

High grade gold results offer complementary cashflow opportunity at Mt Ida

Highlights:

- The Mt Ida Lithium Project in the Goldfields region of Western Australia remains on track for approval to mine later this year.
- The company is pleased to report very strong recent gold results from new drilling immediately adjacent to the Company's proposed lithium operation.
- New drilling results include:
 - o **1.1m @ 302 g/t Au** from 82.9m in IDRD146
 - 9m @ 26.48 g/t Au from 84m in SSRD044
 - o 5.7m @ 35.7 g/t Au from 191.4m in IDRD066
 - o **1.3m @ 55 g/t Au & 0.75% Cu** from 362m in IDRD162
 - o 2.7m @ 21.3 g/t Au & 1.9% Cu from 355.5m in IDRD033
 - o 7m @ 7.4 g/t Au from 162m in IDRD085
 - o **1.5m @ 35 g/t Au & 0.6% Cu** from 224.4m in IDRD112
- The location of the drilling intercepts and modelled gold lodes near surface appear suitable for mining separately to the lithium pegmatites within the mining footprint defined for the proposed lithium mining operation.
- Gold drill results at depth also suggest further potential to exploit additional gold lodes over the life of the lithium project.
- A gold resource update is being prepared in conjunction with a lithium resource update due in the September Quarter.
- Grade control drilling in support of the proposed mining operations is ongoing.

Delta Lithium Limited (ASX:DLI) ("Delta" or the "Company"), is pleased to announce an update for activities at its 100% owned Mt Ida Lithium Project in the Goldfields region of Western Australia.

Gold only as well as gold-copper bearing lodes have been identified occurring in proximity to known lithium bearing pegmatites at the Mt Ida Project. Gold and copper assay results have been received from drill holes that were drilled to test lithium mineralisation. While lithium remains the central focus for the Mt Ida development, the Company considers the high grade nature of the gold discovery as a significant and value adding opportunity. The gold ores do not contaminate the lithium mineralisation and offer potential for an entirely complementary source of revenue.

Commenting on the results Executive Chairman, David Flanagan said;

"The team has not just discovered high grade oxide gold lodes adjacent to Sister Sam, they have also confirmed a large number of depth extensions to known gold lodes, mined over the last 80 years and the grades and widths look pretty substantial.

These outstanding gold intercepts at the 86 lode are high impact. We have 4 existing gold processing plants within 150 kilometres and one within 12 kilometres. With a granted mining licence and a pending

approval to mine we think we have a very good opportunity to convert this to value for shareholders.

We are actively drilling out the gold resource for inclusion in the starter pit for the Mt Ida Lithium project. To be clear, we remain focussed on becoming a Lithium producer. The mining of shallow gold ores would reduce the strip ratio for access to the main lithium resource and provide significant credits towards the capital cost of the early development works"

Prior to the discovery of Lithium at the Mt Ida Project, gold was exploited on the property by various companies on and off since the turn of the 20th Century, cumulating in a total production of >300,000 oz at a grade of >16 g/t Au. In recent months the Company has undertaken a comprehensive drilling program targeting lithium at the Mt Ida Project. During the course of this lithium drilling, numerous gold lodes have been intercepted and assayed for gold and copper.

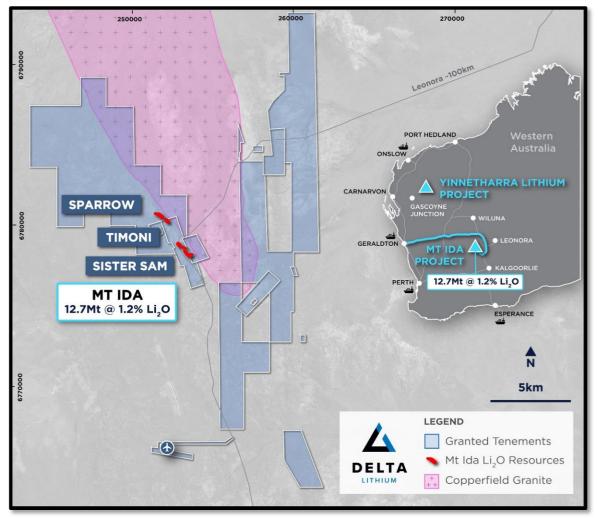


Figure 1: Mt Ida Plan showing tenements, resource outlines

Near surface gold results offer complimentary cashflow opportunity to Delta's Lithium strategy

Further investigations will primarily consider gold mineralisation immediately adjacent to lithium resources that could potentially contribute to early cashflow opportunities at the project. Work to compile a gold specific mineral resource estimate has begun.

The Baldock 086 lode is a near surface, gold lode that is immediately adjacent to the upper Sister Sam Lithium resource. The gold lode is flat dipping with very low copper and hosts recorded mineralisation from

14m to a depth of 130m over a strike of 350m, with intercepts including:

HOLE ID	From (m)	To (m)	Length (m)	Au (g/t)	Cu (ppm)
SSRD044	84	93	9	26.48	1945.4
TIB0060	20	30	10	18	NR
IDRD189	78	80.7	2.7	10.4	93.1
SSRD042	79	81	2	11	2247
IDRD146	82.9	84	1.1	302	NR
IDRD148	120.7	123	2.3	14.8	838
IDRD193	113.2	113.6	0.4	25.8	501
TIB0142	64	76	12	3.9	NR
TIC0195	100	102	2	13.1	NR

Table 1: Gold results from Baldock 086 lode including historical (italics) and new results (NR denotes "No Results")

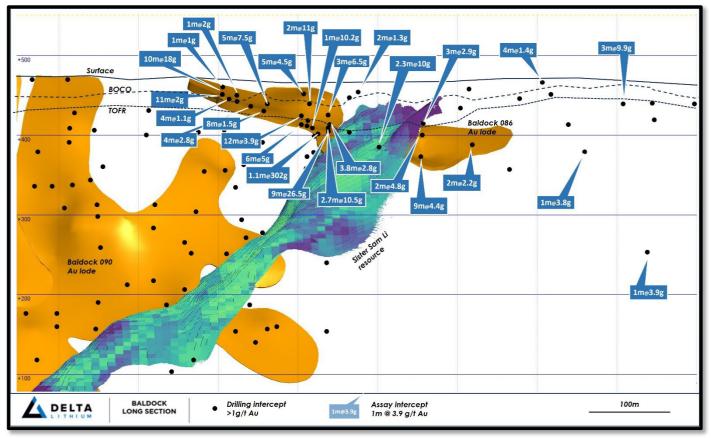


Figure 2: Long section showing Sister Sam Li block models and gold results from Baldock lode 086

