Market Update

19 Mar 2018

Cobalt Blue Holdings Ltd A Green Energy Exploration Company

COB

\$1.01

Commodity Exposure Cobalt & Sulphur

ASX Code:

Birootoro a manag	Jonnonta
Robert Biancardi	Non-Exec Chairman
Hugh Keller	Non-Exec Director
Trangie Johnston	Non-Exec Director
Matt Hill	Non-Exec Director
Joe Kaderavek	CEO & Exec Director
lan Morgan	Company Secretary
Capital Structure:	

Ordinary Shares at 19/03/2018:	107.2m
Options (ASX Code: COBO):	26.1m
Market Cap (undiluted):	\$108.2m

Share Price at 19/03/2018:

Cobalt Blue Holdings Limited

ACN:	614 466 607
Address:	Level 2, 66 Hunter St,
	Sydney NSW 2000
	+61 2 9966 5629
Website:	www.cobaltblueholdings.com
	info@cobaltblueholdings.com
	f Cobalt.Blue.Energy
	n cobalt-blue-holdings

March 2018 - Highlights

Thackaringa – Significant Mineral Resource upgrade

31% increase in total resource tonnes with 72% now classified as Indicated

KEY POINTS:

- Cobalt Blue (ASX: COB) is pleased to announce a significant resource upgrade at the Thackaringa Project, located near Broken Hill, NSW. The global Mineral Resource estimate now comprises 72Mt at 852ppm cobalt (Co), 9.3% sulphur (S) & 10% iron (Fe) for 61Kt contained cobalt (at a 500ppm cobalt cut-off) compared to the June 2017 Mineral Resource estimate (detailed in ASX release of 5 June 2017) the upgrade reflects a 31% increase in total tonnes and a 23% increase in contained cobalt.
- The new Mineral Resource estimate succeeds a substantial resource definition drilling program comprising some 74 holes for approximately 12,500m; the resultant improvement in geological confidence has supported the classification of approximately 72% of the Mineral Resource as Indicated.
- These results reflect the strong conclusion of our CY17 drilling campaign. COB has submitted the draft geological report to our JV partner (Broken Hill Prospecting) and has served formal notice that COB believes it has fulfilled its Stage One JV requirements. Looking forward, COB remains on schedule to deliver a Pre Feasibility Study (PFS) by 30 June 2018 and satisfy obligations under Stage Two of the agreement to secure 70% beneficial interest.
- Thackaringa remains on target to become a world class cobalt project with recent metallurgical testwork highlighting 88% cobalt recoveries from ore to payable product.
- Cobalt Blue remains focussed on completion of a maiden Ore Reserve estimate as part of PFS.

The updated Mineral Resource estimate at Thackaringa is apportioned to the three main deposits as detailed in Table 1.

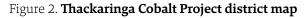
Table 1. The updated Mineral Resource estimates for the Thackaringa Cobalt deposits (at a cut-off of
500ppm Co) detailed by Mineral Resource category.

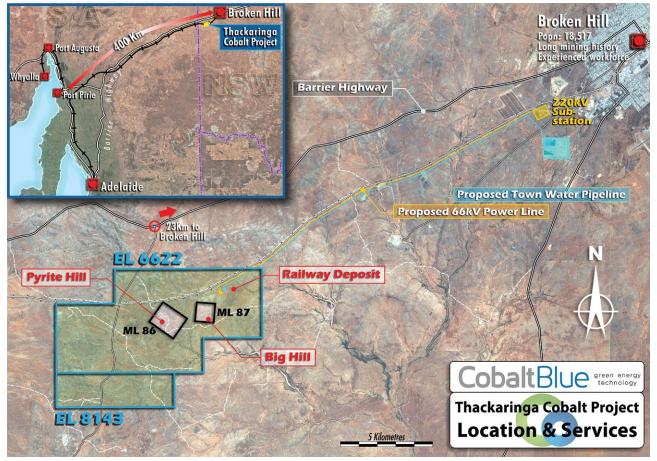
Note minor rounding errors may have occurred in the compilation of this table.

Category	Mt	Co ppm	Fe %	S %	Pyrite %	Co Tonnes	Py Mt	Density		
Railway (at a 500ppm Co cut-off)										
Indicated	23	854	10.1	9.2	17	19,400	4	2.85		
Inferred	14	801	10.4	9.2	17	11,100	2	2.85		
Total	37	842	10.2	9.2	17	30,800	6	2.85		
Big Hill (at a 500ppm Co cut-off)										
Indicated	7	712	7.2	6.9	13	5,200	1	2.77		
Inferred	2	658	6.7	6.3	12	1,500	0	2.76		
Total	10	697	7.1	6.7	13	6,700	1	2.77		
Pyrite Hill (at	a 500ppn	n Co cut-off)								
Indicated	22	937	10.9	10.3	19	20,300	4	2.87		
Inferred	4	920	11.2	10.8	20	4,000	1	2.89		
Total	26	934	10.9	10.3	19	24,200	5	2.88		
Total (at a 500ppm Co cut-off)										
Indicated	52	869	10.0	9.3	17	44,900	9	2.85		
Inferred	20	810	10.1	9.2	17	16,600	4	2.85		
Total	72	852	10.0	9.3	17	61,500	13	2.85		

Thackaringa Project Timetable

COB remains on track to complete its PFS study for the Thackaringa Cobalt Project by 30 June 2018 and is pleased by the delivery of the Mineral ('Indicated') Resource upgrade – obligated under Stage One deliverables. Results to date continue to justify proceeding further along the pathway towards commercial development of the Thackaringa Cobalt Project.


The overall company timeline remains as below:


Figure 1. COB developmental timeline for the Thackaringa Cobalt Project

Aug 2016 - Feb 2017	1 April 2018	30 June 2018	30 June 2019	
Complete	Stage One	Stage Two	Stage Three	Stage
Cobalt Blue formed JV & Farm-in JORC 2012 upgrade Cobalt Blue listed	A\$2.0m expenditure in the ground delivered. Delivered: • Inferred Resource Upgrade • Scoping Study Deliver: • Indicated Resource Upgrade • Aerial Geophysical Program Target Date: 1 April 2018	A\$2.5m expenditure in ground – Indicated Resource Target Deliver: Preliminary Feasibility Study Target Date: 30 June 2018	A\$5.0m expenditure in ground – Measured Resource + Reserves Target Deliver: Bankable Feasibility Study + Project Approvals Target Date: 30 June 2019	Four Decision to Mine Project Finance

The Thackaringa district map below shows the proximity to Broken Hill, the supporting rail and road network, as well as the availability of both power and water utilities to support future production.

Cobalt Blue Background

Cobalt Blue ("COB") is an exploration company focussed on green energy technology and strategic development to upgrade its mineral resource at the Thackaringa Cobalt Project in New South Wales from Inferred to Indicated status. This strategic metal is in strong demand for new generation batteries, particularly lithium-ion batteries now being widely used in clean energy systems.

COB is undertaking exploration and development programs on the Thackaringa Cobalt Project pursuant to a farm-in joint venture agreement entered into with Broken Hill Prospecting Limited ("BPL"). Subject to the achievement of milestones, COB will be entitled to acquire 100% of the Thackaringa Cobalt Project. Currently, COB has a 51% beneficial interest in the tenements comprising the Thackaringa Cobalt Project. Until Cobalt Blue's farm-in obligations have been satisfied, its interest in the tenements located at the Thackaringa Project is beneficial. Under the terms of the farm-in joint venture agreement, Cobalt Blue's beneficial interest in the Thackaringa Project will be increased in tranches on satisfaction of certain exploration and development milestones. When Cobalt Blue has completed its farm-in obligations, it will become the registered holder of the Thackaringa Project tenements. Broken Hill Prospecting remains the registered holder of the Thackaringa Project tenements.

