

Exploration Update - Yinnetharra and Mt Ida

Highlights:

- Strong drilling results received from the Yinnetharra Lithium Project including:
 - 47.3m @ 1.3% Li₂O from 82.6m in YDRD011
 - o 44m @ 0.84% Li₂O from 3m in YDRD249
 - o 18.5m @ 1.1% Li₂O from 64.8m in YDRD014
 - o 25.5m @ 0.8% Li₂O from 38m in YDRD015
 - o 10m @ 1.3% Li₂O from 256m in YRRD227
- Yinnetharra soil sampling illuminates robust Li anomalies at the undrilled prospects of Jamesons, Calypso East and Malinda South
- Strong drilling results received from the Mt Ida Lithium Project, including shallow lithium:
 - o 12m @ 1.6% Li₂O from 203m in SPRD051
 - o 11m @ 1.52% Li₂O from 92m in GCS0030
 - o 11m @ 1.3% Li₂O from 75.7m in IDRD197
 - o 7m @ 1.1% Li₂O from 35m in AURD010

And also more high-grade Gold:

- o 4m @ 41.2 g/t Au from 79m in GCS0068
- 11m @ 7.3 g/t Au from 68m in GCS0049
- o 5m @ 12 g/t Au from 66m in GCS0047
- o 3m @ 17.3 g/t from 71m in GCS0051
- Mt Ida mapping and drilling at the new, nearby Long John Prospect has identified outcropping LCT pegmatites with assays up to 0.2% Li₂O

Delta Lithium Limited (ASX:DLI) ("Delta" or the "Company"), is pleased to provide an operational update for exploration activities on both the Yinnetharra and Mt Ida Lithium Projects in Western Australia.

Drilling has been ongoing at both projects with excellent exploration and studies work at both sites.

Commenting on the operations update Managing Director, James Croser said;

"This a very exciting time for Delta with, continued exploration success steadily building confidence in both lithium projects at Mt Ida and Yinnetharra. The exploration team has been tireless in their pursuit of the emerging discovery at Yinnetharra which continues to show massive potential. Equally, the growing confidence in the Mt Ida ore body is steadily improving and we have now identified a new prospect in Long John to the east of the Sister Sam pegmatite.

The shallow nature of some of the recent drill results at Yinnetharra is compelling, as they provide for an early potential source of ore from surface upon commencement of mining.

Our ongoing investment in exploration will deliver confidence in the studies and forward planning activities that flow from this solid geological understanding. This is a critical risk mitigation strategy as we seek to rapidly develop our lithium assets."

Yinnetharra Exploration

Ongoing drilling at the Yinnetharra Project has continued to demonstrate thick continuous lithium mineralisation from surface. Drilling has been utilising two (2) Reverse Circulation (RC) rigs and one (1) Diamond Drill (DD) rig, testing Malinda pegmatites along strike and down dip.

Wide spaced step out drilling has been used to define the edges of known pegmatites at Malinda. Pegmatites are forming shallow dipping sheets within which thickened zones (up to 70m thick in places) that contain spodumene have a shallow easterly plunge, with emplacement and morphology of the pegmatites controlled by a series of structures and contacts between amphibolite and schist units.

Following the release of the maiden Lithium MRE at Malinda, planned for later this quarter, Delta's drilling strategy at Yinnetharra will transition towards infill drilling to build confidence in the geological model. Two (2) rigs will undertake infill drilling on known pegmatites for the coming months in preperation for commencement of mining studies planned at Malinda. One (1) RC rig will test regional anomalies adjacent to Malinda.

Moving forward the M1, M36 and M47 pegmatites will be the main immediate focus of the infill drilling at Malinda.

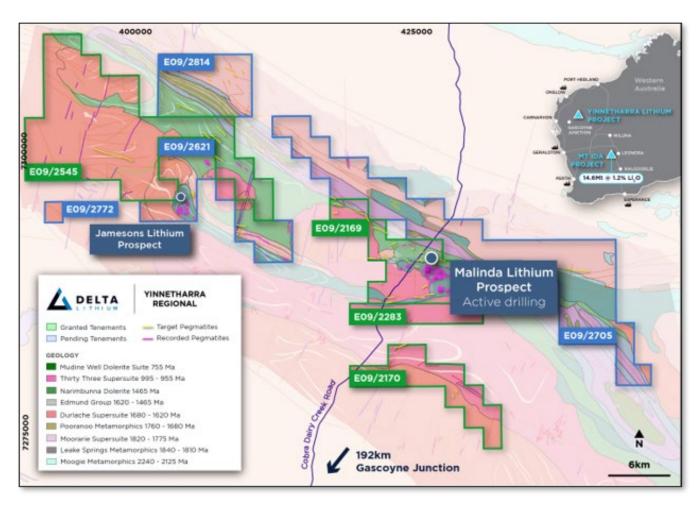
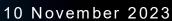



Figure 1: Yinnetharra Project Overview

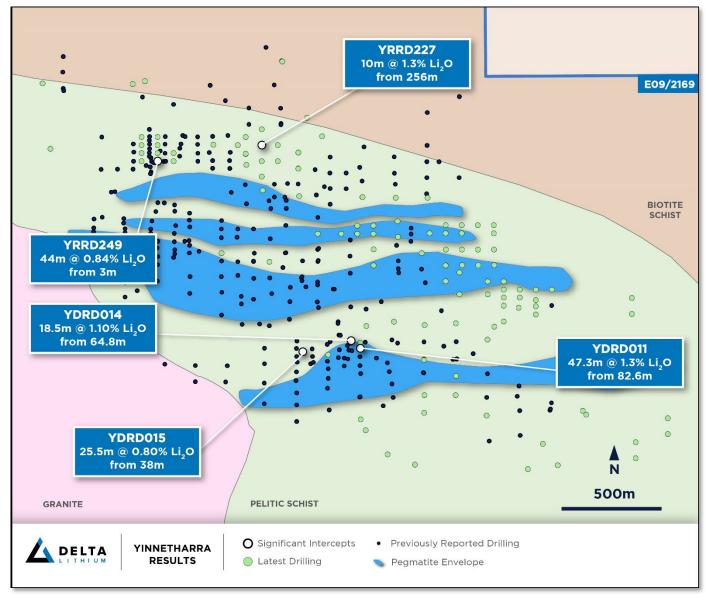


Figure 2: Malinda Prospect showing new drilling intercepts, pegmatite outlines

Table 1 Significant Intercepts from Yinnetharra >0.5% Li₂O (See Appendix 1 for full list of intercepts)

						Ta2O5	Fe2O3
HoleID		From	To	Length	Li2O pct	ppm	pct
YDRD011		82.6	129.9	47.3	1.33	61	1.28
YRRD249		3	47	44	0.84	77	2.66
YRRD229	and	47	75	28	0.79	64	0.69
YDRD015		38	63.5	25.5	0.81	80	1.58
YDRD014	and	64.8	83.3	18.5	1.07	49	2.16
YRRD231		37	67	30	0.65	76	1.32
YDRD015	and	100.1	116.9	16.8	0.84	29	2.08
YDRD009	and	64	88.0	24.0	0.58	191	0.49
YDRD012	and	59.75	80	20.25	0.66	48	3.61
YRRD227		256	266	10	1.27	69	0.57
YDRD013		159.9	175.2	15.3	0.77	41	1.05

10 November 2023

						Ta2O5	Fe2O3
HoleID		From	To	Length	Li2O pct	ppm	pct
YRRD224		202	217	15	0.77	55	5.89
YRRD252		49	66	17	0.6	55	1.18
YRRD224	and	224	237	13	0.72	159	3.73
YRRD227	and	273	282	9	0.94	110	1.38
YRRD244		261	271.8	10.8	0.77	43	0.51
YRRD246		1	9	8	0.87	67	0.72

Soil sampling and mapping at Yinnetharra has been ongoing for some time with the ultimate objective of evolving our understanding of all Delta tenures in order to keep a constant flow of new lithium prospects in the pipeline. Soil sampling so far has defined good coherent lithium anomalies at Jamesons, Calypso East and Malinda South. These targets will be drilled once heritage clearances are received for these specific areas.