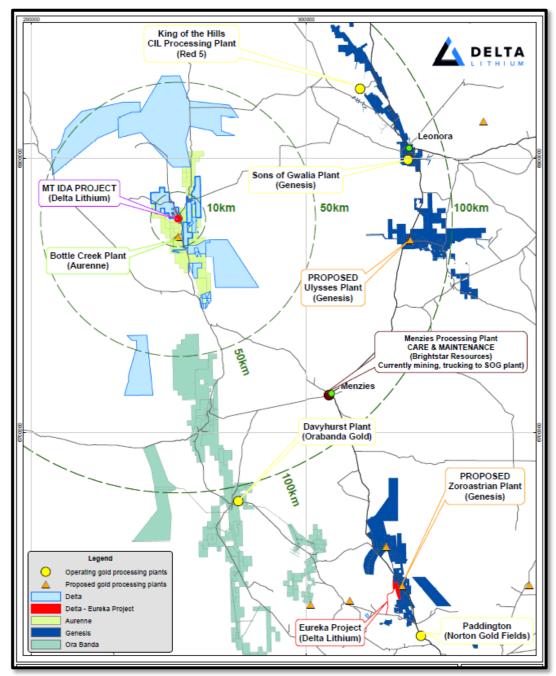


Figure 3: Plan showing possible gold treatment facilities in the Mt Ida area.

Gold-copper results from the Mt Ida Project

The gold and copper mineralisation intercepted in multiple lodes to date is high grade, well defined and laterally extensive, paving the way for a significant resource base that could complement both the mining and processing methods anticipated for the lithium project.

Gold mineralisation is hosted in shear-zones associated with quartz veins and sulphides. Some gold lodes have significant amounts of copper with them. There is a strong spatial association between gold lodes and the lithium bearing pegmatites.

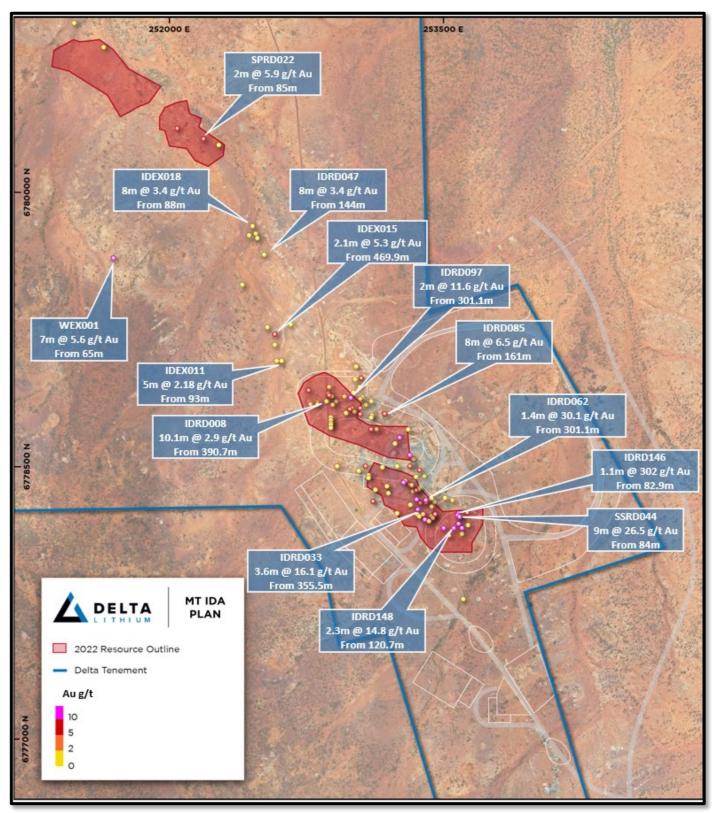


Figure 4: Plan showing all new gold results

HOLE ID	From (m)	To (m)	Length (m)	Au g/t	Cu %
IDRD146	82.93	84	1.07	302	NR
SSRD044	85	92	7	33.88	0.19
IDRD066	191.43	197.14	5.71	35.66	0.10
IDMT021	205.67	227.97	22.3	4.62	0.06
IDRD162	362.03	363.33	1.3	55.02	0.75
IDRD033	355.49	358.2	2.71	21.28	1.94
IDRD085	162	169	7	7.38	0.18
IDRD112	224.43	225.9	1.47	35.04	0.58
IDMT021	144	150.96	6.96	7.28	0.09
IDRD062	301.42	302.45	1.03	42.42	0.57
IDRD164	366.15	371.1	4.95	8.42	0.53
WEX001	65	72	7	5.58	0.03
IDRD148	120.72	123.04	2.32	14.78	0.08
IDRCD104	381.11	381.83	0.72	46.26	0.01
IDRD008	390.72	400.8	10.08	2.91	0.14
IDRD189	78.65	84	5.35	5.44	0.16
IDRD047	144	152	8	3.49	0.00
IDEX018	88	96	8	3.39	0.22
IDRD090	273	279.27	6.27	4.32	0.34
IDRD094	172.44	174.79	2.35	10.26	0.16
IDRD097	301.05	303.05	2	11.68	0.50
IDRD111	239	243	4	5.76	0.63
IDRD150	98.37	100	1.63	13.93	0.06
SSRD042	79	81	2	11	0.22
IDRD237N1	304.07	307.92	3.85	5.57	0.50
IDRD036	630.38	633.3	2.92	7.29	0.06
IDMT021	244.08	250.02	5.94	3.52	0.14
TIRD053	47	48	1	20.5	0.60
IDRD008	407.71	411.26	3.55	5.71	0.06
IDRD113	170.5	171.62	1.12	18.06	0.46
IDMT021	259.44	265.07	5.63	3.52	0.10
IDRD075	297.69	301.51	3.82	5.15	0.51
IDRD239	449.12	454.08	4.96	3.91	0.07
IDRD098	51	53	2	9.59	0.03
IDRD171	49.1	50	0.9	20.11	0.05
IDRD052	113	116	3	5.79	0.22
IDRD114A	188.11	190.03	1.92	9.02	0.75
IDRD122	354.5	357	2.5	6.75	0.18
IDRD101	112	114	2	7.96	0.19
IDRD156	344	344.67	0.67	22.4	0.37
IDRD096	206	206.88	0.88	16.28	0.68
IDRD121	78	79	1	13.2	0.01
IDRD237	399.02	405.97	6.95	1.85	0.14