The Thackaringa Project, 23 km west of Broken Hill, with railway line passing through the project area, consists of four granted tenements (EL6622, EL8143, ML86 and ML87) with total area of 63km². The main targets for exploration are well known and document large-tonnage cobalt-bearing pyrite deposits. The project area is under-explored, with the vast majority of historical exploration directed at or around the outcropping pyritic cobalt deposits at Pyrite Hill and Big Hill.

Potential to extend the Mineral Resource at Pyrite Hill, Big Hill, Railway and the other prospects is high. Numerous other prospects within COB's tenement package are at an early stage and under-explored.

Looking forward, we would like our shareholders to keep in touch with COB updates and related news items, which we will post on our website, the ASX announcements platform, as well as social media such as Facebook (1) and LinkedIn (in). Please don't hesitate to join the 'COB friends' on social media and also to join our newsletter mailing list at our website.

Judal

Joe Kaderavek Chief Executive Officer info@cobaltblueholdings.com P: (02) 9966 5629

Previously Released Information

This ASX announcement refers to information extracted from the following reports, which are available for viewing on COB's website http://www.cobaltblueholdings.com

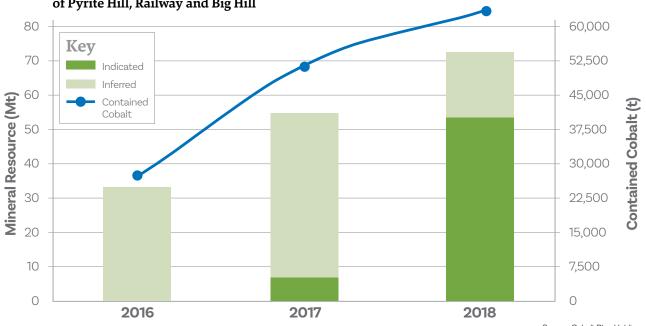
- 24 January 2018: Significant Thackaringa Drilling Program complete Resource Upgrade pending
- 27 December 2017: PFS Bulk Metallurgical Testwork Progress Update
- 4 December 2017: Railway Drilling Program confirms grade continuity at depth and strike
- 26 October 2017: Bulk Metallurgical Testwork Strong Concentration Results
- 27 September 2017: CEO's Letter to Shareholders September 2017
- 12 July 2017: Scoping Study update Strong Potential for Commercialisation after Processing Testwork
- 3 July 2017: Thackaringa Cobalt Project Major Geophysical Survey Positive news
- 5 June 2017: Significant resource upgrade for the Thackaringa Cobalt Project
- 25 May 2017: Stage One Drilling Program delivers robust results resource upgrade to follow
- 4 May 2017: 2017 Update Strong Drilling Results Continue

Excluding this market update, COB confirms it is not aware of any new information or data that materially affects the information included in the original market announcements, and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. COB confirms that the form and context in which the Competent Person's findings presented have not been materially modified from the original market announcement.

Competent Person's Statement

The information in this report that relates to exploration results, Mineral Resources and Targets is based on information compiled by Mr Anthony Johnston, BSc (Hons), who is a Member of the Australian Institute of Mining and Metallurgy and who is a non-executive director of Cobalt Blue Holdings Limited, the Chief Executive Officer of Broken Hill Prospecting Limited. Mr Johnston has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 & 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Johnston consents to the inclusion in the announcement of the matters based on his information in the form and context that the information appears.

About Cobalt Blue Holdings Limited


Cobalt Blue ("COB") is an exploration company focussed on green energy technology and a strategy of fast-tracking development of the Thackaringa Cobalt Project in New South Wales to achieve commercial production of cobalt. This strategic metal is in strong demand for new generation batteries, particularly lithium-ion batteries now widely used in clean energy systems.

COB has entered into a farm-in joint venture agreement with Broken Hill Prospecting Limited ("BPL") in which COB seeks to acquire an initial 51% interest in the Thackaringa Cobalt Project. COB will undertake exploration and development programs on the Thackaringa Cobalt Project and, subject to the achievement of milestones, will acquire 100% of the Thackaringa Cobalt Project.

Mineral Resource Estimate Overview

The revised Mineral Resource was independently prepared by SRK Consulting using a Co-Kriging ('CK') method of estimation, suitable for the style of mineralisation. Mr Danny Kentwell, Principal Consultant (Resource Evaluation) at SRK Consulting, was engaged to estimate the Mineral Resource as the independent Competent Person. The Mineral Resource has been estimated and reported in accordance with the guidelines of the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ('2012 JORC Code').

The revised Mineral Resource estimate reflects the culmination of a focussed exploration effort by COB, comprising two successive drilling campaigns for a total of 20,444.8m. The programs have supported sustained Mineral Resource growth and a continued improvement in geological confidence as reflected by the significant Indicated resource component (Figure 3).

Figure 3. Sustained Mineral Resource growth for the Thackaringa deposits inclusive of Pyrite Hill, Railway and Big Hill

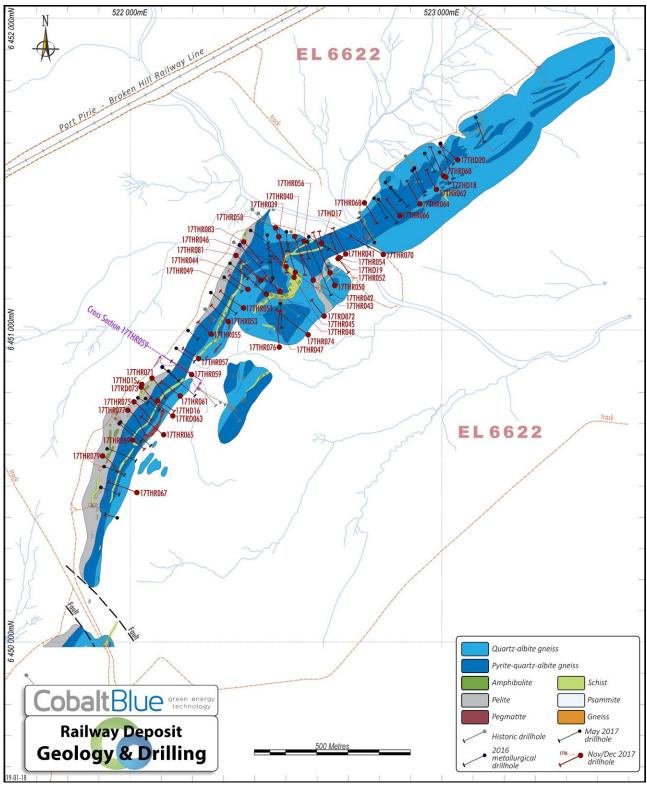
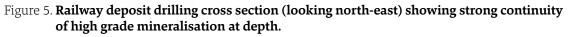



Figure 4. Railway deposit drilling plan illustrating increased data density along some 1.6km strike.

