 no significant results 5 2 1.08 3650 GCS0279 no significant results 5 5 3 3 3 GCS0280 71 72 1	GC\$0260	no sianificant resu	lts	-			-
GCS0262 no significant results GCS0263 no significant results GCS0264 88 89 1 1.5 124 GCS0274 93 94 1 2.57 1065 GCS0275 114 115 1 1.22 312 GCS0276 146 147 1 2.16 2270 GCS0277 73 74 1 6.34 786 GCS0277 and 124 125 1 1.94 1120 GCS0277 and 124 125 1 8.650 GCS0277 GCS0277 and 153 155 2 1.08 3650 GCS0278 169 171 2 6.8 1938 GCS0279 no significant results GCS0280 71 72 1 6.73 432 GCS0280 and 80 81 1 2.18							
GCS0263 no significant results Image: constraint of the system Image: constraintex of the system							
GCS0264 88 89 1 1.5 124 GCS0274 93 94 1 2.57 1065 GCS0275 114 115 1 1.22 312 GCS0276 146 147 1 2.16 2270 GCS0277 73 74 1 6.34 786 GCS0277 and 124 125 1 1.94 1120 GCS0277 and 124 125 1 8650 GCS0277 and 153 155 2 1.08 3650 GCS0278 169 171 2 6.8 1938 GCS0279 no significant results 432 GCS0280 71 72 1 6.73 432 GCS0280 and 80 81 1 2.18 692							
GCS0274 93 94 1 2.57 1065 GCS0275 114 115 1 1.22 312 GCS0276 146 147 1 2.16 2270 GCS0277 73 74 1 6.34 786 GCS0277 and 124 125 1 1.94 1120 GCS0277 and 153 155 2 1.08 3650 GCS0278 169 171 2 6.8 1938 GCS0279 no significant results				89	1	1.5	124
GC\$0275 114 115 1 1.22 312 GC\$0276 146 147 1 2.16 2270 GC\$0277 73 74 1 6.34 786 GC\$0277 and 124 125 1 1.94 1120 GC\$0277 and 153 155 2 1.08 3650 GC\$0278 169 171 2 6.8 1938 GC\$0279 no significant results 432 GC\$0280 71 72 1 6.73 432 GC\$0280 and 80 81 1 2.18 692					1		
GCS0276 146 147 1 2.16 2270 GCS0277 73 74 1 6.34 786 GCS0277 and 124 125 1 1.94 1120 GCS0277 and 153 155 2 1.08 3650 GCS0278 169 171 2 6.8 1938 GCS0279 no significant results GCS0280 71 72 1 6.73 432 GCS0280 and 80 81 1 2.18 692				115	1		
GCS0277 73 74 1 6.34 786 GCS0277 and 124 125 1 1.94 1120 GCS0277 and 153 155 2 1.08 3650 GCS0278 169 171 2 6.8 1938 GCS0279 no significant results GCS0280 71 72 1 6.73 432 GCS0280 and 80 81 1 2.18 692			146	147	1		
GC\$0277 and 124 125 1 1.94 1120 GC\$0277 and 153 155 2 1.08 3650 GC\$0278 169 171 2 6.8 1938 GC\$0279 no significant results GC\$0280 71 72 1 6.73 432 GC\$0280 and 80 81 1 2.18 692					1		
GC\$0277 and 153 155 2 1.08 3650 GC\$0278 169 171 2 6.8 1938 GC\$0279 no significant results GC\$0280 71 72 1 6.73 432 GC\$0280 and 80 81 1 2.18 692		and					
GCS0278 169 171 2 6.8 1938 GCS0279 no significant results							
GC\$0279 no significant results 6.73 432 GC\$0280 71 72 1 6.73 432 GC\$0280 and 80 81 1 2.18 692		-					
GC\$0280 71 72 1 6.73 432 GC\$0280 and 80 81 1 2.18 692		no significant resu	·			0.0	.,
GC\$0280 and 80 81 1 2.18 692				72	1	6.73	432
		and					
							310