Table 2: Recent gold-copper results at a 10 gram metre cut

HOLE ID	From (m)	To (m)	Length (m)	Au g/t	Cu %
IDRD064	347	348	1	12.42	0.01
IDRD080	36	40	4	3.01	0.01
IDRD080	338.98	339.71	0.73	16.45	0.07
SPRD022	85	87	2	5.97	0.16
IDMT021	162.05	166.97	4.92	2.33	0.01
IDEX015	469.85	472	2.15	5.31	0.16
IDRD070	40	44	4	2.84	0.10
IDRD189	68.11	71.96	3.85	2.77	0.01
IDRD079	257.24	258.13	0.89	11.5	0.03

Release authorised by the Executive Chairman on behalf of the Board of Delta Lithium Limited.

For further information, please contact: **Delta Lithium** David Flanagan, Chairman +61 8 6109 0104 info@deltalithium.com.au

Investor/Media Enquiries

Citadel-MAGNUS Michael Weir +61 402 347 032 Jono van Hazel +61 411 564 969

About Delta Lithium

Delta Lithium (ASX: DLI) is an exploration and development company focused on bringing high-quality, lithium-bearing pegmatite deposits, located in Western Australia, into production. With a strong balance sheet and an experienced team driving the exploration and development workstreams, Delta Lithium is rapidly advancing its Mt Ida Lithium Project towards production. The Mt Ida Lithium Project holds a critical advantage over other lithium developers with existing Mining Leases in place. To capitalise on the prevailing buoyant lithium market, Delta Lithium is pursuing a rapid development pathway to unlock maximum value for shareholders.

Delta Lithium also holds the highly prospective Yinnetharra Lithium Project that is already showing signs of becoming one of Australia's most exciting lithium regions. The Company is currently undergoing an extensive 400 drill hole campaign to be completed throughout 2023.

Competent Person's Statement

Information in this Announcement that relates to exploration results is based upon work undertaken by Mr. Charles Hughes, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AUSIMM). Mr. Hughes has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a 'Competent Person' as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Hughes is an employee of Delta Lithium Limited and consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.

Refer to <u>www.deltalithium.com.au</u> for past ASX announcements.

Past Exploration results and Mineral Resource Estimates reported in this announcement have been previously prepared and disclosed by Delta Lithium in accordance with JORC 2012. The Company confirms that it is not aware of any new information or data that materially affects the information included in these market announcements. The Company confirms that the form and content in which the Competent Person's findings are presented here have not been materially modified from the original market announcement, and all material assumptions and technical parameters underpinning Mineral Resource Estimates in the relevant market announcement continue to apply and have not materially changed. Refer to www.deltalithium.com.au for details on past exploration results and Mineral Resource Estimates.

Disclaimer

This release may include forward-looking and aspirational statements. These statements are based on Delta Lithium management's expectations and beliefs concerning future events as of the time of the release of this announcement. Forward-looking and aspirational statements are necessarily subject to risks, uncertainties and other factors, some of which are outside the control of Delta Lithium, that could cause actual results to differ materially from such statements. Delta Lithium makes no undertaking to subsequently update or revise the forward looking or aspirational statements made in this release to reflect events or circumstances after the date of this release, except as required by applicable laws and the ASX Listing Rules.

	Cut-off	Li ₂ O			Ta ₂ O ₅
Resource category	grade (Li₂O%)	Tonnes (Mt)	Grade (% Li₂O)	Li₂O (Kt)	Grade (Ta₂O₅ ppm)
Total Measured	0.55	-	-	-	-
Total Indicated	0.55	3.3	1.4	46	246
Total Inferred	0.55	9.3	1.1	102	193
Total		12.7	1.2	148	207

Appendix 1: Mineral Resource Estimate Table (Refer to ASX Announcement 19 October 2022)

Appendix 2: Newly reported assay results for the Mt Ida Project better than 1m @ 1 g/t Au (NR denotes "No result")

HOLEID	FROM	то	LENGTH	Au_ppm Best	Cu_ppm Best
GVMB003	34.0	38.0	4.0	1.8	172.5
IC262	20.0	24.0	4.0	1.2	83.4
IC264	36.0	39.0	3.0	1.5	705.5
IDEX015	469.9	472.0	2.2	5.3	1648.0
IDEX016	612.6	613.8	1.2	2.1	1821.3
IDEX018	88.0	96.0	8.0	3.4	2247.5
IDEX019W1	389.1	390.1	1.0	1.1	6500.0
IDMT021	144.0	151.0	7.0	7.3	852.8
IDMT021	155.0	156.0	1.0	1.6	31.0
IDMT021	162.1	167.0	4.9	2.3	99.9
IDMT021	179.0	180.1	1.1	1.4	701.0
IDMT021	182.0	183.0	1.0	1.2	363.0
IDMT021	186.0	186.6	0.6	1.8	467.0
IDMT021	205.7	228.0	22.3	4.6	550.7
IDMT021	244.1	250.0	5.9	3.5	1371.6
IDMT021	259.4	265.1	5.6	3.5	991.4
IDRCD104	294.3	295.4	1.1	2.7	525.0
IDRCD104	318.2	319.8	1.7	2.0	2188.4
IDRCD104	381.1	381.8	0.7	46.3	138.0
IDRD008	390.7	400.8	10.1	2.9	1429.9
IDRD008	407.7	411.3	3.6	5.7	600.3
IDRD008	436.1	439.0	2.9	2.2	431.6
IDRD008	482.1	483.0	0.9	4.1	1311.0
IDRD032	243.3	243.9	0.6	11.0	1895.0
IDRD032	247.3	248.0	0.7	1.1	323.0
IDRD032	332.9	333.5	0.6	1.1	6350.0
IDRD033	355.5	358.2	2.7	21.3	19384.7
IDRD033	374.0	375.0	1.0	1.8	1820.0
IDRD036	370.2	372.0	1.8	5.0	NR
IDRD036	607.1	611.5	4.4	1.1	262.5
IDRD036	612.9	613.8	0.9	1.1	2347.3
IDRD036	630.4	633.3	2.9	7.3	568.6