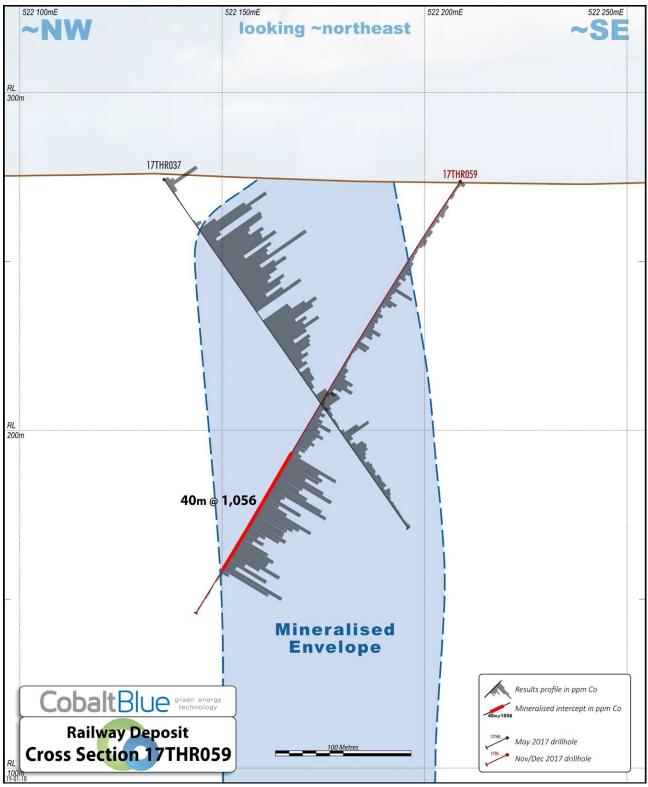
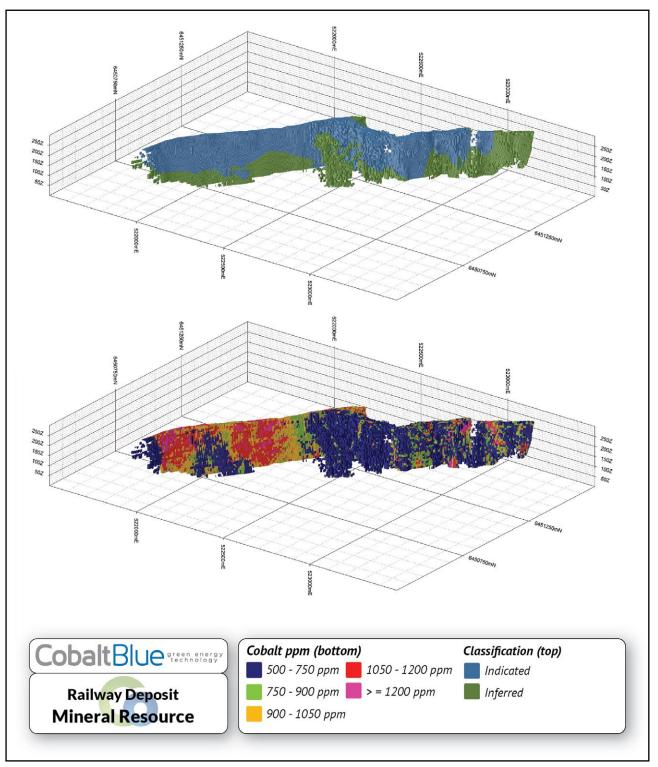
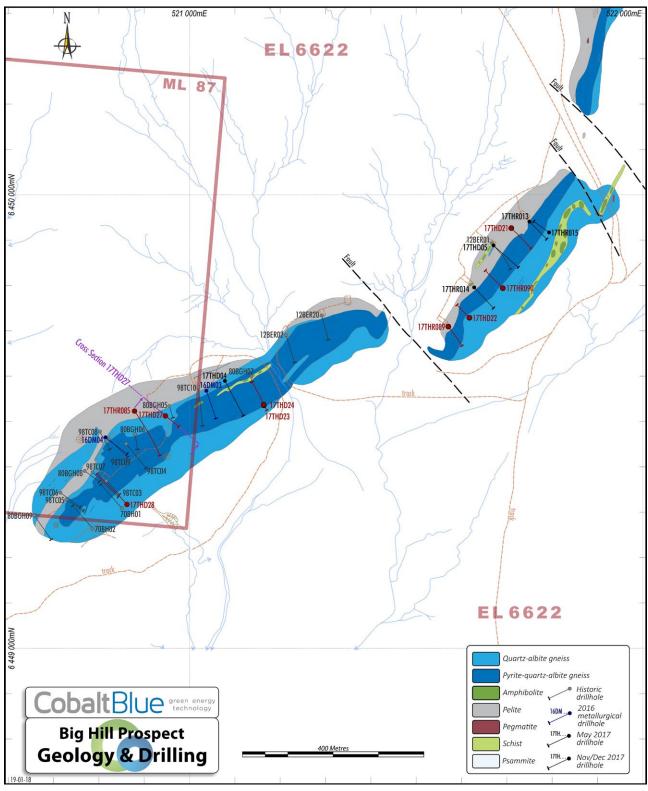
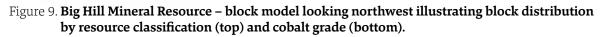
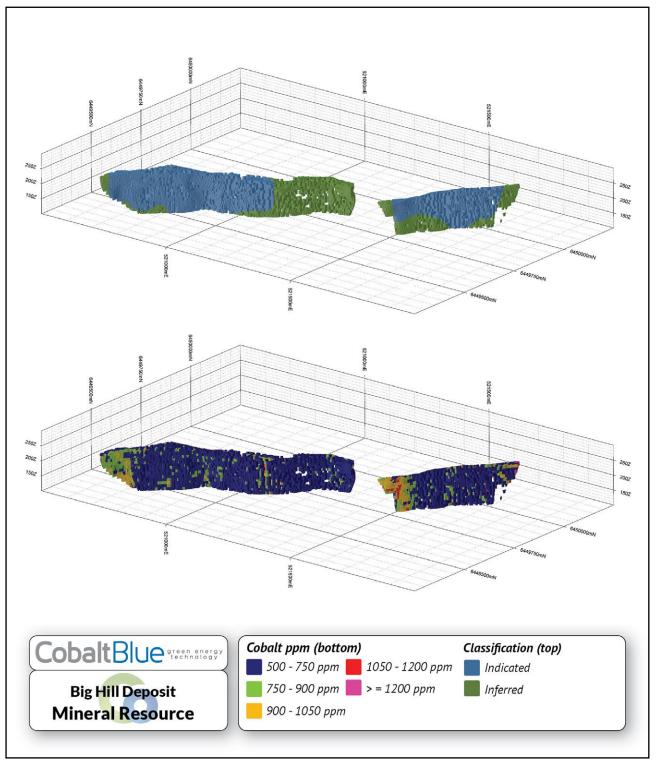



Figure 6. Railway Mineral Resource - block model looking northwest illustrating block distribution by resource classification (top) and cobalt grade (bottom).




Figure 7. Big Hill deposit drilling plan illustrating increased data density along some 1.2km strike.



520 950mE 520 900mE 521 000mE ~SE looking ~northeast RL 300m 17THD27 80BGH05 99m @ 1,185 RL 200m **Mineralised** Envelope Results profile in ppm Co CobaltBlue green energy technology Mineralised intercept in ppm Co 99m@1185 **Big Hill Prospect** Historic drillhole Cross Section 17THD27 50 Metre 2017 drillhole

Figure 8. Big Hill deposit drilling cross section (looking north-east) showing strong continuity of high grade mineralisation at depth.