HoleID		From	То	Length	Au_gpt	Cu_ppm
GC\$0281	and	164	167	3	6.35	3627
GC\$0282						
GC\$0283		69	70	1	2.73	719
GC\$0283	and	78	79	1	1.34	239
GC\$0283	and	154	155	1	2.95	
GC\$0284		161	162	1	7.73	
GC\$0285		172	174	2	3.01	3040
GC\$0286	no significant result					
GC\$0287		67	68	1	1.1	371
GC\$0288		76	77	1	5.57	561
GC\$0289		79	80	1	1.66	142
GC\$0289	and	84	85	1	13.65	668
GC\$0289	and	138	139	1	1.55	31
GC\$0290		20	21	1	2	66
GC\$0290	and	38	40	2	2.22	525
GC\$0307		61	62	1	8.62	98
GC\$0307	and	97	98	1	4.8	8630
GC\$0307	and	125	126	1	13.94	4530
GC\$0309		91	92	1	1.25	1855
GC\$0309	and	124	125	1	3.58	473
GC\$0309	and	128	129	1	1.33	118
GC\$0310		132	135	3	3.56	1989
GC\$0313	no significant result					
GC\$0314		71	74	3	3.76	4022
GC\$0314	and	97	98	1	4.34	174
GC\$0315		81	83	2	5.5	4955
GC\$0315	and	118	126	8	3.64	318
GC\$0316	no significant result					
GC\$0319	results pending					
GC\$0320	results pending					
GC\$0321	results pending					
GC\$0322	results pending					
GCT006	no significant result	ts				
GCT007	no significant result	ts				
GCT008	no significant result	ts				
GCT009	no significant result					
GCT010	no significant result					
GCT011	no significant result					
GCT032	no significant result					
GCT033		69	72	3	1.26	51
GCT034	no significant result					
GCT036	no significant result					
GCT037	no significant result					
GCT057	no significant result					
GCT059	no significant result					
GCT060	no significant result					

HoleID		From	То	Length	Au_gpt	Cu_ppm
GCT061	no significant resul	ts				
GCT062	no significant resul	ts				
GCT205	no significant resul	ts				
GCT216		43	46	3	30.32	2857
GCT251	no significant resul	ts				
GCT252	no significant resul	ts				
GCT254	no significant resul	ts				
GCT256		0	1	1	1.02	351
GCT273		0	1	1	1.51	193
GCT274		0	1	1	3.44	244
GCT278	no significant resul	ts				
IDRD300		63.95	65.69	1.74	14.47	681
IDRD301		94.2	97.67	3.47	1.53	127
IDRD302		157.02	160.97	3.95	2.62	125
MNGC057		13	23	10	1.18	1244
MNGC058		50	51	1	39.79	
MNGC060	no significant resul	ts				
MNGC062		29	30	1	1.36	131
MNGC063		38	47	9	3.24	1001
MNGC064		62	63	1	3.34	1280
MNGC066		68	72	4	1.54	3744
MNGC067	no significant resul	ts				
MNGC069		55	59	4	6.71	2792
MNGC069	and	69	70	1	8.88	2760
MNGC070		71	73	2	2.21	1813
MNGC072	no significant resul	ts				
MNGC075		73	74	1	11.17	2510
MNGC075	and	89	90	1	1.33	580
MNGC077	no significant resul	ts				
MNGC080		87	88	1	113.55	
MNGC081	no significant resul	ts				
MNGC087		87	90	3	40.98	814
MNGC088		84	87	3	13.86	313
MNGC088	and	104	106	2	1.99	599
MNGC096	no significant resul	ts				
MNGC098		29	30	1	2.73	765
MNGC098	and	43	44	1	2	151
MNGC100		43	45	2	1.86	1550
MNGC107		31	36	5	2.72	1417
MNGC130		3	4	1	2.16	
MNGC132		46	47	1	1.37	
MNGC134	no significant resul	ts				
MNGC136		26	27	1	1.53	
MNGC136	and	34	41	7	1.06	
MNGC136	and	46	47	1	2.97	
MNGC136	and	59	62	3	3.63	