HOLEID	FROM	то	LENGTH	Au_ppm Best	Cu_ppm Best
IDRD038	590.7	592.4	1.7	1.8	397.5
IDRD042	351.8	352.9	1.1	7.5	683.0
IDRD044	138.0	140.0	2.0	4.7	NR
IDRD044	164.0	165.0	1.0	1.3	NR
IDRD047	144.0	152.0	8.0	3.5	NR
IDRD047	186.0	189.0	3.0	1.7	NR
IDRD051	59.0	62.0	3.0	1.7	868.7
IDRD052	52.0	55.0	3.0	2.8	1587.0
IDRD052	113.0	116.0	3.0	5.8	2239.7
IDRD054	173.0	174.0	1.0	3.1	NR
IDRD062	301.4	302.5	1.0	42.4	5673.6
IDRD063	194.0	195.0	1.0	1.1	NR
IDRD063	204.0	205.0	1.0	1.1	NR
IDRD063	211.9	212.4	0.6	3.4	783.0
IDRD063	244.9	246.5	1.6	1.1	548.3
IDRD063	254.1	254.9	0.8	2.6	47167.4
IDRD063	323.0	323.5	0.5	1.5	2015.0
IDRD063	328.0	330.0	2.0	1.9	466.0
IDRD064	291.0	292.5	1.5	6.1	5947.4
IDRD064	323.7	324.6	0.9	2.2	1583.0
IDRD064	347.0	348.0	1.0	12.4	78.0
IDRD065	85.0	86.0	1.0	2.9	270.0
IDRD066	191.4	197.1	5.7	35.7	972.2
IDRD067	235.9	236.9	1.0	3.3	1891.2
IDRD067	237.8	239.1	1.3	5.2	657.4
IDRD068	132.0	133.0	1.0	2.7	84.0
IDRD069	36.0	40.0	4.0	1.1	461.0
IDRD069	78.0	83.0	5.0	1.3	632.0
IDRD070	40.0	44.0	4.0	2.8	975.0
IDRD072	119.0	120.0	1.0	4.1	470.0
IDRD073	155.0	156.0	1.0	1.1	169.0
IDRD074	259.4	260.2	0.8	4.4	2900.0
IDRD074	338.7	341.0	2.3	1.4	362.2
IDRD074	420.9	422.7	1.8	4.0	3439.4

HOLEID	FROM	то	LENGTH	Au_ppm Best	Cu_ppm Best
IDRD075	297.7	301.5	3.8	5.2	5147.1
IDRD076	80.0	84.0	4.0	1.7	24.0
IDRD079	160.0	162.0	2.0	2.6	3185.5
IDRD079	257.2	258.1	0.9	11.5	279.0
IDRD079	283.7	284.9	1.2	1.4	589.0
IDRD080	36.0	40.0	4.0	3.0	108.0
IDRD080	339.0	339.7	0.7	16.5	698.0
IDRD080	405.4	407.0	1.6	2.0	2608.5
IDRD083	118.0	119.0	1.0	1.8	506.0
IDRD084	134.0	135.0	1.0	5.3	1744.0
IDRD084	152.0	153.0	1.0	2.0	17061.0
IDRD085	104.0	109.0	5.0	1.8	5532.4
IDRD085	124.0	125.0	1.0	1.3	2180.0
IDRD085	146.0	147.0	1.0	1.5	100.0
IDRD085	162.0	169.0	7.0	7.4	1817.7
IDRD087	93.0	94.0	1.0	2.9	229.0
IDRD087	213.0	215.0	2.0	2.8	909.0
IDRD088	32.0	33.0	1.0	2.5	81.0
IDRD089	85.0	86.0	1.0	1.0	1398.0
IDRD090	208.6	209.4	0.8	1.1	152.0
IDRD090	273.0	279.3	6.3	4.3	3407.5
IDRD092	139.0	141.0	2.0	3.2	2379.0
IDRD093	45.0	46.0	1.0	2.5	1500.0
IDRD093	57.0	58.0	1.0	6.2	13238.0
IDRD094	172.4	174.8	2.4	10.3	1567.5
IDRD094	177.7	179.0	1.4	2.6	2406.0
IDRD095	45.0	46.0	1.0	3.5	581.0
IDRD095	324.0	324.6	0.6	2.0	420.0
IDRD096	206.0	206.9	0.9	16.3	6786.1
IDRD096	240.2	241.5	1.2	1.6	1459.8
IDRD097	301.1	303.1	2.0	11.7	4979.3
IDRD098	51.0	53.0	2.0	9.6	269.0
IDRD099	112.0	113.0	1.0	2.1	339.0
IDRD099	145.0	146.0	1.0	1.8	1025.0