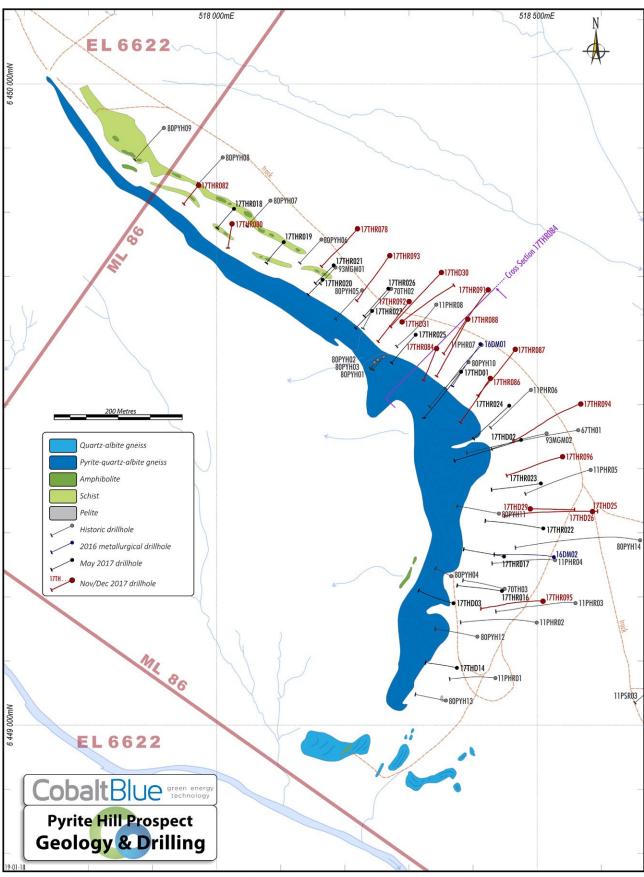
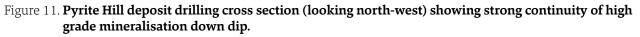
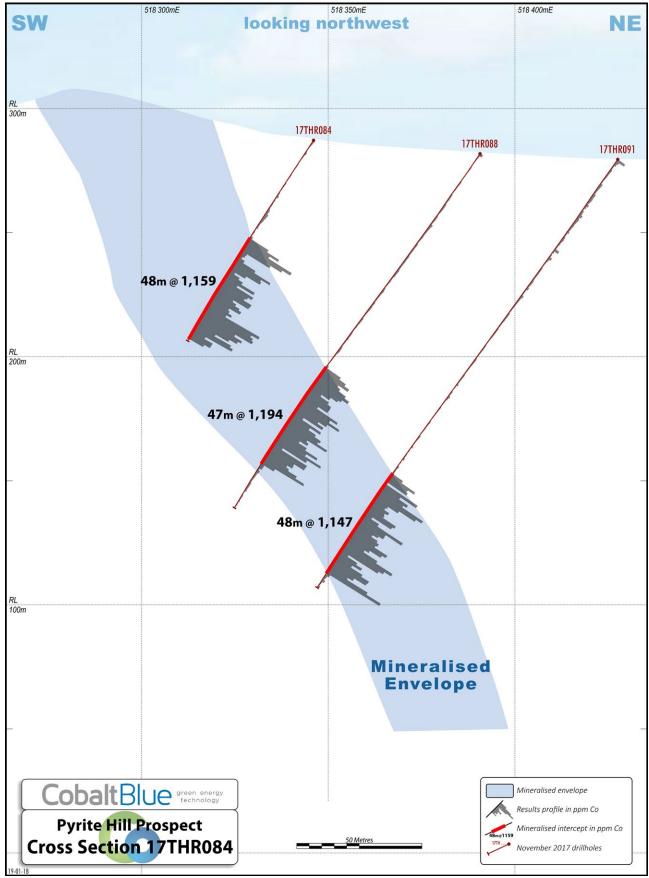




Figure 10. Pyrite Hill deposit drilling plan illustrating increased data density along some 1km strike.

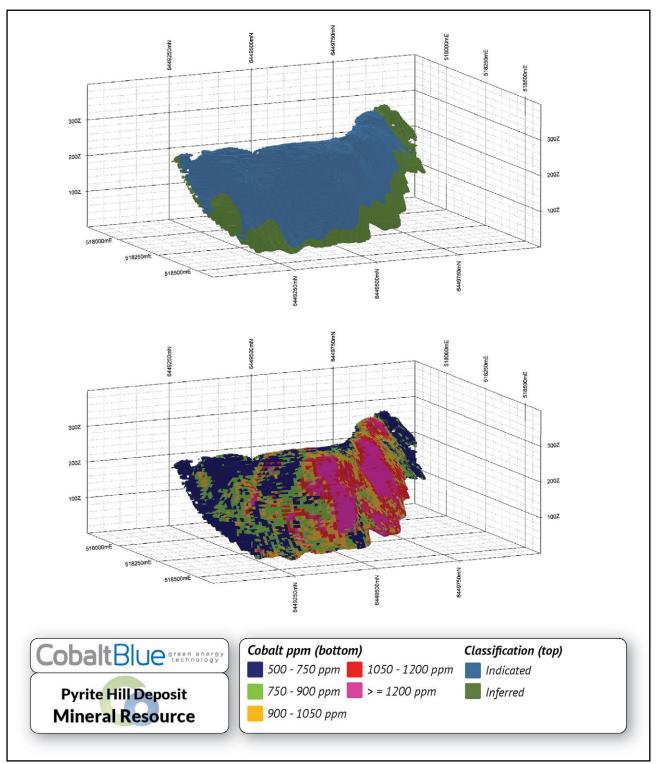


Figure 12. Pyrite Hill Mineral Resource – block model looking southwest illustrating block distribution by resource classification (top) and cobalt grade (bottom).

Geology and Geological Interpretation

The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal rock succession named the Willyama Supergroup, which is exposed as several inliers in western New South Wales, including the Broken Hill Block. Exploration by Broken Hill Prospecting Limited (BPL) has been focused on the discovery of cobaltiferous pyrite deposits and Broken Hill type base-metal mineralisation both of which are known from historical exploration in the district.

The project area covers portions of the Broken Hill and Thackaringa group successions which host the majority of mineralisation in the region, including the world-class Broken Hill Ag-Pb-Zn deposit. The extensive sequence of quartz-albite gneiss that hosts the cobaltiferous pyrite mineralisation is interpreted as belonging to the Himalaya Formation, which is stratigraphically at the top of the Thackaringa Group.

The Thackaringa mineralisation comprises moderate to steeply dipping, cobalt-rich, strongly pyritic quartz-albite gneiss. The rocks have been metamorphosed to amphibolite grade and feature internal zones of complex ductile deformation often contributing to localised structural thickening. Mineralisation is predominantly located in the fresh rock zone forming outcropping ridgelines with only minor oxidation averaging 10 metres from surface.

Sampling and sub-sampling Techniques and Sample Analysis Method

Sampling and sub-sampling techniques have varied between phases of exploration at the Thackaringa Project and are summarised below:

- Reverse circulation drilling was used to obtain a representative sample by means of riffle splitting. Samples were submitted for analysis using a mixed acid digestion and ICP-MS methodology for a variable suite of elements.
- Diamond drilling was used to obtain core from which variable sample intervals were sawn or hand split, in the case of historical drill holes. Samples were submitted for analysis using a mixed acid digestion and AAS or ICP-MS/OES methodology

Drilling Techniques

The Thackaringa drilling database comprises a total of sixty-four (64) diamond drill holes and 139 reverse circulation (RC) drill holes (three of which have diamond tails). Diamond drilling post 2013 was completed using a triple tube system with a HQ3 diameter. Diamond drilling pre-2013 was predominantly completed using standard diameter, conventional HQ and NQ and typically utilising RC and percussion pre-collars to an average 25 metres (see Drill hole Information for further details); early (1960-1970) drill holes utilised HX – AX diameters dependent on drilling depth.

Reverse circulation drilling utilised standard hole diameters (4.8"-5.5") with a face sampling hammer.

Mineral Resource Estimation Methodology

The Mineral Resource estimate was completed by Co-Kriging ('CK') Co, Fe and S in the Isatis software package. Eleven domains were used as hard boundaries to undertake sample selection and control geology, geometry and grade within the estimation.

The orientations of both variograms and search ellipses were varied on a block by block basis controlled by a set of trend and fold wireframes. Multivariate variography was completed for all domains with sufficient data. Given the folded nature of many of the domains and the use of local orientations, only two multivariate models were utilised for estimation. One for the Pyrite Hill domain and another for all remaining Big Hill and Railway domains.

5m composites were used with residual short lengths being incorporated and redistributed such that final composite lengths may be slightly shorter and longer than 5m. This length was chosen to be consistent with the 5m x 10m x 10m block dimensions and the assumed bulk mining approach. No top cuts or caps were used for any variables as grade distributions were not highly skewed and estimates were validated without the need for cutting or capping.

The estimation utilised a single pass approach with interpolation and extrapolation limited by both optimum sample numbers controlled by sectors and overall search ellipse distances. Search distances are anisotropic to the ratios of the search ellipse (5:1 cross strike, 1:1 down dip), that is samples are selected / prioritised within successively larger ellipses rather than by spherical distances. A minimum of 4 samples, an optimum of 8 composites and a maximum of 16 composites was used. A higher sample search with an optimum of 32 composites and maximum of 64 was tested maximising the regression slopes and smoothing the estimate but this excessively smoothed the block distribution and did not reflect the true block variability.