HoleID		From	То	Length	Au_gpt	Cu_ppm
MNGC139		100	102	2	4.53	
MNGC152		50	51	1	1.32	5000
MNGC154		42	57	15	6.17	2097
MNGC156		81	82	1	1.46	
MNGC156		97	98	1	4.76	
MNGC171	no significant resul	ts				
MNGC173	no significant resul	ts				
MNGC175	no significant resul	ts				
MNGC177	no significant resul	ts				
MNGC179		64	69	5	2.05	
MNGC181		101	102	1	2.09	565
MNGC186		61	62	1	7.7	
MNGC198		65	66	1	5.22	
MNGC200	results pending					
MNGC212		48	49	1	14.56	3160
MNGC214	results pending					
MNGC216	results pending					
MNGC218		91	92	1	1.34	393
MNGC220	results pending					
MNGC238	no significant resul	ts				
MNGC246	no significant resul	ts				
MNGC248		44	45	1	1.54	610
MNGC272	no significant resul	ts				
MNGC298		21	22	1	1.27	295
MNGC298	and	94	95	1	1.4	129
MNGC307		31	32	1	1.04	217
MNGC320		83	85	2	5.69	1658
MNGC322	no significant resul	ts				
MNGC345	no significant resul	ts				
MNGC353	no significant resul	ts				
MNGC381	no significant resul	ts				
MNGC387		78	80	2	14.74	2405
MNGC389		95	96	1	18.05	2160
MNGC391		105	107	2	3.42	1180
MNGC405		22	23	1	3.3	1585
MNGC407		25	26	1	1.66	1110
MNGC407	and	33	34	1	2.97	962
MNGC412		100	101	1	2.46	1115
MNGC414		108	109	1	7.42	1695
MNGC421		72	75	3	1.91	1085
MNGC457		70	72	2	8.95	1592
MNGC462	no significant resul	ts				
MNGC494		56	57	1	1.15	
MNGC505	no significant resul	ts				
MNGC507		74	77	3	1.28	792
MNGC507	and	80	81	1	1.88	3690

HoleID		From	То	Length	Au_gpt	Cu_ppm
MNGC507	and	86	87	1	6.07	5210
MNGC511		116	118	2	1.92	588
MNGC562		91	92	1	3.82	
MNGC564		123	124	1	5.35	1200
MNGC566		31	32	1	6.77	1000
MNGC566	and	124	125	1	3.32	3690
MNGC579		63.93	64.88	0.95	1.99	248
MNGC581		275.45	276.4	0.95	16.2	1435

New Mt Ida Collars

HoleID	Depth	East	North	RL	Azi	Dip
AURD021	40.8	252636	6779593	470	53.21	-60
AURD022	75	252628	6779576	470	53.97	-60
AURD023	103.3	252607	6779565	470	52.46	-59.68
AURD024	66.4	252646	6779547	470	54.76	-60
AURD025	69.3	252660	6779528	470	52.78	-60
AURD026	81.1	252651	6779519	470	52.83	-60.64
AURD027	40.8	252678	6779532	470	53.15	-60.11
AURD028	72.4	252671	6779504	470	54.39	-60
GC\$0005	126	253593.2	6778148	474.392	113.68	-60.7
GC\$0019	120	253551.1	6778186	473.91	108.92	-60.68
GC\$0025	132	253538.7	6778185	473.829	109.06	-60.45
GC\$0028	144	253533.3	6778133	474.118	113.79	-58.87
GC\$0035	150	253525.8	6778128	474.149	108.55	-59.81
GC\$0042	156	253513.7	6778131	474.015	108.62	-60.7
GC\$0043	150	253560.9	6778117	474.424	109.92	-59.32
GC\$0044	150	253545.7	6778116	474.521	110.57	-57.94
GC\$0092	114	253605.9	6778165	474.704	107.94	-60.87
GC\$0102	168	253509.2	6778122	474.15	108.74	-59.66
GC\$0103	180	253504.9	6778114	474.108	109.3	-60.28
GC\$0104	162	253572.9	6778106	474.409	107.88	-60.54
GC\$0107	90	253563.1	6778067	474.519	105.35	-58.55
GC\$0110	78	253576.7	6778067	474.603	108.56	-59.48
GC\$0111	78	253573.4	6778055	474.568	108.36	-59.93
GC\$0113	150	253591.7	6778072	474.606	108.65	-59.01
GC\$0114	66	253589.3	6778063	474.431	108.19	-59.43
GC\$0115	66	253585.6	6778051	474.71	108.64	-59.27
GC\$0116	60	253603	6778058	474.593	108.52	-59
GC\$0118	168	253607.6	6778083	474.568	109.53	-59.01
GCS0119	90	253558.4	6778061	474.585	108.31	-59.41
GC\$0124	150	253523.1	6778116	474.265	106.18	-59.44
GC\$0133	138	253500.3	6778147	473.673	108.62	-60.83
GC\$0134	132	253501.1	6778133	473.795	105.06	-60.41
GC\$0215	90	253643.8	6778096	474.63	59.09	-60.53
GC\$0217	120	253622.7	6778084	474.366	58.59	-60.11