HOLEID	FROM	то	LENGTH	Au_ppm Best	Cu_ppm Best
IDRD100	97.0	98.0	1.0	4.9	1660.0
IDRD100	180.0	181.0	1.0	1.4	872.0
IDRD101	112.0	114.0	2.0	8.0	1942.5
IDRD102	130.0	131.0	1.0	2.2	723.0
IDRD102	157.0	158.0	1.0	1.8	443.0
IDRD103	62.0	63.0	1.0	2.1	728.0
IDRD105	91.0	92.0	1.0	1.3	430.0
IDRD106	73.0	74.0	1.0	2.0	1175.0
IDRD110	285.8	287.3	1.4	7.0	8178.1
IDRD110	341.1	342.4	1.3	2.4	871.0
IDRD111	239.0	243.0	4.0	5.8	6315.0
IDRD112	171.0	172.0	1.0	3.8	242.0
IDRD112	224.4	225.9	1.5	35.0	5799.1
IDRD113	170.5	171.6	1.1	18.1	4628.2
IDRD113	192.9	194.2	1.3	4.8	483.2
IDRD114A	89.0	90.0	1.0	3.0	5910.0
IDRD114A	188.1	190.0	1.9	9.0	7536.0
IDRD114A	234.5	235.1	0.6	1.2	850.0
IDRD119	262.0	263.0	1.0	1.0	406.0
IDRD120	60.0	62.0	2.0	2.8	166.5
IDRD121	78.0	79.0	1.0	13.2	112.0
IDRD121	436.5	437.5	1.0	4.4	1505.0
IDRD122	203.0	204.0	1.0	2.5	235.0
IDRD122	354.5	357.0	2.5	6.8	1840.7
IDRD122	393.1	393.6	0.5	1.1	559.0
IDRD123	351.0	352.0	1.0	1.3	63.0
IDRD125	130.4	131.3	0.9	1.5	1025.4
IDRD126	283.4	284.5	1.2	1.8	2805.6
IDRD128	258.7	260.0	1.4	4.3	3804.8
IDRD128	277.3	278.0	0.7	6.6	10000.0
IDRD138	54.0	55.0	1.0	1.2	65.0
IDRD141	286.8	288.4	1.6	2.8	1265.3
IDRD143	545.3	546.4	1.1	1.1	61.0
IDRD143	552.4	553.3	0.9	1.1	804.0

HOLEID	FROM	то	LENGTH	Au_ppm Best	Cu_ppm Best
IDRD143	585.0	589.0	4.0	1.1	38.8
IDRD143	593.6	594.1	0.5	1.5	6590.0
IDRD146	82.9	84.0	1.1	302.0	NR
IDRD148	120.7	123.0	2.3	14.8	838.5
IDRD150	98.4	100.0	1.6	13.9	616.0
IDRD150	132.0	133.0	1.0	1.4	584.0
IDRD156	344.0	344.7	0.7	22.4	3661.5
IDRD162	362.0	363.3	1.3	55.0	7490.8
IDRD162	372.0	372.9	0.8	4.6	1396.6
IDRD164	366.2	371.1	5.0	8.4	5271.2
IDRD164	425.0	425.7	0.7	2.6	1190.0
IDRD171	35.3	36.1	0.8	1.0	89.0
IDRD171	49.1	50.0	0.9	20.1	495.9
IDRD172	379.0	381.2	2.2	3.0	2042.3
IDRD176A	249.1	249.8	0.7	3.3	944.9
IDRD177	61.0	63.0	1.9	3.1	306.7
IDRD183	52.0	53.1	1.1	1.1	7780.0
IDRD189	68.1	72.0	3.9	2.8	93.0
IDRD189	78.7	84.0	5.4	5.4	1595.6
IDRD194	138.5	139.1	0.6	1.4	9400.0
IDRD219	123.0	124.0	1.0	3.8	1605.0
IDRD229W1	560.0	563.0	3.0	2.3	44.8
IDRD229W1	610.0	611.6	1.6	4.5	243.4
IDRD229W1	614.0	615.8	1.8	3.8	1961.8
IDRD229W1	619.1	620.0	0.9	1.4	232.0
IDRD230	511.0	512.5	1.5	2.5	117.1
IDRD230	524.3	525.1	0.8	2.5	855.0
IDRD237	399.0	406.0	7.0	1.9	1387.0
IDRD237N1	304.1	307.9	3.9	5.6	4967.2
IDRD237N1	401.3	402.7	1.4	4.1	1256.0
IDRD237N2	229.8	230.3	0.5	1.3	3530.0
IDRD239	288.8	290.9	2.0	1.2	910.4
IDRD239	372.4	374.0	1.6	1.8	837.0
IDRD239	449.1	454.1	5.0	3.9	667.4

HOLEID	FROM	то	LENGTH	Au_ppm Best	Cu_ppm Best
IDRD243	68.0	69.0	1.0	2.2	345.0
IDRD243	391.0	392.2	1.1	1.2	1260.0
IDRD243	684.0	684.5	0.6	11.6	765.0
IDRD244	246.4	247.2	0.8	5.5	727.0
IDRD244	365.3	366.0	0.7	1.2	545.0
IDRD244N1	241.0	243.0	2.0	3.9	236.8
IDRD245N1	837.0	837.9	0.9	2.3	252.0
IDRD245N3	1186.2	1186.8	0.5	6.8	4940.0
IDRD245N4	1091.0	1091.7	0.7	4.9	840.0
IDRD250	342.9	344.6	1.7	1.2	2247.4
IDRD250	503.9	505.1	1.2	1.3	991.8
IDRD255	122.0	123.0	1.0	1.1	544.0
IDRD255	209.0	210.0	1.0	2.4	3290.0
SPEX010	29.0	30.0	1.0	2.2	NR
SPRD017	54.0	55.1	1.0	6.3	7440.0
SPRD022	35.0	36.0	1.0	2.2	1090.0
SPRD022	68.0	69.0	1.0	1.1	593.0
SPRD022	85.0	87.0	2.0	6.0	1617.5
SPRD032	304.0	305.1	1.1	1.9	233.0
SPRD043	180.0	181.0	1.0	2.4	95.0
SSRD005	53.0	54.0	1.0	1.1	3190.0
SSRD042	79.0	81.0	2.0	11.0	2247.5
SSRD044	85.0	92.0	7.0	33.9	1945.4
TIRD049	63.0	64.0	1.0	1.5	108.0
TIRD053	47.0	48.0	1.0	20.5	5960.0
TIRD060	102.0	103.0	1.0	1.3	1980.0
WEX001	65.0	72.0	7.0	5.6	273.4