Block size used is 5m in Easting, 10m in Northing and 10m in elevation. This compares to an average drill spacing of between 25m and 60m along strike with average sample lengths of 1m combined with variogram ranges between 115m and 160m along strike, 70m to 80m down dip and 18m to 40m across strike.

Validation of the estimate was completed by:

- statistical comparisons to declustered composite averages per domain at zero cut off
- statistical inspection of density, regression slopes, kriging efficiency, number of composites used
- visual inspection of grades, regression slopes, kriging efficiency, number of composites used
- Comparison of grades and tonnages above cut off to previous estimates
- Swath plots
- Global change of support checks

Maximum extrapolation for Inferred material is approximately 120m and averages around 80m.

The final model is presented in the Surpac software package.

Mineral Resource Classification

Classification is based on the kriging regression slope with class surfaces created from viewing the regression slopes of the estimated blocks in section. Indicated is defined as all material above the 0.5 kriging regression slope surface and Inferred as all material above the 0 kriging regression slope surface and below the 0.5 kriging regression slope surface. There is some Indicated material near surface that has regression slopes less than 0.5 and this is included as Indicated due to the known mapped outcrop at surface. In addition to this a depth limit has been imposed at Railway and Big Hill. The depth limit at Big Hill is 150m elevation. The depth limit at Railway is mostly at 50m elevation with a section between 6540950mN and 6451400mN at 0m elevation. These depth limits are imposed approximately 50m below the base of the previous 2017 pit optimisations. Material below these depths is currently considered not to have reasonable prospects of eventual economic extraction. These depths may change in the future when additional metallurgical, geotechnical and additional exploration studies have been completed.

Cut-off Grade

The Mineral Resource has been reported at a cut-off of 500ppm cobalt to appropriately reflect the tonnes and grade of estimated blocks that will meet the potential beneficiation process currently under consideration. The reported Mineral Resource includes only material categorised as 'sulphide'; constrained by the modelled 'base of partial weathering' surface.

A complete review of modifying factors as supported by technical studies currently being completed for the Preliminary Feasibility Study will assist in deriving an economic cut-off grade reflective of the proposed product stream.

Modifying Factors

Preliminary pit optimisations were completed for the Scoping Study using the preceding Mineral Resource estimates. These optimisations supported an open pit mining methodology with near surface resources indicating low strip ratios. Revised pit optimisations are to be completed during the Preliminary Feasibility Study in support of Ore Reserve estimation.

Detailed metallurgical studies completed for the Preliminary Feasibility Study have examined a processing pathway comprising four primary stages of ore treatment:

- Concentrate: Preparation of a sulphide concentrate from the ore
- Calcine: Calcination (thermal treatment) of the concentrate
- Leaching: Leaching of the calcine
- Product Recovery: purification of leach liquor, followed by crystallisation of cobalt sulphate
- Results from test work related to the stages above are summarised in the following:
- Concentrate
 - Ore was processed by crushing to p100 at 1.2 mm and passed through a gravity spiral circuit. The tails were screened, with the fines subjected to froth flotation. The gravity and flotation concentrates were combined into a single concentrate. Approximately 144kg of concentrate was produced from the 820 kg of ore composite, with a recovery of 92% of the cobalt to concentrate.
 - Further work examining finer grind sizing was then conducted. Results indicated that varying the particle size down to 425um permitted 94% recovery of cobalt to concentrate.
- Calcine and Leach
 - A total of 90 kg of gravity-float concentrate has been calcined by ALS Metallurgy in Perth, producing approximately 70 kg of calcine. Process conditions have been varied to determine the optimum parameters for selection as design criteria set-point for the PFS engineering design study. Importantly, the target conversion of >95% of the pyrite into pyrrhotite has been repeatedly achieved, with no loss of cobalt to the sulphur collected from the off-gas. Further, the typical removal of sulphur from the head feed has increased from 35% (27 Dec 2017) to 40% in recent tests. Potential equipment vendors are presently involved with the PFS engineering study. Preliminary marketing studies have now commenced for the elemental sulphur product.
 - A total of 56 leach tests have been completed on the calcine by ALS Metallurgy Burnie, systematically varying temperature, liquor composition, solids density, residence time, particle size, and oxygen uptake. The optimum conditions have achieved repeatable cobalt extractions of 95-98% with the average being 96%.

In acid mine drainage terms, both economic and waste material contain significant amounts potentially acid forming materials (Pyrite and sulphur bearing minerals > 0.05% Sulphur). Sulphur has been estimated in both the Resource and waste material where information is available. A background S value of 0.05% S has been included where no assay information is available and where expected lithology types are typically below the 0.05% S value.

The construction of a suitable tailings facility is assumed for processing waste. It is considered a portion of water from such a facility could be recovered for re-use as process water.

Appendix – JORC Code, 2012 Edition – Table 1

Section 1 – Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria JORC Code Explanation Commentary Nature and quality of sampling **Diamond Drilling (DDH)** Sampling (e.g. cut channels, random techniques Pre-1990 chips, or specific specialised Diamond drilling was used to obtain core from which irregular industry standard measurement intervals, reflecting visual mineralisation and geological logging tools appropriate to the minerals were hand-split or sawn. Samples were submitted for analysis under investigation, such as using a mixed acid digestion and AAS methodology. down-hole gamma sondes, or Post-1990 handheld XRF instruments, etc). Diamond drilling (one drill hole) was used to obtain core from which These examples should not irregular intervals, reflecting visual mineralisation and geological be taken as limiting the broad logging were sawn (quarter core for HQ). Samples were submitted meaning of sampling. for analysis using a mixed acid digestion and ICP-OES methodology. Include reference to measures 2016 Metallurgical Drilling taken to ensure sample repre-Eight (8) HQ diameter diamond drill holes (DDH) were drilled at the sentivity and the appropriate Thackaringa project in late 2016. They were used as metallurgical calibration of any measurement reference holes and were designed to twin some of the previous tools or systems used. reverse circulation percussion (RC) holes for QA/QC and assay Aspects of the determination of comparison between DDH and RC. There were two (2) holes mineralisation that are Material drilled at Pyrite Hill, two (2) at Big Hill and four (4) at Railway: to the Public Report. Diamond drilling was used to obtain core from which regular In cases where 'industry (one-metre) intervals were sawn with: standard' work has been done one half core dispatched for analysis using a mixed acid this would be relatively simple digestion and ICP-MS methodology (sulphur >10% by LECO); (e.g. 'reverse circulation drilling the other half was further sawn such that one guarter-core was used to obtain 1 m samples was sent for metallurgical test work and the other quarfrom which 3 kg was pulverised ter-core retained for archival purposes. to produce a 30 g charge for fire assay'). In other cases more **2017 Resource Drilling Program** explanation may be required, Fourteen HQ diameter diamond drill holes (DDH) were completed such as where there is coarse and assayed. They were used as metallurgical reference holes gold that has inherent sampling designed to twin some historical reverse circulation percussion problems. Unusual commodities (RC) holes for QA/QC and assay comparison between DDH and or mineralisation types (e.g. RC. There were four (4) holes drilled at Pyrite Hill, two (2) at Big submarine nodules) may Hill and eight (8) at Railway: warrant disclosure of detailed Diamond drilling (17THD01-03) was used to obtain core from information. which regular (one-metre) intervals were sawn with: one half core dispatched for analysis using a mixed acid digestion and ICP-MS methodology for a suite of 48 elements (sulphur >10% by LECO);

- the other half was retained for future metallurgical test work and archival purposes.
- Diamond drilling (17THD04-14) was used to obtain core from which regular (one-metre) intervals were sawn with:
 - one quarter core dispatched for analysis using a mixed acid digestion and ICP-MS methodology or a suite of 48 elements (sulphur >10% by LECO);
 - the other three quarters was retained for future metallurgical test work and archival purposes.