HoleID	Depth	East	North	RL	Azi	Dip
GC\$0226	96	253656.4	6778075	474.451	57.36	-60.27
GC\$0228	132	253635.7	6778062	474.611	57.81	-60.19
GC\$0237	102	253667.1	6778056	474.648	57.55	-60.32
GC\$0239	120	253646.5	6778044	474.319	58.62	-60.02
GC\$0241	138	253625.4	6778031	474.406	58.67	-60.14
GC\$0248	120	253694.8	6778033	474.595	38.29	-58.37
GC\$0250	114	253668.6	6778032	474.599	57.9	-60.73
GC\$0252	168	253653.4	6778007	474.678	38.69	-61.51
GC\$0260	132	253708.9	6778032	474.611	58.47	-60.15
GC\$0261	54	253698	6778026	474	59.05	-60.46
GC\$0262	180	253688.4	6778021	474.729	58.63	-60.16
GC\$0263	66	253677	6778014	474	60.65	-60.28
GC\$0264	174	253667.2	6778009	474.727	59.01	-60.51
GCS0274	156	253504.3	6778113	474.096	101.64	-65.27
GCS0275	144	253493.7	6778122	473.812	59.44	-60.13
GCS0276	168	253484.7	6778117	474.128	59.86	-60.74
GC\$0277	162	253476.4	6778112	474.194	58.82	-60.41
GC\$0278	180	253467.7	6778107	474.274	60.15	-60.37
GC\$0279	144 168	253494.6	6778112	473.99 474.25	60.35	-60.35
GCS0280 GCS0281	180	253485.7 253477.4	6778106 6778102	474.23	60.55 59.32	-60.83 -60.93
GC30281 GCS0282	186	253469.2	6778097	474.266	60.18	-60.51
GCS0283	168	253493.1	6778099	474.174	58.99	-60.45
GC\$0284	180	253483.5	6778096	474.341	59.66	-60.39
GC\$0285	192	253475.8	6778091	474.234	59.65	-61.26
GC\$0286	186	253467.3	6778086	474.305	59.13	-60.69
GC\$0287	186	253498	6778093	474.205	58.11	-60.37
GC\$0288	186	253489.8	6778088	474.221	58.81	-60.62
GC\$0289	186	253495.2	6778079	474.185	59.38	-60.5
GC\$0290	144	253516	6778146	473.804	60	-60.52
GC\$0307	144	253615.9	6778050	474.57	57.1	-60.22
GC\$0309	144	253612	6778056	474.563	59	-60.03
GC\$0310	156	253602.7	6778051	474.537	57.55	-59.88
GC\$0313	150	253592.7	6778051	474.64	57.93	-59.8
GC\$0314	138	253623.6	6778074	474.491	58.15	-60.32
GC\$0315	132	253606.5	6778070	474.539	57.09	-60.64
GC\$0316	144	253507.4	6778141	473.702	60.33	-60.58
GC\$0319	30	253714	6778012	474.82	59.78	-60.13
GC\$0320	30	253706	6778052	474.81	58.62	-60.53
GC\$0321	54	253677	6778034	474.97	57.06	-60.37
GC\$0322	54	253694	6778006	474.98	58.71	-60.46
GCT006	72	253199.1	6778583	472.423	118.64	-55.17
GCT007	78	253193.2	6778586	471.991	119.57	-60.42
GCT008	78	253185.1	6778591	471.634	118.99	-60.77
GCT009	84	253174.9	6778597	471.167	119.21	-59.77
GCT010	90	253174.2	6778597	471.155	119.2	-68.36