Figure 3: Calypso East and Malinda South Li soil anomalies

ASX ANNOUNCEMENT

10 November 2023

Mt Ida Update

Lithium and gold drilling is ongoing at Mt Ida; grade controlling Au-Li pits for higher confidence, particularly in the vicinity of the top of the Sister Sam orebody, and converting deeper down-plunge inferred resources into the Indicated category for meaningful inclusion into feasibility studies. Interestingly, shallow intercepts of lithium have been observed at Timoni with 7m @ 1.1% Li₂O in AURD010 from 35m, which is outside of the current resource for Timoni.

The Baldock 086 lode has consistently delivered impressive high-grade gold results, and with grade control drilling set to conclude in 4 weeks, a model update is planned to transition a significant volume of the current 086 lode resource into the measured and indicated category.

Mineralogical studies are ongoing at Mt Ida with the ultimate goal of providing a high definition mineralogical block model to help schedule processing. Results to date all indicate a total spodumene:lepidolite ratio throughout the resource of 65-60%:35-40%.

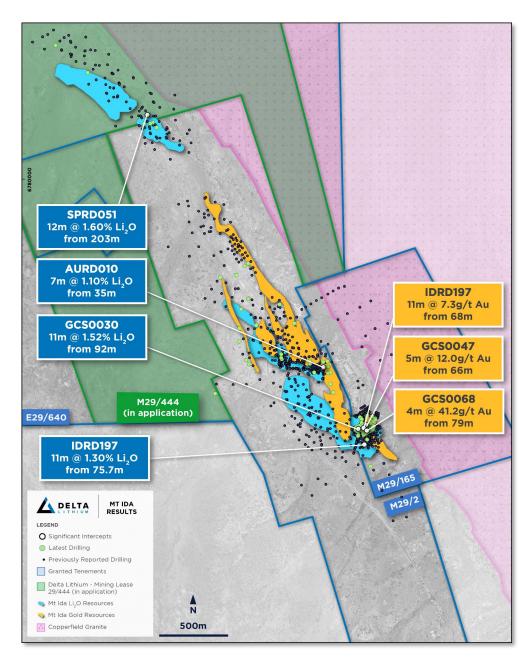


Figure 4: Plan showing selected Li and Au results from Mt Ida on mining approval footprint

Table 2: Significant Li intercepts from Mt Ida >0.5% Li_2O (See appendix 2 for full list)

						Ta205	
HoleID		From	То	Length	Li20 %	ppm	Fe2O3 %
SPRD051	and	203	215	12	1.58	184	0.86
IDRD040N2	and	682.78	700	17.22	1.1	163	0.33
GCS0030		92	103	11	1.52		1.67
IDRD197		75.68	87.01	11.33	1.33	386	0.67
SPRD055	and	142	154.96	12.96	1.01	209	2.16
IDRD239	and	607	626.66	19.66	0.62	174	3.51
SPRD052		52	58	6	1.86	6	1.11
SPRD036	and	367.29	379.93	12.64	0.82	108	2.39
IDRD244N1		418	437.77	19.77	0.52	191	1.43
SPRD036		340.91	356.64	15.73	0.57	80	3.28
SPRD053		43	48	5	1.78	66	0.85
AURD010		35	42	7	1.05	200	0.66
IDRD040		383.91	389.11	5.2	1.31	69	0.88
GCS0030	and	104	108	4	1.35		1.65
IDRD040N2		611.07	617.64	6.57	0.71	107	0.48
SPRD054		60	64	4	1.15	361	1.65
IDRD040	and	646.77	656.11	9.34	0.46	158	0.33
IDRD191		65.05	67.7	2.65	1.48	140	2.19
SPRD053	and	59	64	5	0.75	261	0.70
TIRD070		597.5	600.66	3.16	1.08	64	0.21
AURD010	and	95	97.7	2.7	1.11	67	1.06
IDRD249		917.62	919.85	2.23	1.21	147	1.63
IDRD040N1	and	617.61	620.23	2.62	0.95	202	0.42

Table 3: Significant Au intercepts from Mt Ida above 1g/t Au (See Appendix 2 for full list)

HoleID		From	То	Length	Au_ppm	Cu_ppm
GCS0068	and	79	83	4	41.23	809
GCS0049		68	79	11	7.28	1255
GCS0050	and	76	78	2	31.81	1611
GCS0047	and	66	71	5	11.99	
GCS0051	and	71	74	3	17.27	1765
GCS0072		38	39	1	34.9	
GCS0059		81	83	2	16.88	
AURD017		63.98	67.17	3.19	9.13	2661
GWV086_122		25	26	1	28.98	276
GWV086_086	and	50	57	7	3.97	655
GWV086_130		20	23	3	8.36	412
GCS0046		69	72	3	8.35	
GCS0060	and	77	79	2	11.91	1934
IDRD282		40	48	8	2.29	415

ASX ANNOUNCEMENT

10 November 2023

HoleID		From	То	Length	Au_ppm	Cu_ppm
GCS0073		42	44	2	8.39	
GWV086_123		68	71	3	4.8	479
IDRD298		28	32	4	3.38	117
IDRD298		28	32	4	3.38	117
IDRD191		78.97	81	2.03	6.52	1614
GCS0086		31	35	4	2.97	
GCS0047		30	31	1	11.82	
GCS0095	and	116	117	1	11.55	
IDMT034		92.12	92.72	0.6	18.17	2996
IDMT036		310.39	312.64	2.25	4.73	3975
GCS0052	and	66	69	3	3.5	
AURD018		32.7	33.6	0.9	10.85	429
IDMT036	and	320	320.77	0.77	12.6	2263
IDRD282	and	103.36	104	0.64	14.84	6598
GCS0038		129	130	1	9.06	
GCS0083		46	49	3	3	570
IDRD298	and	41	47	6	1.46	132
IDRD298	and	41	47	6	1.46	132
GCS0030	and	129	131	2	4.27	89
GCS0061		61	62	1	8.45	53
GCS0045		70	74	4	2.07	
GCS0080		75	76	1	8.23	
GWV086_117	and	25	26	1	8.13	908
GWV086_090	and	63	66	3	2.39	528
GCS0065	and	54	56	2	3.54	
GCS0061	and	75	76	1	6.99	382
GWV086_069		36	38	2	3.46	289
GCS0081		43	44	1	6.37	
GCS0072	and	57	60	3	2.05	
GCS0079		16	18	2	3.06	
GCS0072	and	45	47	2	3.04	
AURD013	and	76.1	77.2	1.1	5.34	2410
GCS0067	and	84	86	2	2.84	
GWV086_090		51	52	1	5.62	377
GCS0066	and	38	40	2	2.74	
AURD015	and	76.16	76.7	0.54	9.94	1675
AURD015	and	89.6	90.11	0.51	10.2	8040

At Mt Ida, a new lithium prospect named 'Long John' has been identified east of Sister Sam with mapping and scout drilling demonstrating LCT pegmatites over a strike of 500m with visible lithium minerals in surface sampling up to a grade of 0.2% Li₂O. The results seen so far are similar to early shallow results recieved for the Timoni and Sparrow pegmatites, and this area warrants follow up drilling targetting dilational zones. It should be noted, the identification of pegmatites in the mapping completed to date does not imply the presence of lithium mineralisation. The presence of any lithium mineralisation will be determined by drilling and laboratory analyses.