2017 Geotechnical Program

- Sixteen HQ diameter diamond drill holes (DDH) were completed and assayed. They were used as geotechnical reference holes designed to inform pit optimisation and mine design. There were four (4) holes drilled at Pyrite Hill, six (6) at Big Hill and six (6) at Railway:
 - Diamond drilling (17THD016-24, 26-28) was used to obtain core from which regular (one-metre) intervals were sawn with:

Criteria	JORC Code Explanation		Commentary	
Sampling techniques (continued)			 one half core dispatched for analysis usin digestion and ICP-MS methodology for a elements (sulphur >10% by LECO); 	
(contantaca)			 the other half was retained for future meta work and archival purposes. 	Illurgical test
			ntervals selected for sampling were derived fro ogging and as such drill holes 17THD015, 29 a sampled as they did not intersect the mineralise	and 31 were not
		Historica	Reverse Circulation Drilling	
		 RC c of riff 	rilling was used to obtain a representative sar le splitting with samples submitted for analysis e-mentioned methodologies.	
		of ele (5,09	2000 drill samples were assayed for a small ar ements (sometimes only cobalt). The post-20 5 samples) are all assayed by ICP-MS for a su elements.	00 drill samples
		2017 RC	Drilling Program	
		diam supp (65) ł	y-three (93) RC drill holes and three (3) RC dril ond tails were drilled and assayed to infill histo ort re-estimation of Mineral Resources. There noles drilled at Railway, six (6) at Big Hill and tw rite Hill:	rical holes and were sixty-five
			RC drilling was used to obtain a representative means of riffle splitting with samples submitted CP-MS for a suite of 48 elements (sulphur >10	for analysis by
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 (64) d (three nantl with to an dependent stance Since tube at an 	Thackaringa drilling database comprises a total diamond drill holes and 139 reverse circulation e of which have diamond tails). Diamond drilling y completed with standard diameter, convention historical holes typically utilising RC and percus average 25 metres (see Drill hole Information f s). Early (1960-1970) drill holes utilised HX – A indent on drilling depth. Reverse circulation dril lard hole diameters (4.8"-5.5") with a face sam e 2013 all diamond drilling has been complete system with a HQ3 diameter. Drill holes were gles between 40 and 60 degrees from horizor ting core was oriented as part of the logging p	(RC) drill holes y was predomi- nal HQ and NQ sion pre-collars or further X diameters ing utilised pling hammer. d using a triple typically drilled ntal and the
		Year	Drilling	Metres
		1967	1 diamond drill hole	304.2
		1907	4 diamond drill holes	496.6
		1970	18 diamond and 1 RC drill hole	1,711.23
		1993	2 diamond drill holes	250
		1998	11 RC drill holes	1,093.25
		2011	11 RC drill holes	1,811
		2012	20 RC drill holes	2,874.25
		2013	1 diamond drill hole	349.2
		2016	8 diamond drill holes	1,511.8
		2017	30 diamond drill holes, 93 RC drill holes, 3 RC drill holes with diamond tails	18,933
		Total	64 diamond, 136 RC drill holes and 3 RC drill holes with diamond tails	29,334.53

Criteria	JORC Code Explanation			Commentary				
Drill sample recovery	Method of recording and		d Drilling torical core recoveri asurement of actua torical diamond drilli ues while diamond of Cobalt Blue Holdin hple recovery: Core recovery of 9 drill hole 13BED01 Core recovery of 9 drilling program. Core recovery of 9 drilling (inclusive of No relationship bet observed. Circulation Drillin verse circulation sar ing drilling programs below 100% this v ditative observation. verse circulation drill hpressor and boost relationship betwee verved.	I core recovered ng employed co drilling completed gs utilised a tripl 9.7% was achieve 8% was achieve 6.7% was achieve diamond tails). ween sample re 19 nple recoveries s. Where the es was recorded in ling employed a er) to maximise	I versus drillec onventional dri d by Broken H le-tube system ved during col ed during the 2 ved during 20 covery and gr were visually timated samp field logs by r dequate air (u sample recov	d intervals. lling tech- lill Prospecting n to maximise mpletion of 2016 diamond 17 diamond ade has been estimated ble recovery means of using a very.		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	enti con and alte qua Diar Pros logg (RQ Dur re-lo as v pero drill	ualified geoscientist rety. This logging ha sidered to accurate metallurgical studie ration, mineralisatior litative and quantita mond drilling comple specting/Cobalt Blu ging with parameters (D), fracture frequencing 2013, a conside paged through revie vell the re-interpreta cussion samples no holes and sixteen (1 paged as detailed bu	s been complete y support Minera- s. The parameter n and oxidation. tive in nature. eted during 2016 e Holdings has b s recorded includ cy and hardness rable amount of w of available co tion of historical longer exist. A to 16) diamond drill	ed to a level o al Resource es ers logged incl These parame 6-2017 by Bro been subject to ding rock-qual s. historical drilli ore stored at E reports where otal of eight (8	f detail stimation lude lithology, eters are both oken Hill o geotechnical lity designation mg was Broken Hill e core or b) diamond e-collars were		
		Hole ID	Deposit	Max Depth	Hole Type	Pre-Collar Depth (m)		
		67TH01	Pyrite Hill	304.2	DDH	_		
		70TH02	Pyrite Hill	148.6	DDH	_		
		70TH03	Pyrite Hill	141.4	DDH	-		
		70BH01	Big Hill	102.7	DDH	_		
		70BH02	Big Hill	103.9	DDH	_		
		80PYH13	3 Pyrite Hill	77	DDH	_		
		80PYH14	4 Pyrite Hill	300.3	DDH	-		
		80BGH0	9 Big Hill	100.5	DDH	_		
		80PYH0		24.53	PDDH	6		
		80PYH02		51.3	PDDH	33.58		
				51.5		00.7		

80PYH04

Pyrite Hill

,

PDDH

55

38.7

Criteria	JORC Code Explanation	Commentary						
Logging (continued)		Hole ID	Deposit	Max Depth	Hole Type	Pre-Collar Depth (m)		
		80PYH05	Pyrite Hill	93.6	PDDH	18		
		80PYH06	Pyrite Hill	85.5	PDDH	18		
		80PYH07	Pyrite Hill	94.5	PDDH	12		
		80PYH08	Pyrite Hill	110	PDDH	8		
		80PYH09	Pyrite Hill	100.5	PDDH	8		
		80PYH10	Pyrite Hill	145.3	PDDH	25.5		
		80PYH11	Pyrite Hill	103.1	PDDH	18		
		80PYH12	Pyrite Hill	109.5	PDDH	4.2		
		80BGH05		54.86	RCDDH	4.2		
			Big Hill					
		80BGH06	Big Hill	68.04	RCDDH	58		
		80BGH08	Big Hill	79.7	RCDDH	69.9		
		93MGM01	Pyrite Hill	70	RDDH	24		
		93MGM02	Pyrite Hill	180	RDDH	48		
		PDDH Diar RCDDH Diar RDDH Diar Litho-ge where a post 20 Represe	nond drill hole wit nond drill hole wit cochemistry ha vailable for dril 10. contative referen completed pos	h percussion pre-co h reverse circulation h rotary air blast pre- s been used to ling completed to ling completed to ace trays of chips t 2010 have bee	n pre-collar e-collar verify geologic by Broken Hill s from reverse	Prospecting circulation		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	historica split was ered cor	mples were ha al core (see Lo g s typical. The v nsistent with th	nd-split or sawn gging) indicating ariation of samp le sub-sampling	a 70:30 (reta le ratios notec technique (ha	ned:assayed) are consid- nd-splitting).		
	• For all sample types, the nature,		•	es were submitte				
	quality and appropriateness of the sample preparation			used for core cu uced sample cor		essed and		
	 Quality control procedures adopted for all sub-sampling 	 Procedu are not a 	ures relating to available. It is e	the definition of expected that 'st to maximize sa	the line of cut andard indust	ry practice' fo		
	stages to maximise representivity	Post-1990						
	of samples.	NQ drilli	ng core was sa	awn with half cor	re submitted fo	or assay.		
	 Measures taken to ensure that the sampling is representative 	HQ drilli	ng core was sa	awn with quarter	core submitte	ed for assay.		
	of the in situ material collected,	No seco	ond half sample	es were submitte	ed for analysis			
	including for instance results for field duplicate/second-half			used for core cu uced sample cor		essed and		
	sampling.Whether sample sizes are appropriate to the grain size of	are not a	available. It is e	the definition of expected that 'st to maximise sa	andard indust	ry practice' fo		
	the material being sampled.	2016 Metall	urgical Drilling	g				
				-				
		All HQ d	Irill core was sa	awn into halves, v quarter core for		then re-sawn		
		 All HQ d to provid 	Irill core was sa de 4 lengths of			then re-sawn		