Appendix 5. Drift fole details for newly reported Ad assays at Mit ida								
HOLE ID	East	North	RL	Depth	Azi	Dip		
GVMB003	258082.3	6776098	465.11	42	0	-90		
IC262	250891	6781804	456.1305	24	120	-55		
IC264	250993	6781647	455.4892	39	120	-55		
IDEX006	252667.3	6779212	470.44	150	112.88	-59.77		
IDEX008	252515.1	6779265	469.87	150	111.33	-60.4		
IDEX009	252547.5	6779176	470.45	150	111.31	-61.56		
IDEX011	252577.8	6779082	471.06	150	109.16	-60.73		
IDEX012	252498	6779115	470.82	256	110.99	-61.02		
IDEX014	253503.4	6777731	478.26	336	78.94	-60.57		
IDEX015	252542.8	6779477	468.21	748.1	162.3	-53.67		
IDEX016	252302.1	6779840	466.26	751.55	154.81	-50.86		
IDEX018	252434.9	6779868	465.93	459.5	151.02	-50.08		
IDEX019W1	252668.6	6779528	468.06	751.1	161.56	-53.46		
IDMT021	252899.3	6778827	471.56	274.2	180.22	-59.91		
IDRCD104	253242.4	6778280	474.035	426.76	108.85	-59.36		
IDRD008	252893.4	6779078	469.93	630.43	180.29	-58.65		
IDRD026	253573.4	6778188	474.84	120.26	110.87	-55.46		
IDRD028	252822.3	6778558	473.84	700.96	97.12	-54.44		
IDRD032	253313.9	6778305	473.79	342.4	94.76	-63.38		
IDRD033	253208	6778319	473.55	393.5	106.85	-59.73		
IDRD034	252920.6	6778532	473.51	158	92.44	-59.78		
IDRD035	252790.9	6779001	470.7	540.72	165.34	-64.86		
IDRD036	252725.4	6778522	474.96	819.9	96.75	-56.03		
IDRD038	252785.1	6779001	470.88	602.17	157.32	-74.58		
IDRD042	253173	6778431	473.14	378.87	70.62	-62.71		
IDRD044	252424.1	6779723	466.97	180	65.34	-61.32		

Appendix 3: Drill hole details for newly reported Au assays at Mt Ida

HOLE ID	East	North	RL	Depth	Azi	Dip
IDRD047	252458.6	6779621	467.33	210	60.22	-60.59
IDRD051	252448.3	6779774	466.47	130	60.49	-61.06
IDRD052	252423.3	6779749	466.75	179	61.58	-60.85
IDRD054	253196.8	6778356	473.34	432.28	52.87	-55.53
IDRD062	253221.3	6778326	473.54	324.4	51.92	-59.67
IDRD063	253226	6778329	473.7868	363.54	63.45	-56.34
IDRD064	253249	6778282	473.96	384.67	54.37	-60.62
IDRD065	253374.6	6778253	474.28	258.4	55.85	-52.89
IDRD066	253372.2	6778252	474.48	303.6	54.88	-62.65
IDRD067	253369	6778248	474.46	279.54	77.96	-70.48
IDRD068	253468.4	6778270	473.55	149	53.3	-60.51
IDRD069	253560	6778297	473.73	119	25.22	-55.39
IDRD070	253558	6778292	473.75	146	24.03	-80.51
IDRD072	253539.4	6778304	473.61	149	0.23	-70.65
IDRD073	253447.5	6778240	473.88	197	53.93	-60.48
IDRD074	253157.6	6778160	475.25	465.4	51.75	-61.1
IDRD075	253194.1	6778453	474.36	327.3	85.22	-52.25
IDRD076	253105.7	6778124	475.83	155	49.58	-59.55
IDRD079	253262.2	6778364	473.85	327.1	66.08	-55.63
IDRD080	253197.7	6778358	473.26	501.6	18.07	-66.57
IDRD083	253035.7	6778661	472.56	150	71.02	-54.97
IDRD084	253097	6778698	471.73	230	52.76	-70.2
IDRD085	253117.8	6778718	471.64	173	52.39	-56.57
IDRD087	253034.2	6778694	472.29	233	50.46	-56.44
IDRD088	253101	6778744	471.7	90	51.27	-60.02
IDRD089	253103.5	6778779	471.43	148	52.77	-56.63
IDRD090	253527	6778546	470.79	348.4	259.84	-51.53
IDRD092	253065.3	6778785	471.43	196	43.24	-55.21

HOLE ID	East	North	RL	Depth	Azi	Dip
IDRD093	253090.3	6778820	470.73	119	42.32	-51.4
IDRD094	252999.7	6778767	471.66	243.5	54.94	-56.45
IDRD095	252898.3	6778747	472.11	343.1	57.56	-68.16
IDRD096	252937.8	6778799	471.63	261.5	66.95	-60.04
IDRD097	252901.8	6778831	471.54	321.6	67.77	-69.4
IDRD098	253036.8	6778838	470.83	179	54.06	-67.43
IDRD099	253003	6778885	470.47	149	51.26	-55.31
IDRD100	252971.9	6778857	470.82	191	51.79	-54.57
IDRD101	253018.4	6778939	470.17	143	52.3	-60.13
IDRD102	252982.4	6778908	470.46	185	38.82	-54.62
IDRD103	253004.5	6779014	469.82	100	53.19	-55.84
IDRD105	252899.3	6778904	470.91	203	80.89	-69.65
IDRD106	252997.6	6779042	469.66	107	51.26	-60.94
IDRD110	252959.6	6778686	472.67	375.4	87.53	-57.46
IDRD111	252955.3	6778726	472.1	329	60.04	-61.95
IDRD112	252958.8	6778729	472.01	297.2	50.13	-56.22
IDRD113	252977	6778807	471.34	231.5	55.93	-60.37
IDRD114A	252986.7	6778761	471.7	249.3	58.49	-60.78
IDRD119	253142.8	6778373	473.69	342	53.13	-65.85
IDRD120	253185	6778321	473.71	227	53.93	-60.94
IDRD121	253178.9	6778317	473.67	462.6	50.01	-66.84
IDRD122	253184.6	6778297	473.82	396.5	53.12	-60.03
IDRD123	253259.2	6778214	474.48	357.5	61.4	-60.95
IDRD125	253326.6	6778395	476.31	201.5	79.52	-60.35
IDRD126	253309.1	6778191	475.08	327.5	54.78	-61.75
IDRD128	253353.2	6778150	475.34	318.4	55.7	-58.27
IDRD138	253148.8	6778091	476.0629	515	54.03	-50.93
IDRD141	253034.4	6778563	472.68	514.5	134.66	-67.23