HoleID	Depth	East	North	RL	Azi	Dip
GCT011	90	253173.2	6778598	471.165	118.31	-74.93
GCT032	90	253208.2	6778590	472.655	119.39	-55.32
GCT033	72	253202.8	6778593	472.107	119.19	-60.5
GCT034	78	253193.7	6778598	471.635	118.61	-60.97
GCT036	84	253176.2	6778608	471.029	117.54	-59.96
GCT037	90	253167.8	6778613	470.862	118.75	-60.6
GCT057	72	253214.3	6778598	472.498	118.12	-50.8
GCT059	72	253206.7	6778603	471.99	118.85	-60.55
GCT060	78	253197.3	6778608	471.654	119.35	-59.9
GCT061	84	253188.7	6778613	471.458	117.62	-59.97
GCT062	96	253180.1	6778618	470.907	117.52	-60.85
GCT205	138	253209.2	6778682	470.344	118.64	-60.62
GCT216	126	253240.8	6778675	470.85	119.85	-60.05
GCT251	126	253046.8	6778698	471.434	176.04	-63.63
GCT252	138	253045.1	6778713	471.406	171.01	-59.73
GCT254	156	253052.9	6778728	471.444	176.95	-62.4
GCT256	144	253045.4	6778707	471.533	180.02	-60.58
GCT273	174	253005.2	6778735	471.474	179.65	-60.89
GCT274	168	253005.8	6778745	471.269	179.69	-59.77
GCT278	192	252997.1	6778743	471.228	177.82	-60.59
IDMT041	250	252913	6778794	470	166.37	-69.55
IDRD299	143.9	252976	6779052	469	55	-59.74
IDRD300	109.9	252926	6779131	469	54.13	-57
IDRD301	155.8	252645	6778905	472	41.29	-60
IDRD302	205	252560	6778955	471	53.59	-60
IDRD303	139	252559	6779075	470	54.14	-61
IDRD304	139.1	252541	6779112	470	54.59	-62
IDRD305	104.4	252516	6779218	470	55.41	-62.3
MNGC057	36	252624	6779621	465	59.36	-60.65
MNGC058	72	252602	6779608	465	58.63	-60.58
MNGC060	84	252583	6779597	465	58.25	-60.18
MNGC062	30	252641	6779605	465	59.01	-60.83
MNGC063	60	252616	6779599	465	79	-56.55
MNGC064	78	252603	6779583	465	58.91	-60.43
MNGC066	102	252585	6779573	465	58.88	-60.39
MNGC067	30	252651	6779589	465	59.87	-60.65
MNGC069	78	252617	6779571	465	59.23	-60.73
MNGC070	96	252597	6779559	465	58.6	-60.63
MNGC072	60	252652	6779566	465	57.61	-60.6
MNGC075	96	252615	6779544	465	59.4	-60.8
MNGC077	42	252676	6779554	465	58.88	-60.71
MNGC080	114	252688	6779535	465	59.22	-60.69
MNGC081	36	252679	6779531	465	58.68	-59.71
MNGC087	120	252631	6779501	465	59.36	-60.65
MNGC088	132	252606	6779489	465	58.52	-60.55
MNGC096	30	252739	6779470	465	59.18	-60.62

HoleID	Depth	East	North	RL	Azi	Dip
MNGC098	48	252722	6779461	465	59.32	-60.84
MNGC100	66	252705	6779451	465	58.79	-60.71
MNGC107	54	252737	6779423	465	58.18	-61.1
MNGC130	36	252490	6779836	465	58.43	-60.1
MNGC132	54	252472	6779826	465	58.54	-60.84
MNGC134	72	252455	6779816	465	58.04	-60.84
MNGC136	84	252438	6779806	465	59.67	-60.35
MNGC139	120	252408	6779792	465	62.14	-59.15
MNGC152	72	252456	6779792	465	62.14	-61.69
MNGC154	90	252442	6779772	465	43.76	-58.08
MNGC156	126	252428	6779762	465	50.92	-60.23
MNGC171	30	252518	6779803	465	58.35	-60.04
MNGC173	48	252500	6779793	465	59.56	-59.95
MNGC175	60	252483	6779783	465	59.57	-60.17
MNGC177	72	252465	6779773	465	59.45	-60.65
MNGC179	90 120	252448	6779763	465 465	59.66	-60.69
MNGC181 MNGC186	120	252431 252421	6779753 6779735	465	59.31 59.37	-60.54 -60.84
MNGC198	96	252421	6779748	465	58.82	-60.51
MNGC200	120	252465	6779738	465	59.1	-60.85
MNGC212	72	252510	6779752	465	58.06	-60.17
MNGC214	72	252493	6779742	465	58.35	-60.58
MNGC216	108	252476	6779732	465	59.89	-60.84
MNGC218	120	252459	6779722	465	57.18	-60.82
MNGC220	156	252441	6779712	465	57.85	-60.69
MNGC238	126	252467	6779700	465	57.46	-60.88
MNGC246	102	252565	6779586	465	59.03	-60.63
MNGC248	102	252548	6779576	465	58.95	-60.82
MNGC272	120	252567	6779562	465	58.52	-60.91
MNGC298	108	252580	6779549	465	57.52	-60.73
MNGC307	54	252642	6779573	465	57.91	-59.99
MNGC320	114	252596	6779533	465	59.09	-60.41
MNGC322	132	252579	6779523	465	59.24	-60.73
MNGC345	126	252597	6779509	465	60.39	-61.04
MNGC353	54	252666	6779531	465	57.95	-60.54
MNGC381	36	252698	6779522	465	94	-57.8
MNGC387	114	252655	6779493	465	58.5	-60.51
MNGC389	120	252638	6779483	465	58.73	-60.78
MNGC391	132	252621	6779473	465	59.59	-60.61
MNGC405	42	252710	6779501	465	59.43	-60.5
MNGC407	60	252694	6779491	465	59.79	-60.98
MNGC412	120	252643	6779462	465	58.51	-60.81
MNGC414	138	252626	6779452	465	59.13	-60.8
MNGC421	90	252675	6779468	465	59.88	-60.85
MNGC457	90	252688	6779441	465	58.87	-60.73
MNGC462	132	252646	6779417	465	59.35	-60.55