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques and sample		One quarter core was retained for archive.It is considered that the water used for core cutting is most unlikely to have introduced sample contamination.
preparation (continued)		 Sample sawing and processing for test work were undertaken according to 'standard industry practice' to maximise sample representivity.
		2017 Diamond Drilling
		 All HQ drill core was sawn into halves, with each half then re-sawn to provide 4 lengths of quarter core for each interval.
		 One quarter – one half core was submitted for assay.
		 One quarter – three quarter core was retained for archive and further metallurgical test work.
		 It is considered that the water used for core cutting is most unlikely to have introduced sample contaminatio.n
		 Sample sawing and processing for test work were undertaken according to 'standard industry practice' to maximise sample representivity.
		Reverse Circulation (RC) Drilling
		 Sub-sampling of reverse circulation chips was achieved using a riffle splitter.
		 During drilling operations, the splitter was regularly cleaned to prevent down hole sample contamination.
		 Dry sampling was achieved with the use of adequate air, using a compressor and booster, where groundwater was encountered.
		Historical Reverse Circulation Drilling
		During reverse circulation drilling completed by Broken Hill Prospecting, duplicate samples were collected at the time of drilling. These were obtained by spearing the bulk material held in the PVC sacks using a spear made of 40mm diameter PVC pipe; three samples were speared through the full depth of the bulk material and these were combined to form one sample.
		The Thackaringa drilling database includes a total of 139 historical field duplicates collected during reverse circulation drilling. This reflects a ratio of approximately one field duplicate in every 32 samples (3.1%) for drill holes where duplicates were collected (31 drill holes for 4469 metres) and an overall ratio of one field duplicate in every 42 samples (2.4%) for all reverse circulation drill holes (43 drill holes for 5801.5 metres).
		Statistical analysis of field duplicates collected during drilling completed by Broken Hill Prospecting (119 duplicates representing 86% of all field duplicates) considered 18 elements of which only chromium, lanthanum and titanium show some bias in the duplicate samples. For cobalt, the confidence limits were evenly placed either side of zero and the duplicates are deemed to be representative of the original samples.
		2017 Reverse Circulation Drilling
		 During reverse circulation drilling completed by Broken Hill Prospecting/Cobalt Blue Holdings, duplicate samples were collected at the time of drilling at an average rate of 1:23 samples. These were obtained by riffle splitting the remnant bulk sample following collection of the primary split.
		 Assay results include analysis of 630 field duplicate pairs from 96 RC and 3 RCDDH drill holes.
		 A measure of the average precision of the sampling, sample preparation and assaying methods, given by the mean per cent difference (MPD) assay values of the duplicate pairs is summarised below. Overall, the sampling and assay precision for Co, Fe and S at economically significant grades is regarded as reasonable.

Criteria	JORC Code Explanation	Commentary 2017 RC Field Duplicate Pairs						
Sub-sampling								
techniques and sample		C	o Cut-Off	Count	Co MPD	S MPD	Fe MPD	
preparation		A		630	12%	14%	8%	
(continued)		5	00ppm	170	10%	10%	7%	
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is 	•	employed	I for samples of rculation) are of	of all assaying a obtained throug considered 'inc	h drilling (diai	mond and	
laboratory tests	 considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make 	•	reverse ci and AAS for the tar	finishes. These geted mineral technique with	employed for dr ude mixed acid e methods are isation and reg h resistive phas	digestion with considered a arded as a 'n	n ICP-OES opropriate ear total'	
	 and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	•	laboratori		processed at ir MDEL, Australi nalvsis.	•		
		•	All sample during 20 South Wa Hill Prosp processed Accredite quality sys	es from drilling 11-2012 were Iles. All sample ecting/Cobalt d at ALS Adela d Laboratory a stems. ALS m	a completed by assayed at AL as from drilling Blue Holdings aide, South Au and qualifies fo aintains robust andards, repea	S in Orange, completed by during 2016-3 stralia. ALS is r JAS/ANZ IS internal QAQ	New Broken 2017 were a NATA 09001:2008 C procedures	
		•	Thackarin sample st were purc	iga drilling, CF ream at an av	y of assay resu RM standards v erage rate of 1 pre Research &	vere included :24. The CRN	in the assay 1 samples	

			Cobalt			Sulphur			Iron	
Standard	Count	10%	20%	+20%	10%	20%	+20%	10%	20%	+20%
Low S Blank (2.8ppm Co)	121	83	21	17	83	0	38	114	6	1
Med Grade (631ppm Co)	152	152	0	0	150	2	0	144	8	0
Low Grade (230ppm Co), mod S (10.4%)	140	135	5	0	118	22	0	116	24	0
High Grade (2445ppm Co)	120	115	4	1	111	8	1	109	10	1
High Grade (1970ppm Co)	128	127	1	0	74	53	1	122	5	1
Low Grade (387ppm Co), low S (2.15%)	61	60	1	0	60	1	0	60	1	0
Med Grade (734ppm Co)	72	72	0	0	72	0	0	72	0	0
	794	744	32	18	668	86	40	737	54	3
	РСТ	94%	4%	2%	84%	11%	5%	93%	7%	0%

results are summarised below:

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either inde- pendent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Historical drilling intersections were internally verified by personnel employed by previous explorers including CRAE Pty Limited, Central Austin Pty Limited and Hunter Resources. Broken Hill Prospecting has completed a systematic review of the related data. The Thackaringa drilling database exists in electronic form as a Microsoft Access database. Information related to individual drill holes is stored in digital files as extracted from historical reports (typically including location plan, section, logs, photos, surveys, assays and petrology) Historical drilling data available in electronic form has been re-formatted and imported into the drilling database. Quantitative historical drilling data, including assays, have been captured electronically during systematic data compilation and validation completed by Broken Hill Prospecting. Samples returning assays below detection limits are assigned half detection limit values in the database. All significant intersections are verified by the Company's
		Exploration Manager and an independent geological consultant.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), 	 Historical drill collars have been relocated and surveyed using a differ- ential GPS (DGPS). In the instances where no collar could be located the position has been derived from georeferenced historical plans.
	 trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 During systematic data validation completed in 2016, three (3) drill holes at Big Hill were found to be incorrectly located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plans (reported to the nearest metre) as the collars had been destroyed.
	 Quality and adequacy of topographic control. 	 Down hole surveys using digital cameras were completed on all post 2000 drilling. Down hole surveys for some earlier drilling were estimated from hole trace and section data where raw survey data was not reported.
		 All 2016–2017 drill hole collars were located and surveyed with DGPS by an independent surveyor with reported accuracy of ±0.05m in horizontal and vertical measurement.
		 Downhole surveys using digital cameras were completed on all 2016–2017 drill-holes.
		 All data is recorded in the GDA94 datum; UTM Zone 54 (MGA54). 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine[™] software.
		 The quality of topographic control is deemed adequate in consider- ation of the results presented in this release.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and 	The data density of existing drill holes at Thackaringa has been materially increased by the 2017 drilling program. Drilling density at each deposit varies along strike generally responsive to exploration targeting and interpreted geological complexity with the average drill line spacing for each deposit summarised below:
	grade continuity appropriate for the Mineral Resource and Ore	Railway: 25–40mPyrite Hill: 30–40m
	Reserve estimation procedure(s)	Big Hill: 40–60m
	and classifications applied.Whether sample compositing	 Drilling density is also illustrated in drilling plans presented within this release
	has been applied.	 Detailed geological mapping is supported by drill-hole data of sufficient spacing and distribution to complete a 3D geological modelling and Mineral Resource estimation
		 No sample compositing has been applied to reported intersections