HOLE ID	East	North	RL	Depth	Azi	Dip
IDRD143	253074.3	6778561	473.0378	630.8	150.49	-67.53
IDRD146	253554.6	6778193	474.95	151	58.47	-60.35
IDRD148	253519	6778113	475.2108	205	57.13	-59.69
IDRD150	253509.8	6778071	475.45	151	53.93	-60.09
IDRD156	253218.8	6778204	474.8779	400	49.87	-57.51
IDRD162	253259.9	6778119	475.5795	453.6	54.67	-61.02
IDRD164	253266.6	6778092	475.6	444.93	51.77	-54.49
IDRD171	253644.6	6778229	475.1573	60.1	66.31	-85.2
IDRD172	253262.2	6778061	476.1593	471.6	51.99	-53.9
IDRD176A	252919.4	6778900	471.0944	342.5	152.58	-58.41
IDRD177	253617.9	6778176	475.13	70.1	111.73	-56.95
IDRD183	253626.5	6778097	475.32	58.3	61.91	-62.08
IDRD189	253587.1	6778193	474.82	105.8	58.81	-60
IDRD194	253295.5	6778741	470.37	150.2	178.56	-52.36
IDRD219	253099.7	6778632	472.1	125	325.62	-85.25
IDRD229W1	253021.4	6778588	472.58	780.4	150.47	-68.13
IDRD230	252766.1	6779131	470.97	624.9	163.25	-50.14
IDRD237	252826.8	6779000	470.39	468.5	151.74	-60.36
IDRD237N1	252826.8	6779000	470.39	468.5	151.74	-60.36
IDRD237N2	252826.8	6779000	470.39	468.5	151.74	-60.36
IDRD239	252686.6	6779065	471.9	673.1	151.11	-57.25
IDRD243	252654.6	6779307	469.49	774.6	149.56	-50.68
IDRD244	252797.2	6778949	471.26	490	162.94	-60.62
IDRD244N1	252797.2	6778949	471.26	490	162.94	-60.62
IDRD245N1	252511.3	6778525	475.54	996.9	86.8	-51.02
IDRD245N3	252511.3	6778525	475.54	996.9	86.8	-51.02
IDRD245N4	252511.3	6778525	475.54	996.9	86.8	-51.02
IDRD250	252566.8	6779377	469.15	741.4	146.14	-50.83

HOLE ID	East	North	RL	Depth	Azi	Dip
IDRD255	252942.1	6778983	470.11	255	164.3	-59.88
SPEX004	252315.8	6780352	463.02	168	175.77	-60.34
SPEX010	251640.8	6780818	459.79	465.4	175.95	-61.25
SPEX013	252300.9	6780325	463.22	138	200	-50.58
SPRD017	252028.2	6780375	462	202.2	147.42	-59.76
SPRD022	252171.4	6780332	462.79	169.1	150.08	-60.84
SPRD032	251709.4	6780724	459.89	358.1	142.4	-57.88
SPRD043	251415.7	6781016	459.07	185	141.16	-55.84
SSRD005	253632.7	6778177	475.35	56	126.68	-65.45
SSRD042	253550.6	6778226	474.38	130	92.57	-54.94
SSRD044	253556.4	6778194	474.74	120	74.58	-56.16
TIRD049	252959.9	6778670	472.82	100	190.72	-69.04
TIRD053	253254.3	6778678	469.59	115	157.45	-53.93
TIRD060	253096.2	6778692	471.79	130	178.56	-52.55
WEX001	251670.9	6779672	470.37	90	142.44	-55.57

JORC Code, 2012 Edition Table 1; Section 1: Sampling Techniques and Data Mt Ida

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information	 Sampling activities carried out by Delta Lithium at the Mt Ida Project have included reverse circulation (RC), air core (AC) and diamond (DD) drilling, and rock chip sampling. Core sampling of one historic drillhole has also been carried out, with assaying, petrological and XRD analysis completed RC samples were collected from a static cone splitter mounted directly below the cyclone on the rig, AC samples were collected using a spear from piles on the ground into 2m composites or 1m bottom of hole samples, DD sampling was carried out to lithological/alteration domain with lengths between 0.3- 1.1m Limited historical data has been supplied, historic sampling referenced has been carried out by Hammill Resources, International Goldfields, La Mancha Resources, Eastern Goldfields and Ora Banda Mining, and has included rock chip sampling, and RC, DD and rotary air blast (RAB) drilling Sampling of historic RC has been carried out via riffle split for 1m sampling, and scoop or spear sampling for 4m composites, historic RAB drilling was sampled via spear into 4m composites Historic core has been cut and sampled to geological intervals These methods of sampling are considered to be appropriate for this style of exploration
Drilling techniques	Drill type (eg core, reverse circulation, open- hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 RC Drilling has been carried out by Orlando Drilling and Frontline Drilling, RC drilling utilised an Explorac 220RC rig with a 143 mm face sampling hammer bit, DD drilling was completed by a truck mounted Sandvik DE820 and a KWL 1500 and is HQ2 and NQ2 diameter. AC drilling was carried out by Gyro Drilling and was competed to blade refusal Diamond tails average 200m depth Historic drilling has been completed by various companies including Kennedy Drilling, Wallis Drilling, Ausdrill and unnamed contractors Historic DD drilling was NQ sized core It is assumed industry standard drilling methods and equipment were utilised for all historic drilling
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample condition is recorded for every RC and AC drill metre including noting the presence of water or minimal sample return, inspections of rigs were carried out daily Recovery on diamond core is recorded by measuring the core metre by metre Limited sample recovery and condition information has been supplied or found for historic drilling