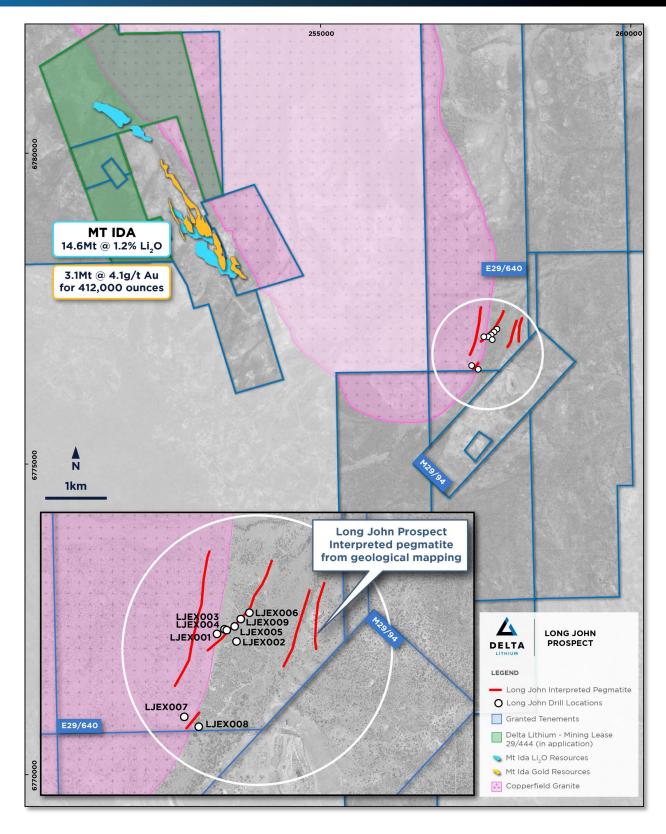


Figure 5: plan showing Long John pegmatite shapes and drilling.

Authorised for release by the Board of Delta Lithium Limited.

For further information, please contact:

Delta Lithium

James Croser, Managing Director
+61 8 6109 0104
info@deltalithium.com.au

Investor/Media Enquiries

Citadel-MAGNUS
Michael Weir +61 402 347 032
Jono van Hazel +61 411 564 969

About Delta Lithium

Delta Lithium (ASX: DLI) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With a strong balance sheet and an experienced team driving the exploration and development workstreams, Delta Lithium is rapidly advancing its Mt Ida Lithium Project towards production. The Mt Ida Lithium Project holds a critical advantage over other lithium developers with existing Mining Leases and an approved Mining Proposal. Delta Lithium is pursuing a rapid development pathway to unlock maximum value for shareholders.

Delta Lithium also holds the highly prospective Yinnetharra Lithium Project that is already showing signs of becoming one of Australia's most exciting lithium regions. The Company is currently undergoing an extensive 400 drill hole campaign to be completed throughout 2023.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Charles Hughes, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr. Hughes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Hughes is an employee of Delta Lithium Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

The information in this report which relates to Mineral Resources for the Sister Sam, Timoni and Sparrow deposits at the Mt Ida Lithium Project was prepared by Ms Susan Havlin and reviewed by Dr Andrew Scogings, both employees of Snowden Optiro. Ms Havlin is a Member and Chartered Professional of the Australasian Institute of Mining and Metallurgy and Dr Scogings is a Member of the Australian Institute of Geoscientists (RPGeo industrial minerals) and they have sufficient experience relevant to the style of mineralisation, the type of deposit under consideration and to the activity undertaken to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Ms Havlin and Dr Scogings consent to the inclusion of the information in the release in the form and context in which it appears.

 $Refer to \ www. delta lithium. com. au \ for \ past \ ASX \ announcements.$

Appendix 1 Drilling Tables for Yinnetharra

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YDRD008	260.8	426311	7289300	320	357.61	-69.03
YDRD009	126.6	426459	7289628	320	180.28	-60.21
YDRD010	137.1	426604	7288837	310	1.78	-59.86
YDRD011	177.6	426764	7288868	310	1.52	-60
YDRD012	90.3	426764	7288898	310	0.53	-56.26
YDRD013	222.44	427083	7288811	310	1.23	-60.73
YDRD014	111.67	426718	7288907	310	1.6	-64.87
YDRD015	137.44	426476	7288851	310	2.47	-58.89
YREX001	114	425689	7290202	316	181.98	-54.62
YREX002	104	425628	7290188	315	181.77	-56.26
YREX003	180	426830	7289481	310	177.27	-55.59
YREX004	240	426750	7289481	310	179.79	-55.33
YREX005	210	426750	7289440	310	183.3	-55.14
YREX006	738.8	428140	7288400	340	358.13	-55.69
YREX007	180	426750	7289440	310	179.11	-54.73
YREX008	276	428140	7288320	340	2.44	-54.16
YREX009	167	426670	7289440	310	179.73	-55.49
YREX010	234	428300	7288520	340	359.22	-60.07
YREX011	186	426552	7289440	310	184.26	-55.13
YREX012	300	428300	7288440	340	358.31	-59.97
YREX013	102	427071	7289343	310	184.37	-60.66
YREX014	260	427400	7288912	310	5.17	-55.53
YREX015	150	427191	7289483	310	183.26	-56.05
YREX016	396.6	426791	7288460	314	358.71	-59.49
YREX017	150	427272	7289362	317	2.56	-59.61
YREX018	234	426901	7288339	316	1.12	-60.92
YREX019	150	427273	7289284	317	1.11	-59.06
YREX020	234	427037	7288288	316	1.6	-60.46
YREX021	186	427260	7289248	317	326.8	-74.54
YREX022	234	427602	7288265	334	0.63	-59.91
YREX023	132	427111	7289443	310	180.6	-55.22
YREX024	234	427751	7288285	334	358.85	-63.96
YREX025	150	427352	7289362	317	358.17	-59.36
YREX026	234	427676	7288392	339	358.94	-59.65
YREX027	150	427353	7289284	317	0.48	-59.01
YREX028	187	427260	7289138	317	1.4	-58.88
YREX029	180	426941	7289620	310	188.91	-53.73
YREX030	151	427433	7289284	317	1.66	-59.17
YREX031	84	427101	7289620	310	4.63	-59.49
YREX032	181	427432	7289362	317	2.42	-60.12
YREX033	372	426352	7289883	320	180.12	-60.66
YREX034	151	427401	7289202	317	0.65	-58.88
YREX035	153	426272	7289962	320	176.05	-55.22
YREX036	529	427401	7289202	317	303.35	-79.13

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YREX037	413	426455	7289846	310	174.8	-60.11
YREX038	180	427401	7289138	317	0.27	-64.65
YREX039	90	427271	7289443	310	179.92	-55.05
YREX040	247	427481	7289202	317	8.16	-60.56
YREX041	120	427271	7289483	310	180.2	-55.61
YREX042	241	427481	7289162	317	1.38	-60.49
YREX043	138	427434	7288977	310	0.09	-62.89
YREX044	241	427481	7289122	317	355.22	-60.33
YREX045	300	428121	7289120	340	357.89	-55.51
YREX046	525	426574	7289927	318	184.17	-54.04
YREX047	180	427351	7289483	320	179.86	-55.29
YREX048	361	426455	7289846	318	181.37	-55.5
YREX049	180	427431	7289443	320	182.44	-55.76
YREX050	319	426152	7289883	310	175.41	-55.8
YREX051	186	427431	7289483	320	180.57	-55.19
YREX052	337	426192	7289839	318	176.56	-65.71
YREX053	200	428121	7289040	340	1.52	-54.6
YREX054	61	426498	7290019	306	170.61	-60.34
YREX055	240	427561	7289162	317	2.65	-59.83
YREX056	301	426031	7289885	310	183.65	-55.43
YREX057	240	427481	7289082	317	0.91	-60.16
YREX058	301	426352	7289803	318	179.67	-60.4
YREX059	240	427555	7289071	317	1.76	-59.62
YREX061	250	427641	7289110	317	4.45	-57.54
YREX063	234	427240	7288635	310	352.39	-79.24
YREX065	252	425217	7289865	315	182.14	-55.11
YREX067	390	427481	7289003	317	2.7	-60.21
YREX069	306	427721	7289162	317	2.2	-58.81
YREX071	210	427561	7289122	317	1.38	-59.85
YREX073	300	427641	7289078	317	359.55	-60
YREX075	240	427641	7289162	317	2.92	-60.14
YREX077	360	427641	7289038	317	353.76	-64.72
YRRD194	459.99	427394.7	7288533	317.097	358.43	-57.39
YRRD196	567.26	427876	7288557	342	349.47	-83.93
YRRD197	618.92	427893	7288537	310	2.42	-86.03
YRRD198	325	426071	7289343	320	1.78	-66.87
YRRD199	162	425752	7289883	310	179.7	-60.2
YRRD200	114	425752	7289923	310	180.32	-59.93
YRRD214	240	426195.1	7289784	309.471	186.63	-55.69
YRRD215	177	426276.9	7289657	307.48	180.14	-55.11
YRRD216	204	426272	7289727	308.888	180.81	-55.87
YRRD217	240	426952.8	7289425	315.003	359.32	-55.96
YRRD218	246	427191.8	7289362	316.62	2.74	-55.19
YRRD219	402	427191	7289203	320	359.02	-69.92
YRRD220	210	427071	7289343	320	358.95	-54.99
YRRD223	250	425177.7	7290191	303.984	182.41	-56.57