HoleID	Depth	East	North	RL	Azi	Dip
MNGC494	78	252716	6779423	465	58.76	-60.59
MNGC505	30	252754	6779433	465	58.94	-60.76
MNGC507	96	252710	6779407	465	59.74	-60.93
MNGC511	138	252675	6779387	465	58.61	-60.71
MNGC562	108	252726	6779370	465	59.8	-60.77
MNGC564	138	252709	6779360	465	57.52	-60.73
MNGC566	156	252692	6779350	465	58.62	-60.39
MNGC579	281.1	252544	6779403	465	60.81	63
MNGC581	288.2	252579	6779324	465	60.01	60
SPRD056	330.9	251691	6780669	460	151.09	-61.45
SPRD057	310.1	251797.8	6780707	459.13	170.12	-65.03
SPRD058	373	251680	6780768	459	151.75	-60.42
SPRD059	538	251457	6780889	459	149.19	-63
SPRD060	100	251443.7	6780989	457.997	148.3	-60.58
SPRD061	100	251410.2	6780959	458.575	147.65	-60.14
SPRD062	34	251499.1	6780827	459.163	154.58	-67.55
SPRD063	118	251385.9	6780945	458.934	147.8	-60.39
SPRD064	130	251334	6781003	459	147.62	-59.55
SPRD065	28	251310	6780973	460	147.95	-60.23
SSRD058	712.3	252917	6778642	472.19	133.84	-62.68

JORC Code, 2012 Edition Table 1; Section 1: Sampling Techniques and Data Yinnetharra

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 Diamond (DD) and reverse circulation (RC) drilling has been carried out by DLI Metals at the Yinnetharra project RC samples are collected from a static cone splitter mounted directly below the cyclone on the rig DD sampling is carried out to lithological/alteration domains with lengths between 0.3-1.1m Limited historic data has been supplied, reverse circulation (RC) drilling and semi-quantative XRD analysis have been completed at the Project. Historic drilling referenced has been carried out by Segue Resources and Electrostate (prior holder) Historic sampling of RC drilling has been carried out via a static cone splitter mounted beneath a cyclone return system to produce a representative sample, or via scoop These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	Drill type (e.g. core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling is being carried out by DDH1 utilising a Sandvik DE880 truck mounted multipurpose rig and is HQ or NQ diameter. RC drilling is carried out by Precision Exploration Drilling (PXD) using a Schramm 850 rig Some RC precollars have been completed, diamond tails are not yet completed on these holes Historic RC drilling was completed using a T450 drill rig with external booster and auxiliary air unit, or unspecified methods utilising a 133mm face sampling bit It is assumed industry standard drilling methods and equipment were utilised for all drilling

Criteria	Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs are carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Poor recoveries were occasionally encountered in near surface drilling of the pegmatite due to the weathered nature Historic RC recoveries were visually estimated on the rig, bulk reject sample from the splitter was retained on site in green bags for use in weighing and calculating drill recoveries at a later date if required Sample weights were recorded by the laboratory
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core and RC chip logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All diamond drillholes and RC chip trays are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering No historic chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies

Criteria	Explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples are encountered, extra cleaning of the splitter is carried out afterward RC and core samples have been analysed for Li suite elements by ALS Laboratories, Samples are crushed and pulverised to 85% passing 75 microns for peroxide fusion digest followed by ICPOES or ICPMS determination Historic RC sampling methods included single metre static cone split from the rig or via scoop from the green bags, field duplicates were inserted at a rate of 1:20 within the pegmatite zones Historic samples were analysed by Nagrom or ALS Laboratories where 3kg samples were crushed and pulverised to 85% passing 75 microns for a sodium peroxide fusion followed by ICP-MS determination for 25 elements. Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative subsample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Samples have been analysed by an external laboratory utilising industry standard methods The assay method utilised by ALS for core sampling allows for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, all QAQC analyses were within tolerance The sodium peroxide fusion used for historic assaying is a total digest method All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods In the historic data field duplicates, certified reference materials (CRMs) and blanks were inserted into the sampling sequence at a rate of 1:20 within the pegmatite zone Internal standards, duplicates and repeats were carried out by Nagrom and ALS as part of the assay process No standards were used in the XRD process