Criteria	Explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Quantitative and qualitative geological logging of drillholes adheres to company policy and includes lithology, mineralogy, alteration, veining and weathering Diamond core logging records lithology, mineralogy, alteration, weathering, veining, RQD, SG and structural data All AC, RC chip trays and drill core are photographed in full A complete quantitative and qualitative logging suite was supplied for historic drilling including lithology, alteration, mineralogy, veining and weathering It is unknown if all historic core was oriented, limited geotechnical logging has been supplied No historic core or chip photography has been supplied Logging is of a level suitable to support Mineral resource estimates and subsequent mining studies
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	 DD sampling is undertaken by lithological/alteration domain to a maximum of 1.1m and a minimum of 0.3m. Core is cut in half with one half sent to the lab and one half retained in the core tray Occasional wet RC samples were encountered, extra cleaning of the splitter was carried out afterward RC, DD and AC chip samples have been analysed for Li suite elements via ICPMS, and for Au by 50g fire assay by ALS, Nagrom, NAL and SGS Samples analysed by ALS, Nagrom, NAL and SGS were dried, crushed and pulverised to 80% passing 75 microns before undergoing a selected peroxide fusion digest or 4 acid digest with ICPMS finish or fire assay with ICPMS finish Historic core sampled by Delta Lithium was collected for ICPMS analysis via selection from NQ half and quarter core, and submitted to Nagrom Semi-Quantitative XRD analysis was carried out by Microanalysis Australia using a representative sub-sample that was lightly ground such that 90% was passing 20 µm to eliminate preferred orientation RC and AC duplicate field samples were carried out at a rate of 1:20 and were sampled directly from the splitter on the rig. These were submitted for the same assay process as the primary samples and the laboratory are unaware of such submissions Historic chip sampling methods include single metre riffle split and 4m composites that were either scoop or spear sampled, while historic core was cut onsite and half core sampled Historic Au analysis techniques generally included crushing, splitting if required, and pulverisation, with aqua regia or fire assay with AAS finish used to determine concentration

Criteria	Explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Samples have been analysed by external laboratories utilising industry standard methods The assay methods utilised by ALS, Nagrom, NAL and SGS for RC chip, AC, rock chip and core sampling allow for total dissolution of the sample where required Standards and blanks are inserted at a rate of 1 in 20 in RC, AC and DD sampling, All QAQC analyses were within tolerance No QAQC samples were submitted with rock chip analysis No standards were used by Delta Lithium in the historic core ICP analysis or XRD quantification process. Internal duplicate and repeat analyses were carried out as part of the assay process by Nagrom, as well as internal standard analysis A standard mica phase was used for the XRD analysis. It is possible that a lithium bearing mica such as lepidolite is present. A subsequent analysis technique would be required for confirmation All historic samples are assumed to have been prepared and assayed by industry standard techniques and methods Limited historic QAQC data has been supplied, industry standard best practice is assumed
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data	 Significant intercepts have been reviewed by senior personnel No specific twinned holes have been completed, but drilling has verified historic drilling intervals Primary data is collected via excel templates and third-party logging software with inbuilt validation functions, the data is forwarded to the Database administrator for entry into a secure SQL database. Historic data was supplied in various formats and has been validated as much as practicable No adjustments to assay data have been made other than conversion from Li to Li₂O and Ta to Ta2O5 Data entry, verification and storage protocols remain unknown for historic operators
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control	 MGA94 zone 51 grid coordinate system is used Current drilling collars have been pegged using a handheld GPS unit, all collars will be surveyed upon program completion by an independent third party Downhole surveys are completed by the drilling contractors using a true north seeking gyro instrument, AC drillholes did not have downhole surveys carried out Topography has been surveyed by recent operators. Collar elevations are consistent with surrounding holes and the natural surface elevation Historic collars are recorded as being picked up by DGPS, GPS or unknown methods and utilised the MGA94 zone 51 coordinate system Historic downhole surveys were completed by north seeking gyro, Eastman single shot and multi shot downhole camera
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied.	 Drill hole spacing is variable throughout the program area Spacing is considered appropriate for this style of exploration Sample compositing has not been applied

Criteria	Explanation	Commentary
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material	 Drill holes are orientated perpendicular to the regional trend of the mineralisation previously drilled at the project; drill hole orientation is not considered to have introduced any bias to sampling techniques utilised
Sample security	The measures taken to ensure sample security	 Samples are prepared onsite under supervision of Delta Lithium staff and transported by a third party directly to the laboratory Historic sample security measures are unknown
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None carried out

JORC Table 2; Section 2: Reporting of Exploration Results, Mt Ida

Criteria		Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area	 Drilling and sampling activities have been carried on M29/2, M29/165 and E29/640 The tenements are in good standing There are no heritage issues
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area has a long history of gold and base metals exploration and mining, with gold being discovered in the district in the 1890s. Numerous generations of exploration have been completed including activities such as drilling, geophysics and geochemical sampling Targeted Li assaying was first carried out in the early 2000s by La Mancha Resources and more recently, lithium assays were completed by Ora Banda Mining
Geology	Deposit type, geological setting and style of mineralisation.	 The Mt Ida project is located within the Eastern Goldfields region of Western Australia within the Mt Ida/Ularring greenstone belt Locally the Kurrajong Antiform dominates the regional structure at Mount Ida, a south-southeast trending, tight isoclinal fold that plunges at a low angle to the south. The Antiform is comprised of a layered greenstone sequence of mafic and ultramafic rocks Late stage granitoids and pegmatites intrude the sequence
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	 A list of the drill hole coordinates, orientations and metrics are provided as an appended table

Criteria		Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	 No metal equivalents are used Significant intercepts are calculated with a cut-off grade of 0.3% Li2O and 1 g/t Au
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	 The geometry of the mineralisation is roughly perpendicular to the drilling.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	 Figures are included in the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All drill collars, and significant intercepts have been reported in the appendix
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	None completed at this time
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Drilling is continuing at Mt Ida with a 60,000m program consisting of a mix of RC diamond and AC drilling underway