HOLEID	DEPTH	EAST	NORTH	RL	AZIMUTH	DIP
YRRD224	348	426192.3	7289839	308.26	183.23	-54.43
YRRD225	394	426192	7289923	318	186.61	-56.5
YRRD226	252	426272	7289803	319	180.22	-56.38
YRRD227	300	426272	7289883	318	179.4	-56.44
YRRD228	300	426455	7289766	310	179.46	-59.75
YRRD229	120	426830	7289441	310	185.66	-69.9
YRRD230	300	426375	7290301	310	178.65	-54.62
YRRD231	210	426831	7289363	320	358.32	-59.67
YRRD232	300	426831	7289283	320	359.68	-54.5
YRRD233	450	427242	7288993	310	2.67	-59.57
YRRD234	300	427191	7289283	310	180.63	-56.02
YRRD235	232	427086	7288985	310	2.74	-54.42
YRRD236	438	426932	7289001	310	1.6	-54.36
YRRD237	438	426795	7288980	310	3.09	-55.74
YRRD238	402	427085	7288635	310	358.36	-74.3
YRRD239	498	427084	7288547	310	4.2	-75.27
YRRD240	312	426766	7288514	310	2.19	-69.8
YRRD241	264	426775	7289623	321	153.12	-55.21
YRRD242	300	426951	7289503	310	151.14	-55.76
YRRD243	200	427191	7289443	310	162.01	-56.15
YRRD244	385.05	427243	7288730	310	359.42	-77.44
YRRD245	144	425672	7289803	310	181.39	-60.8
YRRD246	150	425672	7289843	310	177.32	-60.04
YRRD247	180	425672	7289883	310	179.92	-59.97
YRRD248	200	425672	7289923	310	177.61	-60.38
YRRD249	240	425752	7289803	310	179.91	-59.74
YRRD250	150	425752	7289843	310	177.45	-58.74
YRRD251	120	425832	7289803	310	177.58	-54.33
YRRD252	150	425832	7289843	310	178.06	-54.39

HoleID		From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
YDRD008		210.13	217	6.87	0.54	117	2.87
YDRD009		43	45.97	2.97	0.36	224	0.26
	and	64	87.99	23.99	0.58	191	0.49
	and	97.09	97.72	0.63	0.34	3	13.58
YDRD010		90.16	95.29	5.13	0.44	66	0.76
YDRD011		82.58	129.93	47.35	1.33	61	1.28
YDRD012		49.61	50.3	0.69	0.48	48	4.95
	and	51.57	53.07	1.5	0.4	10	8.45
	and	59.75	80	20.25	0.66	48	3.61
YDRD013		159.9	175.19	15.29	0.77	41	1.05
YDRD014		58	59.95	1.95	1.07	85	0.72
	and	64.83	83.29	18.46	1.07	49	2.16
YDRD015		38	63.49	25.49	0.81	80	1.58

HoleID		From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
	and	100.12	116.87	16.75	0.84	29	2.08
YRRD194		422.83	428.68	5.85	0.43	37	3.38
YRRD196	NSR						
YRRD197	NSR						
YRRD198	NSR						
YRRD199		14	17	3	0.39	140	8.21
YRRD200	NSR						
YRRD214	NSR						
YRRD215	NSR						
YRRD216	NSR						
YRRD217	NSR						
YRRD218	NSR						
YRRD219	NSR						
YRRD220	NSR						
YRRD223	NSR						
YRRD224		202	217	15	0.77	55	5.89
	and	224	237	13	0.72	159	3.73
YRRD225							
YRRD226		194	195	1	0.36	98	1.53
YRRD227		256	266	10	1.27	69	0.57
	and	273	282	9	0.94	110	1.38
YRRD228							
YRRD229		36	37	1	0.42	80	0.90
	and	47	75	28	0.79	64	0.69
YRRD230							
YRRD231		37	67	30	0.65	76	1.32
	and	93	96	3	0.42	30	0.61
	and	105	106	1	0.34	65	6.36
YRRD232	NSR						
YRRD233	NSR						
YRRD234	NSR						
YRRD235	NSR						
YRRD236	NSR	_				_	_
YRRD237		3	4	1	0.33	3	7.76
	and	12	14	2	0.74	68	0.70
	and .	323	324	1	0.41	67	3.93
	and	327	328	1	0.4	79	1.26
YRRD238	NSR						
YRRD239	NSR						
YRRD240	NSR						
YRRD241	NSR						
YRRD242	NSR						
YRRD243	NSR	221	274.24	40.00			2 = 1
YRRD244		261	271.84	10.84	0.77	43	0.51
YRRD245		5	7	2	0.79	7	10.67
	and	13	14	1	0.48	24	10.69

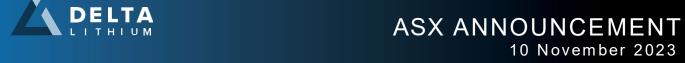
HoleID		From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
YRRD246		1	9	8	0.87	67	0.72
YRRD247	NSR		_	_		-	
YRRD248	NSR						
YRRD249		3	47	44	0.84	77	2.66
	and	66	67	1	0.35	52	13.64
	and	70	71	1	0.41	9	15.30
YRRD250		2	13	11	0.36	141	1.99
	and	35	36	1	0.33	113	8.68
YRRD251		4	5	1	0.5	10	10.59
	and	31	33	2	0.78	28	12.57
	and	54	57	3	0.59	186	1.58
	and	61	62	1	0.33	86	9.68
YRRD252		49	66	17	0.6	55	1.18
YREX001	NSR						
YREX002	NSR						
YREX003	NSR						
YREX004	NSR						
YREX005	NSR						
YREX006	NSR						
YREX007		31	44	13	0.45	78	6.70
YREX008	NSR						
YREX009	NSR						
YREX010	NSR						
YREX011	NSR						
YREX012	NSR						
YREX013	NSR						
YREX014	NSR						
YREX015	NSR						
YREX016	NSR						
YREX017	NSR						
YREX018	NSR						
YREX019	NSR						
YREX020	NSR						
YREX021		70	71	1	0.33	5	7.45
YREX022	NSR						
YREX023	NSR						
YREX024	NSR						
YREX025	NSR						
YREX026	NSR						
YREX027		49	51	2	0.44	144	12.21
YREX028	NSR						
YREX029	NSR						
YREX030	NSR						
YREX031	NSR						
YREX032	NSR						
YREX033	NSR						

ASX ANNOUNCEMENT

10 November 2023

HoleID		From	То	Length	Li2O pct	Ta2O5 ppm	Fe2O3 pct
YREX034		94	95	1	0.47	60	0.64
	and	97	98	1	0.42	78	0.67
YREX035	NSR						
YREX036	NSR						
YREX037	NSR						
YREX038	NSR						
YREX039	NSR						
YREX040	NSR						
YREX041	NSR						
YREX042		132	147	15	0.36	77	1.60
YREX043	NSR						
YREX044	NSR						
YREX045	NSR						
YREX046	NSR						
YREX047	NSR						
YREX048		306	307	1	0.37		
YREX049	NSR						
YREX050		227	228	1	0.52		
YREX051	NSR						
YREX052	NSR						
YREX053	NSR						
YREX057	NSR						
YREX059	NSR						
YREX061	NSR						
YREX063	NSR						
YREX065	NSR						
YREX067	NSR						
YREX069	NSR						
YREX071		176	188	12	0.49	61	2.84