Criteria	Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	 Significant intercepts have been reviewed by senior personnel Some holes in the current diamond program have been designed to twin historic RC drillholes and verify mineralised intercepts Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database Historic data was recorded in logbooks or spreadsheets before transfer into a geological database No adjustments to assay data have been made other than conversion from Li to Li₂O and Ta to Ta₂O₅
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 Drill collars are located using a handheld GPS unit, all holes will be surveyed by third party contractor once the program is complete GDA94 MGA zone 50 grid coordinate system was used Downhole surveys were completed by DDH1 and PXD using a multishot tool Historic collars were located using handheld Garmin GPS unit with +/- 5m accuracy Historic holes were not downhole surveyed, planned collar surveys were provided
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	 Drill holes were orientated to intersect the pegmatite zones as close to perpendicular as possible; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised as true orientation of the pegmatites is yet to be determined
Sample security	The measures taken to ensure sample security	 Samples are prepared onsite under supervision of DLI Metals staff and transported by a third party directly to the laboratory Historic samples were collected, stored, and delivered to the laboratory by company personnel
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results, Yinnetharra

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	 Drilling and sampling activities have been carried on E09/2169 The tenement is in good standing There are no heritage issues

Criteria		Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area has a long history of multi commodity exploration including base and precious metals, industrial minerals and gemstones stretching back to the 1970s, activities carried out have included geophysics and geochemical sampling, and some drilling Targeted Li exploration was carried out in 2017 by Segue Resources with follow up drilling completed by Electrostate in July 2022
Geology	Deposit type, geological setting and style of mineralisation.	 The project lies within the heart of the Proterozoic Gascoyne Province, positioned more broadly within the Capricorn Orogen — a major zone of tectonism formed between the Archean Yilgarn and Pilbara cratons. The Gascoyne Province has itself been divided into several zones each characterised by a distinctive and episodic history of deformation, metamorphism, and granitic magmatism. The project sits along the northern edge of the Mutherbukin zone, along the Ti Tree Syncline. Mutherbukin is dominated by the Thirty-Three supersuite — a belt of plutons comprised primarily of foliated metamonzogranite, monzogranite and granodiorite. Rare- earth pegmatites have been identified and mined on small scales
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No metal equivalents are used Significant intercepts are calculated with a nominal cut-off grade of 0.5% Li₂O
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	 The pegmatites are interpreted as dipping moderately to steeply toward the south Further drilling is required to confirm the true orientation of the pegmatites across multiple lined
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill collars, and significant intercepts have been reported in the appendix

Criteria		Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None completed at this time
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 POW's have been submitted to give DLI access to drill a further 200RC and 100 Diamond holes immediately over the area currently cleared under the existing heritage agreement (work will only be carried out under the guidelines of the heritage agreement and the agreed POW terms).

JORC Code, 2012 Edition Table 1; Section 1: Sampling Techniques and Data Mt Ida

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information	 Sampling activities carried out by DLI Metals at the Mt Ida Project have included reverse circulation (RC), air core (AC) and diamond (DD) drilling, and rock chip sampling. Core sampling of one historic drillhole has also been carried out, with assaying, petrological and XRD analysis completed RC samples were collected from a static cone splitter mounted directly below the cyclone on the rig, AC samples were collected using a spear from piles on the ground into 2m composites or 1m bottom of hole samples, DD sampling was carried out to lithological/alteration domain with lengths between 0.3- 1.1m Limited historical data has been supplied, historic sampling referenced has been carried out by Hammill Resources, International Goldfields, La Mancha Resources, Eastern Goldfields and Ora Banda Mining, and has included rock chip sampling, and RC, DD and rotary air blast (RAB) drilling Sampling of historic RC has been carried out via riffle split for 1m sampling, and scoop or spear sampling for 4m composites. Historic core has been cut and sampled to geological intervals These methods of sampling are considered to be appropriate for this style of exploration

Criteria	Explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC Drilling has been carried out by Orlando Drilling and Frontline Drilling, RC drilling utilised an Explorac 220RC rig with a 143 mm face sampling hammer bit, DD drilling was completed by a truck mounted Sandvik DE820 and a KWL 1500 and is HQ2 and NQ2 diameter. AC drilling was carried out by Gyro Drilling and was competed to blade refusal Diamond tails average 200m depth Historic drilling has been completed by various companies including Kennedy Drilling, Wallis Drilling, Ausdrill and unnamed contractors Historic DD drilling was NQ sized core It is assumed industry standard drilling methods and equipment were utilised for all historic drilling
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample condition is recorded for every RC and AC drill metre including noting the presence of water or minimal sample return, inspections of rigs were carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Limited sample recovery and condition information has been supplied or found for historic drilling
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All AC, RC chip trays and drill core are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering It is unknown if all historic core was oriented, limited geotechnical logging has been supplied No historic core or chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies

Criteria	Explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples were encountered, extra cleaning of the splitter was carried out afterward RC, DD and AC chip samples have been analysed for Li suite elements via ICPMS, and for Au by 50g fire assay by ALS, Nagrom, NAL and SGS Samples analysed by ALS, Nagrom, NAL and SGS were dried, crushed and pulverised to 80% passing 75 microns before undergoing a selected peroxide fusion digest or 4 acid digest with ICPMS finish or fire assay with ICPMS finish Historic core sampled by DLI Metals was collected for ICPMS analysis via selection from NQ half and quarter core, and submitted to Nagrom Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative subsample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation RC and AC duplicate field samples were carried out at a rate of 1:20 and were sampled directly from the splitter on the rig. These were submitted for the same assay process as the primary samples and the laboratory are unaware of such submissions Historic chip sampling methods include single metre riffle split and 4m composites that were either scoop or spear sampled, while historic core was cut onsite and half core sampled Historic Au analysis techniques generally included crushing, splitting if required, and pulverisation, with aqua regia or fire assay with AAS finish used to determine concentration
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 acid digest and ICP-MS determination Samples have been analysed by external laboratories utilising industry standard methods The assay methods utilised by ALS, Nagrom, NAL and SGS for RC chip, AC, rock chip and core sampling allow for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC, AC and DD sampling, All QAQC analyses were within tolerance No QAQC samples were submitted with rock chip analysis No standards were used by DLI Metals in the historic core ICP analysis or XRD quantification process. Internal duplicate and repeat analyses were carried out as part of the assay process by Nagrom, as well as internal standard analysis A standard mica phase was used for the XRD analysis. It is possible that a lithium bearing mica such as lepidolite is present. A subsequent analysis technique would be required for confirmation All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods Limited historic QAQC data has been supplied, industry standard best practice is assumed

Criteria	Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	 Significant intercepts have been reviewed by senior personnel No specific twinned holes have been completed, but drilling has verified historic drilling intervals Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database. Historic data was supplied in various formats and has been validated as much as practicable No adjustments to assay data have been made other than conversion from Li to Li₂O and Ta to Ta2O5 Data entry, verification and storage protocols remain unknown for historic operators
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 MGA94 zone 51 grid coordinate system is used Current drilling collars have been pegged using a handheld GPS unit, all collars will be surveyed upon program completion by an independent third party Downhole surveys are completed by the drilling contractors using a true north seeking gyro instrument, AC drillholes did not have downhole surveys carried out Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation Historic collars are recorded as being picked up by DGPS, GPS or unknown methods and utilised the MGA94 zone 51 coordinate system Historic downhole surveys were completed by north seeking gyro, Eastman single shot and multi shot downhole camera
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	 Drill holes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised
Sample security	The measures taken to ensure sample security	 Samples are prepared onsite under supervision of DLI Metals staff and transported by a third party directly to the laboratory Historic sample security measures are unknown
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results, Mt Ida

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	 Drilling and sampling activities have been carried on M29/2, M29/165 and E29/640 The tenements are in good standing There are no heritage issues

Criteria		Commentary
	interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area has a long history of gold and base metals exploration and mining, with gold being discovered in the district in the 1890s. Numerous generations of exploration have been completed including activities such as drilling, geophysics and geochemical sampling Targeted Li assaying was first carried out in the early 2000s by La Mancha Resources and more recently, lithium assays were completed by Ora Banda Mining
Geology	Deposit type, geological setting and style of mineralisation.	 The Mt Ida project is located within the Eastern Goldfields region of Western Australia within the Mt Ida/Ularring greenstone belt Locally the Kurrajong Antiform dominates the regional structure at Mount Ida, a south-southeast trending, tight isoclinal fold that plunges at a low angle to the south. The Antiform is comprised of a layered greenstone sequence of mafic and ultramafic rocks Late stage granitoids and pegmatites intrude the sequence
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No metal equivalents are used Significant intercepts are calculated with a cut-off grade of 0.3% Li2O
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The geometry of the mineralisation is roughly perpendicular to the drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	 All drill collars, and significant intercepts have been reported in the appendix

Criteria		Commentary
	Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None completed at this time
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Drilling is continuing at Mt Ida with a 60,000m program consisting of a mix of RC diamond and AC drilling underway