ASX ANNOUNCEMENT


10 November 2023

Appendix 2 Drilling tables for Mt Ida

HoleID	Depth	East	North	RL	Azi	Dip
AURD004	80	253181.3	6778692	470.483	59.02	-59.63
AURD006	55	253181.8	6778672	470.583	63.35	-59.72
AURD007	66.1	253306.8	6778691	468.445	80.34	-59.54
AURD008	72.6	253316	6778648	468.976	78.86	-50.79
AURD009	93	253311.8	6778651	468.981	120.02	-69.95
AURD010	129.8	253277.7	6778648	469.849	79.54	-69.41
AURD011	69.8	253329.1	6778609	471.624	79.56	-59.73
AURD012	90.8	253310.3	6778606	471.692	95.05	-59.64
AURD013	102.5	253331.7	6778526	478.605	49.35	-49.73
AURD014	111.6	253348.4	6778467	478.536	109.35	-49.61
AURD015	120.8	253277.1	6778686	468.468	99.32	-59.8
AURD016	129.8	253561	6778190	474	64.06	-56.54
AURD017	108.8	253572.9	6778242	473.621	59.39	-59.4
AURD018	72.6	253594.3	6778300	473.12	39.55	-54.28
AURD019	102.5	252964.6	6779099	469.273	29.55	-49.73
AURD020	57.7	253070	6778963	469	64.06	-59.51
GCS0018	106	253559	6778209	473.792	109.1	-59.85
GCS0023	126	253545	6778208	474	108.27	-60.23
GCS0024	126	253539	6778194	474	107.27	-60.08
GCS0029	138	253540	6778228	474	109.54	-60.37
GCS0030	132	253529	6778205	473.581	111	-59.71
GCS0031	138	253525	6778186	474	109.69	-59.91
GCS0032	138	253529.8	6778162	473.897	109.01	-60.54
GCS0033	111	253528	6778154	474	112.34	-59.63
GCS0036	144	253518.5	6778221	473.359	111.57	-60.07
GCS0037	138	253512	6778213	474	113.54	-60.9
GCS0038	132	253510	6778197	474	110.6	-60.07
GCS0045	84	253568.7	6778223	474.41	59.47	-60.93
GCS0046	90	253577.2	6778228	473.609	58.52	-60.94
GCS0047	84	253585.8	6778233	473.672	59.72	-60.6
GCS0048	90	253592.6	6778237	473.779	59.66	-59.55
GCS0049	90	253567.8	6778211	473.664	60.17	-60.68
GCS0050	108	253581.3	6778210	475.11	59.7	-60.65
GCS0051	90	253589.2	6778213	474.213	59.48	-61.27
GCS0052	82	253599.6	6778220	474.13	59.73	-60.41
GCS0053	78	253605.2	6778220	474.061	59.58	-60.52
GCS0055	67	253630.8	6778231	473.969	59.83	-61.17
GCS0056	84	253596.5	6778230	473.704	58.58	-60.34
GCS0059	102	253575.5	6778195	474.6	59.91	-61.34
GCS0060	96	253584.1	6778200	474.6	60.01	-60.81
GCS0061	84	253592.2	6778205	474.16	60.11	-60.67
GCS0062	90	253601.5	6778210	474.04	59.08	-60.7
GCS0063	84	253610.1	6778215	474.1	61.81	-60.69
GCS0064	74	253617.9	6778218	473.976	57.93	-60.86

HoleID	Depth	East	North	RL	Azi	Dip
GCS0065	67	253625.5	6778223	473.911	58.93	-60.56
GCS0066	60	253636.6	6778229	474.016	59.08	-60.62
GCS0067	108	253581.4	6778187	474.41	58.95	-59.11
GCS0068	102	253590.5	6778192	473.911	60.21	-60.92
GCS0069	90	253599.3	6778197	473.847	59.66	-60.96
GCS0071	90	253615.3	6778207	473.895	58.83	-60.98
GCS0072	78	253623.2	6778212	473.975	60.36	-60.87
GCS0073	66	253633.2	6778218	474.067	59.48	-60.92
GCS0074	66	253640.8	6778222	474.111	59.78	-60.71
GCS0075	120	253563.9	6778173	474.11	59.86	-60.26
GCS0077	112	253583.5	6778177	474.29	59.33	-61.23
GCS0078	107	253592.1	6778182	474.46	60.36	-61.32
GCS0079	96	253601	6778187	474	58.97	-60.93
GCS0080	90	253613.2	6778187	474.34	47.71	-59.59
GCS0081	90	253624.9	6778201	474.38	59.06	-66.56
GCS0082	84	253626.5	6778202	474.41	59.31	-61.09
GCS0083	86	253635.6	6778207	474.184	59.85	-61.01
GCS0084	102	253569.4	6778162	474.17	58.72	-60.51
GCS0085	90	253578	6778167	474.25	59.26	-59.56
GCS0086	90	253586.7	6778172	474.33	60.71	-60.85
GCS0087	96	253595.4	6778177	474.41	58.63	-60.81
GCS0088	90	253612.7	6778187	474.44	59.65	-60.04
GCS0089	67	253630	6778197	474.51	59.21	-60.13
GCS0095	144	253593	6778127	474	108.29	-60.56
GCT082	78	252979.2	6778706	471.92	118.16	-60.15
GCT083	78	252975.3	6778715	471.7	119.9	-59.72
GCT084	78	253212	6778610	471.53	123.29	-60.5
GCT085	90	252975.8	6778741	471.48	117.71	-60.29
GWV086_054	80	253541.2	6778288	472.902	0	-90
GWV086_069	75	253555	6778274	473.084	59.48	-60.92
GWV086_070	75	253554.3	6778274	473.183	58.52	-69.93
GWV086_083	90	253629.2	6778295	473.388	0	-90
GWV086_086	72	253592.6	6778289	473.224	128.59	-69.69
GWV086_090	80	253553	6778249	473.341	59.07	-60.42
GWV086_116	42	253650.3	6778280	473.941	49.43	-60.82
GWV086_117	45	253644.5	6778278	473.87	49.6	-70.27
GWV086_121	60	253614.5	6778244	473.838	8.6	-50.3
GWV086_122	90	253584.2	6778237	473.473	55.36	-51.21
GWV086_123	84	253575.8	6778240	473.473	59.16	-49.71
GWV086_125	84	253566.6	6778233	473.516	59.75	-60.28
GWV086_129	42	253650.2	6778270	474.094	59.7	-60.61
GWV086_130	42	253635	6778258	474.048	59.83	-60.29
GWV086_131	60	253617.4	6778246	473.841	29	-59.68
IDEX020	750.9	253617.5	6777936	475.726	157.21	-50.97
IDRD040	676	252738.3	6779138	470.386	164.59	-60.95
IDRD040N1	640.7	252738.3	6779138	470.386	164.59	-60.95

HoleID	Depth	East	North	RL	Azi	Dip
IDRD040N2	730.1	252738.3	6779138	470.386	164.59	-60.95
IDMT040	130.5	253275.7	6778648	469.835	79.26	-80
IDRD191	102.8	253587.2	6778189	474.086	93.86	-66
IDRD197	102.7	253572.7	6778092	474.456	64.49	-61
IDRD239	673.1	252686.6	6779065	471.116	151.11	-57.25
IDRD243N1	816.9	252654.6	6779308	468.706	150.77	-50.68
IDRD243N2	807.1	252654.6	6779308	468.706	149.56	-50.68
IDRD244N1	476.6	252797.2	6778949	470.476	162.94	-60.62
IDRD249	967.2	252500.8	6778458	475.766	87.34	-50.27
IDRD284	91.1	252737.5	6779393	468.14	53.92	-60.6
IDRD285	139.1	252713.7	6779375	468.127	54.58	-60.96
IDRD291	115	252745.1	6778670	473.347	52.86	-61.76
IDRD293	109	252723	6778699	473.19	53.55	-60.56
IDRD297	126	252674.6	6778833	471.97	58.77	-63.56
IDRD298	78	252674.4	6778926	471.431	36.86	-60.22
SPRD036	432.9	251585.1	6780764	459.546	137.3	-55.89
SPRD045N1	629.8	251353	6780962	459.166	141.41	-56.68
SPRD045N2X	627.8	251353	6780962	459.166	141.41	-56.68
SPRD051	236.2	252013.5	6780462	460.903	171.48	-61.48
SPRD052	84	252051.9	6780406	461.349	177.74	-80.5
SPRD053	81	252034	6780399	461.114	178.95	-80.17
SPRD054	96	251989.7	6780398	461.006	178.05	-78.82
SPRD055	181.1	252080.2	6780370	461.449	178.78	-70.74
TIRD070	622.2	252537.3	6779294	468.939	155.45	-61.11
LJEX001	138	257628.3	6777070	458.573	119.75	-55.2
LJEX002	102	257737.8	6777028	460.054	314.12	-55.59
LJEX003	114	257685	6777093	458.776	135.78	-51.27
LJEX004	114	257682.3	6777096	458.685	133.63	-75.11
LJEX005	156	257726.7	6777110	459.277	118.18	-56.19
LJEX006	150	257811.5	6777189	458.602	118.53	-55.79
LJEX007	114	257444.9	6776599	462.538	118.47	-55.93
LJEX008	102	257525.9	6776548	461.181	298.97	-56
LJEX009	132	257761.7	6777156	459.029	119.94	-56.07

HoleID		From	То	Length	Au_ppm	Cu_ppm
AURD004		44.5	45.03	0.53	1.07	957
AURD006	NSR					
AURD007	NSR					
AURD008	NSR					
AURD009	NSR					
AURD010		118	118.6	0.6	1.76	280
	and	123.6	124.96	1.36	2.6	1622
AURD011		41.8	42.99	1.19	1.34	1395
AURD012		79.87	80.51	0.64	2.04	4080

HoleID		From	То	Length	Au_ppm	Cu_ppm
					-1.1.	
AURD013		0	1	1	1.1	2610
	and	5	6	1	1.11	1095
	and	7.6	8.3	0.7	2.91	466
	and	9.1	10	0.9	3.18	152
	and	76.1	77.2	1.1	5.34	2410
AURD014	NSR					
AURD015		65.21	66.01	0.8	3.53	423
	and	71.31	71.95	0.64	1.52	352
	and	76.16	76.7	0.54	9.94	1675
	and	89.6	90.11	0.51	10.2	8040
AURD016		104.74	107	2.26	2.12	128
AURD017		63.98	67.17	3.19	9.13	2661
	and	76.99	78	1.01	1.67	59
AURD018		32.7	33.6	0.9	10.85	429
AURD019		62.21	63.19	0.98	2.54	860
	and	72	72.55	0.55	1.63	1510
IDRD191		78.97	81	2.03	6.52	1614
IDRD297		103	104	1	3.31	98
IDRD298		28	32	4	3.38	117
	and	41	47	6	1.46	132
GCS0018	NSR					
GCS0023		77	78	1	1.67	
	and	99	100	1	1.47	
GCS0024	NSR	0.5	0.5		4.2	4.40
GCS0029		85	86	1	4.3	140
GCS0030	and	125	126	1	1.9	235
CC50031	and	129	131	2	4.27	89
GCS0031	NSR	120	121	1	1.64	
GCS0032 GCS0033	NSR					
GCS0036	INSIN	85	86	1	1.24	628
GCS0037	NSR	83	80	1	1.24	028
GCS0037 GCS0038	NON	129	130	1	9.06	
GCS0045		70	74	4	2.07	
GCS0046		69	72	3	8.35	
GCS0047		30	31	1	11.82	
	and	66	71	5	11.99	
GCS0048		64	66	2	2.15	606
GCS0049		68	79	11	7.28	1255
GCS0050		53	54	1	1.47	53
	and	76	78	2	31.81	1611
GCS0051		61	62	1	1.04	47
	and	71	74	3	17.27	1765
GCS0052		37	41	4	1.16	
	and	50	51	1	1.31	

HoleID		From	То	Length	Au_ppm	Cu_ppm
	and	66	69	3	3.5	
GCS0053		39	40	1	1.46	363
	and	46	47	1	2.9	406
	and	63	64	1	4.13	901
GCS0055		50	51	1	2.14	391
GCS0056		34	35	1	1.21	253
GCS0059		81	83	2	16.88	
GCS0060		58	59	1	2.71	151
	and	77	79	2	11.91	1934
GCS0061		61	62	1	8.45	53
	and	75	76	1	6.99	382
GCS0062		53	54	1	2.4	
		69	70	1	1.23	
GCS0063	NSR					
GCS0064		39	40	1	1.04	
	and	43	46	3	1.09	
GCS0065		35	36	1	2.45	
	and	40	41	1	2.43	
	and	49	50	1	2.55	
	and	54	56	2	3.54	
GCS0066		18	19	1	4.6	
	and	38	40	2	2.74	
GCS0067		37	38	1	1.19	
	and	75	76	1	4.45	
	and	84	86	2	2.84	
GCS0068		23	24	1	3.43	1607
	and	60	64	4	1.22	193
	and	79	83	4	41.23	809
GCS0069		13	14	1	1.57	
	and	16	17	1	1.13	
	and	60	61	1	3.92	
	and	76	77	1	1.22	
GCS0071		51	52	1	5.19	183
GCS0072		38	39	1	34.9	
	and	45	47	2	3.04	
	and	48	49	1	1.18	
	and	57	60	3	2.05	
GCS0073		42	44	2	8.39	
GCS0074		44	46	2	2.51	166
GCS0075	NSR					
GCS0077	NSR					
GCS0078	NSR					
GCS0079		16	18	2	3.06	
	and	65	66	1	2.03	
	and	79	80	1	4.74	

HoleID		From	То	Length	Au_ppm	Cu_ppm
GCS0080		75	76	1	8.23	
GCS0081		43	44	1	6.37	
	and	52	53	1	4.65	
GCS0082		49	50	1	4.58	
GCS0083		46	49	3	3	570
GCS0084	NSR					
GCS0085		43	44	1	1.11	
GCS0086		31	35	4	2.97	
GCS0087	NSR					
GCS0088		52	53	1	1.41	
GCS0089		27	28	1	1.76	
	and	52	53	1	1.06	
GCS0095		67	68	1	1.39	
	and	73	74	1	2.13	
	and	116	117	1	11.55	
	and	126	127	1	1.53	
GCT082	NSR					
GCT083	NSR					
GCT084	NSR					
GCT085	NSR					
GWV086_054		24	25	1	1.31	243
GWV086_069		36	38	2	3.46	289
	and	54	55	1	2.32	465
GWV086_070		41	42	1	4.82	657
GWV086_083		30	31	1	1.22	981
GWV086_086		24	25	1	3.21	198
	and	50	57	7	3.97	655
GWV086_090		51	52	1	5.62	377
	and	63	66	3	2.39	528
GWV086_116		25	26	1	2.57	284
GWV086_117		17	18	1	1.7	239
	and	25	26	1	8.13	908
GWV086_121		23	25	2	1.63	267
GWV086_122		25	26	1	28.98	276
	and	68	69	1	1.63	453
GWV086_123		68	71	3	4.8	479
GWV086_125		70	71	1	1.93	1670
GWV086_129		20	21	1	1.55	537
	and	27	28	1	2.4	1045
GWV086_130		20	23	3	8.36	412
GWV086_131		25	26	1	1.01	50
	and	36	37	1	1.19	294
IDMT034		92.12	92.72	0.6	18.17	2996
IDMT036		310.39	312.64	2.25	4.73	3975
	and	320	320.77	0.77	12.6	2263

HoleID		From	То	Length	Au_ppm	Cu_ppm
IDRD282		40	48	8	2.29	415
	and	103.36	104	0.64	14.84	6598
IDMT040		109.11	111.03	1.92	1.26	3534
IDRD297		103	104	1	3.31	98
IDRD298		28	32	4	3.38	117
	and	41	47	6	1.46	132
LJEX004		59	60	1	3.52	422

HoleID		From	То	Length	Li20 %	Ta2O5 ppm	Fe2O3 %
AURD010		35	42	7	1.05	200	0.66
	and	51.72	53	1.28	1.3	195	1.07
	and	95	97.7	2.7	1.11	67	1.06
AURD012		37.9	38.4	0.5	0.58	156	0.92
GCS0030		92	103	11	1.52		1.67
	and	104	108	4	1.35		1.65
IDEX020		255.24	255.95	0.71	0.96	57	1.14
IDRD040		383.91	389.11	5.2	1.31	69	0.88
	and	609.91	610.96	1.05	1.63	96	0.56
	and	646.77	656.11	9.34	0.46	158	0.33
IDRD040N1		594.57	595.47	0.9	1.6	53	0.36
	and	617.61	620.23	2.62	0.95	202	0.42
IDRD040N2		611.07	617.64	6.57	0.71	107	0.48
	and	682.78	700	17.22	1.1	163	0.33
IDRD191		65.05	67.7	2.65	1.48	140	2.19
IDRD197		75.68	87.01	11.33	1.33	386	0.67
IDRD239		589	589.95	0.95	0.39	nsr	5.49
	and	594.11	595.77	1.66	0.9	84	2.40
	and	607	626.66	19.66	0.62	174	3.51
	and	660.57	661.56	0.99	0.66	165	1.04
IDRD243N1		780.91	782.03	1.12	0.73	58	0.41
IDRD243N2		713.7	715.14	1.44	0.95	121	0.19
	and	728.5	729.54	1.04	0.76	68	0.32
IDRD244N1		418	437.77	19.77	0.52	191	1.43
IDRD249		917.62	919.85	2.23	1.21	147	1.63
	and	921.45	923.82	2.37	0.66	30	1.31
SPRD036		340.91	356.64	15.73	0.57	80	3.28
	and	367.29	379.93	12.64	0.82	108	2.39
SPRD045N1		528.87	529.42	0.55	0.47	141	0.37
	and	530.1	530.65	0.55	0.33	305	0.33
	and	541.5	547.14	5.64	0.43	291	1.33
SPRD045N2X		575.31	591.98	16.67	0.46	70	3.17
	and	603.55	604.75	1.2	0.36	nsr	2
SPRD051		82.67	83.44	0.77	1.67	99	0.89

						Ta2O5	
HoleID		From	То	Length	Li20 %	ppm	Fe2O3 %
	and	203	215	12	1.58	184	0.86
SPRD052		52	58	6	1.86	6	1.11
SPRD053		43	48	5	1.78	66	0.85
	and	59	64	5	0.75	261	0.70
SPRD054		60	64	4	1.15	361	1.65
SPRD055		18	19	1	0.41	56	2.66
	and	142	154.96	12.96	1.01	209	2.16
TIRD070		597.5	600.66	3.16	1.08	64	0.21

JORC Code, 2012 Edition
Table 1; Section 1: Sampling Techniques and Data Yinnetharra

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 Diamond (DD) and reverse circulation (RC) drilling has been carried out by DLI at the Yinnetharra project RC samples are collected from a static cone splitter mounted directly below the cyclone on the rig DD sampling is carried out to lithological/alteration domains with lengths between 0.3-1.1m Limited historic data has been supplied, reverse circulation (RC) drilling and semi-quantative XRD analysis have been completed at the Project. Historic drilling referenced has been carried out by Segue Resources and Electrostate (prior holder) Historic sampling of RC drilling has been carried out via a static cone splitter mounted beneath a cyclone return system to produce a representative sample, or via scoop These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	Drill type (e.g. core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Diamond drilling is being carried out by DDH1 utilising a Sandvik DE880 truck mounted multipurpose rig and is HQ or NQ diameter. RC drilling is carried out by Precision Exploration Drilling (PXD) using a Schramm 850 rig Some RC precollars have been completed, diamond tails are not yet completed on these holes Historic RC drilling was completed using a T450 drill rig with external booster and auxiliary air unit, or unspecified methods utilising a 133mm face sampling bit It is assumed industry standard drilling methods and equipment were utilised for all drilling

Criteria	Explanation	Commentary
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample condition is recorded for every RC drill metre including noting the presence of water or minimal sample return, inspections of rigs are carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Poor recoveries were occasionally encountered in near surface drilling of the pegmatite due to the weathered nature Historic RC recoveries were visually estimated on the rig, bulk reject sample from the splitter was retained on site in green bags for use in weighing and calculating drill recoveries at a later date if required Sample weights were recorded by the laboratory
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core and RC chip logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All diamond drillholes and RC chip trays are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering No historic chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies

Criteria	Explanation	Commentary
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples are encountered, extra cleaning of the splitter is carried out afterward RC and core samples have been analysed for Li suite elements by ALS Laboratories, Samples are crushed and pulverised to 85% passing 75 microns for peroxide fusion digest followed by ICPOES or ICPMS determination Historic RC sampling methods included single metre static cone split from the rig or via scoop from the green bags, field duplicates were inserted at a rate of 1:20 within the pegmatite zones Historic samples were recorded as being mostly dry Historic samples were analysed by Nagrom or ALS Laboratories where 3kg samples were crushed and pulverised to 85% passing 75 microns for a sodium peroxide fusion followed by ICP-MS determination for 25 elements. Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative subsample that was lightly ground such that 90% was passing 20 μm to eliminate preferred orientation
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Samples have been analysed by an external laboratory utilising industry standard methods The assay method utilised by ALS for core sampling allows for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC and DD sampling, all QAQC analyses were within tolerance The sodium peroxide fusion used for historic assaying is a total digest method All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods In the historic data field duplicates, certified reference materials (CRMs) and blanks were inserted into the sampling sequence at a rate of 1:20 within the pegmatite zone Internal standards, duplicates and repeats were carried out by Nagrom and ALS as part of the assay process No standards were used in the XRD process

Criteria	Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	 Significant intercepts have been reviewed by senior personnel Some holes in the current diamond program have been designed to twin historic RC drillholes and verify mineralised intercepts Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database Historic data was recorded in logbooks or spreadsheets before transfer into a geological database No adjustments to assay data have been made other than conversion from Li to Li₂O and Ta to Ta₂O₅
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 Drill collars are located using a handheld GPS unit, all holes will be surveyed by third party contractor once the program is complete GDA94 MGA zone 50 grid coordinate system was used Downhole surveys were completed by DDH1 and PXD using a multishot tool Historic collars were located using handheld Garmin GPS unit with +/- 5m accuracy Historic holes were not downhole surveyed, planned collar surveys were provided
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	Drill holes were orientated to intersect the pegmatite zones as close to perpendicular as possible; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised as true orientation of the pegmatites is yet to be determined
Sample security	The measures taken to ensure sample security	Samples are prepared onsite under supervision of DLI staff and transported by a third party directly to the laboratory Historic samples were collected, stored, and delivered to the laboratory by company personnel
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results, Yinnetharra

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wildemess or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	 Drilling and sampling activities have been carried on E09/2169 The tenement is in good standing There are no heritage issues

Criteria		Commentary
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The area has a long history of multi commodity exploration including base and precious metals, industrial minerals and gemstones stretching back to the 1970s, activities carried out have included geophysics and geochemical sampling, and some drilling Targeted Li exploration was carried out in 2017 by Segue Resources with follow up drilling completed by Electrostate in July 2022
Geology	Deposit type, geological setting and style of mineralisation.	The project lies within the heart of the Proterozoic Gascoyne Province, positioned more broadly within the Capricom Orogen — a major zone of tectonism formed between the Archean Yilgam and Pilbara cratons. The Gascoyne Province has itself been divided into several zones each characterised by a distinctive and episodic history of deformation, metamorphism, and granitic magmatism. The project sits along the northem edge of the Mutherbukin zone, along the Ti Tree Syncline. Mutherbukin is dominated by the Thirty-Three supersuite — a belt of plutons comprised primarily of foliated metamonzogranite, monzogranite and granodiorite. Rareearth pegmatites have been identified and mined on small scales
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used Significant intercepts are calculated with a nominal cut-off grade of 0.5% Li ₂ O
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The pegmatites are interpreted as dipping moderately to steeply toward the south Further drilling is required to confirm the true orientation of the pegmatites across multiple lined
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	All drill collars, and significant intercepts have been reported in the appendix

Criteria		Commentary
	Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None completed at this time
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	POW's have been submitted to give DLI access to drill a further 200RC and 100 Diamond holes immediately over the area currently cleared under the existing heritage agreement (work will only be carried out under the guidelines of the heritage agreement and the agreed POW terms).

JORC Code, 2012 Edition

Table 1; Section 1: Sampling Techniques and Data Mt Ida

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information	 Sampling activities carried out by DLI at the Mt Ida Project have included reverse circulation (RC), air core (AC) and diamond (DD) drilling, and rock chip sampling. Core sampling of one historic drillhole has also been carried out, with assaying, petrological and XRD analysis completed RC samples were collected from a static cone splitter mounted directly below the cyclone on the rig, AC samples were collected using a spear from piles on the ground into 2m composites or 1m bottom of hole samples, DD sampling was carried out to lithological/alteration domain with lengths between 0.3-1.1m Limited historical data has been supplied, historic sampling referenced has been carried out by Hammill Resources, International Goldfields, La Mancha Resources, Eastern Goldfields and Ora Banda Mining, and has included rock chip sampling, and RC, DD and rotary air blast (RAB) drilling Sampling of historic RC has been carried out via riffle split for 1m sampling, and scoop or spear sampling for 4m composites, historic RAB drilling was sampled via spear into 4m composites Historic core has been cut and sampled to geological intervals These methods of sampling are considered to be appropriate for this style of exploration

Criteria	Explanation	Commentary
Drilling techniques	Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC Drilling has been carried out by Orlando Drilling and Frontline Drilling, RC drilling utilised an Explorac 220RC rig with a 143 mm face sampling hammer bit, DD drilling was completed by a truck mounted Sandvik DE820 and a KWL 1500 and is HQ2 and NQ2 diameter. AC drilling was carried out by Gyro Drilling and was competed to blade refusal Diamond tails average 200m depth Historic drilling has been completed by various companies including Kennedy Drilling, Wallis Drilling, Ausdrill and unnamed contractors Historic DD drilling was NQ sized core It is assumed industry standard drilling methods and equipment were utilised for all historic drilling
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample condition is recorded for every RC and AC drill metre including noting the presence of water or minimal sample return, inspections of rigs were carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Limited sample recovery and condition information has been supplied or found for historic drilling
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All AC, RC chip trays and drill core are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering It is unknown if all historic core was oriented, limited geotechnical logging has been supplied No historic core or chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies

Criteria Explanation		Commentary
Sub-sampling techniques and sample preparation If core, whether quarter, half of If non-core, who rotary split, etc. dry. For all sar and appropria preparation to Quality control sub-sampling representivity. Measures take is representatic collected, including including instructions. The nature, quality of assay and whether assaying a sample sizes a of the material of the material or total. procedures and duplicates, eximples including instruction of the parameters us including instruction.	procedures adopted for all stages to maximise of samples. In to ensure that the sampling we of the in situ material uding for instance results for (second-half sampling. Whether are appropriate to the grain size being sampled. Itality and appropriateness of and laboratory procedures used the technique is considered nature of quality control lopted (eg standards, blanks, ternal laboratory checks) and otable levels of accuracy (ie lack recision have been established, all tools, spectrometers, instruments, etc, the led in determining the analysis ument make and model, calibrations factors applied and	DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples were encountered, extra cleaning of the splitter was carried out afterward RC, DD and AC drip samples have been analysed for Li suite elements via ICPMS, and for Au by 50g fire assay by ALS, Nagrom, NAL and SGS Samples analysed by ALS, Nagrom, NAL and SGS were dried, crushed and pulverised to 80% passing 75 microns before undergoing a selected peroxide fusion digest or 4 acid digest with ICPMS finish or fire assay with ICPMS finish Historic core sampled by DLI was collected for ICPMS analysis via selection from NQ half and quarter core, and submitted to Nagrom Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative subsample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation RC and AC duplicate field samples were carried out at a rate of 1:20 and were sampled directly from the splitter on the rig. These were submitted for the same assay process as the primary samples and the laboratory are unaware of such submissions Historic chip sampling methods include single metre riffle split and 4m composites that were either scoop or spear sampled, while historic core was cut onsite and half core sampled Historic amples were analysed at LLAS, Genalysis and unspecified laboratories Historic That analysis techniques generally included crushing, splitting if required, and pulverisation, with aqua regia or fire assay with AAS finish used to determine concentration Historic multielement analysis was carried with mixed acid digest and ICP-MS determination Samples have been analysed by external laboratories utilising industry standard methods The assay methods utilised by ALS, Nagrom, NAL and SGS for RC chip, AC, rock chip and core sampling allow for total dissolution of the sample where required Standards and blanks ar

Criteria	Explanation	Commentary
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	Significant intercepts have been reviewed by senior personnel No specific twinned holes have been completed, but drilling has verified historic drilling intervals Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database. Historic data was supplied in various formats and has been validated as much as practicable No adjustments to assay data have been made other than conversion from Li to Li ₂ O and Ta to Ta ₂ O ₅ Data entry, verification and storage protocols remain unknown for historic operators
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 MGA94 zone 51 grid coordinate system is used Current drilling collars have been pegged using a handheld GPS unit, all collars will be surveyed upon program completion by an independent third party Downhole surveys are completed by the drilling contractors using a true north seeking gyro instrument, AC drillholes did not have downhole surveys carried out Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation Historic collars are recorded as being picked up by DGPS, GPS or unknown methods and utilised the MGA94 zone 51 coordinate system Historic downhole surveys were completed by north seeking gyro, Eastman single shot and multi shot downhole camera
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	Drill holes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised
Sample security	The measures taken to ensure sample security	Samples are prepared onsite under supervision of DLI staff and transported by a third party directly to the laboratory Historic sample security measures are unknown
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results, Mt Ida

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	 Drilling and sampling activities have been carried on M29/2, M29/165 and E29/640 The tenements are in good standing There are no heritage issues

Criteria		Commentary
	interests, historical sites, wildemess or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	The area has a long history of gold and base metals exploration and mining, with gold being discovered in the district in the 1890s. Numerous generations of exploration have been completed including activities such as drilling, geophysics and geochemical sampling Targeted Li assaying was first carried out in the early 2000s by La Mancha Resources and more recently, lithium assays were completed by Ora Banda Mining
Geology	Deposit type, geological setting and style of mineralisation.	The Mt Ida project is located within the Eastern Goldfields region of Western Australia within the Mt Ida/Ularring greenstone belt Locally the Kurrajong Antiform dominates the regional structure at Mount Ida, a south-southeast trending, tight isoclinal fold that plunges at a low angle to the south. The Antiform is comprised of a layered greenstone sequence of mafic and ultramafic rocks Late stage granitoids and pegmatites intrude the sequence
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	A list of the drill hole coordinates, orientations and metrics are provided as an appended table
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalents are used Significant intercepts are calculated with a cut-off grade of 0.3% Li2O
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	The geometry of the mineralisation is roughly perpendicular to the drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration	All drill collars, and significant intercepts have been reported in the appendix

Criteria		Commentary
	Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None completed at this time
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Drilling is continuing at Mt Ida with a 60,000m program consisting of a mix of RC diamond and AC drilling underway