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to	 Whether the orientation of sampling achieves unbiased sampling of possible structures 	 The 2017 drill holes at the Thackaringa project were typically angled at -55° or -60° to the horizontal and drilled perpendicular to the mineralised trend.
geological structure	and the extent to which this is known, considering the deposit	 Drilling orientations are adjusted along strike to accommodate folded geological sequences.
structure	 type. If the relationship between the drilling orientation and the orientation of key mineralised 	 Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width.
	structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The drilling orientation is not considered to have introduced a sampling bias on assessment of the current geological interpretation.
Sample security	 The measures taken to ensure sample security. 	 Sample security procedures are considered to be 'industry standard' for the respective periods
,		 Following recent drilling completed by Broken Hill Prospecting/ Cobalt Blue Holdings, samples were trucked by an independent courier directly from Broken Hill to ALS, Adelaide.
		 The Company considers that risks associated with sample security are limited given the nature of the targeted mineralisation.
Audits or reviews	 The results of any audits or reviews of sampling techniques 	 In late 2016 an independent validation of the Thackaringa drilling database was completed:
	and data.	 The data validation process consisted of systematic review of drilling data (collars, assays and surveys) for identification of transcription errors.
		 Following review, historical drill hole locations were also validated against georeferenced historical maps to confirm their location.
		Three (3) drill holes at Big Hill were found to be incorrectly located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plans (reported to the nearest metre) as the collars had been destroyed. These corrections were captured in the Big Hill Mineral Resource estimate.
		 Total depths for all holes were checked against original reports.
		 Final 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine[™] software.
		 Audits and reviews of QAQC results and procedures are further described in preceding sections of this table including Quality of assay data and laboratory tests, Sub-sampling techniques and sample preparation and Logging.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation				Comm	nentary	
Mineral tenement and land	•	location and ownership including agreements or material issues with third parties such	25 kilometre	ringa Cobalt proje s west-southwes nts with a total ar	t of Broken Hill a		
tenure status				Tenement	Grant Date	Expiry Date	
		overriding royalties, native		EL6622	30/08/2006	30/08/2020	
		 title interests, historical sites, wildemess or national park and environmental settings. The security of the tenure held at the time of reporting along 		EL 8143	26/07/2013	26/07/2020	
				ML86	05/11/1975	05/11/2022	
	•			ML87	05/11/1975	05/11/2022	
		with any known impediments to obtaining a licence to operate in the area.	•	Cobalt Blue Limited (BPI		(COB) and Brok his agreement is	en Hill Prospecting detailed in the COB
		•		residence (Thack kilometres west		s located approxi-	
		•		ansected by the ⁻ ocated the north		Railway; the Barrier oundaries.	
			Lease which However, Na Traditional C	n is considered to ative Title Determi Winers 8) is curre	extinguish nativi ination NC97/32 nt over the area		
			•	National Par and approxi	k and or Wilderne mately 20 kilomet	ess Area (Kinche res south of the	from the nearest ga National Park) nearest Water ater Supply Reserve)
			•		ny is not aware of perate in the area		ts to obtaining a
Exploration done by other parties	•	Acknowledgment and appraisal of exploration by other parties.	•	undertaken the JORC Ta		2016 drilling prog is part of the Co	ion activities gram is appended to balt Blue Prospectus

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geological Setting The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal succession named the Willyama Supergroup, which is exposed as several inliers in western New South Wales, including the Broken Hill Block (Willis, et al., 1982). Exploration by BPL Limited has been focused on the discovery of cobaltiferous pyrite deposits and Broken Hill type base-metal mineralisation both of which are known from historical exploration in the district. The project area covers portions of the Broken Hill and Thackaringa group successions which host the majority of mineralisation in the region, including the Broken Hill base-metal deposit. The Sundown Group suite is also present. The extensive sequence of quartz-albite-plagioclase rock that hosts the cobaltiferous pyrite mineralisation is interpreted as belonging to the Himalaya Formation, which is stratigraphically at the top of the Thackaringa Group. Local Geological Setting The oldest rocks in the region belong to the Curnamona Craton which outcrops on the Broken Hill and Euriowie blocks. The overlying Proterozoic rocks have been broadly subdivided into three major groupings, of which the digant Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill sation hosted within siliceous abitic gneisses and schists of the Himalaya Formation Cobalt mineralisation exists with
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar 	 Epigenetic Gold and Base metal deposits. See drill holle summaries below.
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	

Drill hole summaries

		Max Depth								Pre-Colla
Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
67TH01	Pyrite Hill	304.2	MGA94_54	518565	6449460	281	-55	261	DDH	
70TH02	Pyrite Hill	148.6	MGA94_54	518272	6449681	284	-61	219	DDH	
70TH03	Pyrite Hill	141.4	MGA94_54	518450	6449212	290	-62	284	DDH	
70BH01	Big Hill	102.7	MGA94_54	520851	6449309	285	-47	319	DDH	
'0BH02	Big Hill	103.9	MGA94_54	520786	6449264	280	-50	319	DDH	
30PYH13	Pyrite Hill	77	MGA94_54	518358	6449038	290	-50	281	DDH	
30PYH14	Pyrite Hill	300.3	MGA94_54	518661	6449288	278	-60	281	DDH	
30PYH03	Pyrite Hill	35	MGA94_54	518252	6449570	299	-60	221	PDDH	22
30BGH09	Big Hill	100.5	MGA94_54	520657	6449293	273	-50	145	DDH	
30PYH01	Pyrite Hill	24.53	MGA94_54	518246	6449566	301	-60	203	PDDH	6
30PYH02	Pyrite Hill	51.3	MGA94_54	518261	6449574	298	-60	221	PDDH	33.58
30PYH04	Pyrite Hill	55	MGA94_54	518367	6449232	308	-60	296	PDDH	38.7
30PYH05	Pyrite Hill	93.6	MGA94_54	518227	6449678	285	-49	223	PDDH	18
30PYH06	Pyrite Hill	85.5	MGA94_54	518163	6449757	284	-54.4	223	PDDH	18
80PYH07	Pyrite Hill	94.5	MGA94_54	518084	6449818	285	-55	223	PDDH	12
80PYH08	Pyrite Hill	110	MGA94_54	518010	6449885	286	-60	223	PDDH	8
30PYH09	Pyrite Hill	100.5	MGA94_54	517917	6449932	287	-48.5	223	PDDH	8
30PYH10	Pyrite Hill	145.3	MGA94_54	518393	6449566	286	-50	223	PDDH	25.5
30PYH11	Pyrite Hill	103.1		518441	6449330	297	-50	281	PDDH	18
80PYH12	Pyrite Hill	109.5	 MGA94_54	518407	6449137	293	-50	281	PDDH	4.2
0BGH05	Big Hill	54.86		520955	6449534	289	-60	164	RCDDH	45.5
8TC01	Railway	100	MGA94_54	522750	6451340	267	-60	159	RC	
8TC02	Railway	100	MGA94_54	522392	6451387	267	-60	141	RC	
8TC03	Big Hill	84	MGA94_54	520816	6449369	313	-60	136	RC	
8TC04	Big Hill	138.25	MGA94_54	520860	6449451	304	-60	141	RC	
8TC05	Big Hill	70		520728	6449328	289	-50	123	RC	
8TC06	Big Hill	108		520715	6449343	285	-60	126	RC	
8TC07	Big Hill	120	 MGA94_54	520786	6449388	299	-50	134	RC	
800T8	Big Hill	90	MGA94_54	520802	6449478	291	-60	151	RC	
98TC09	Big Hill	114	MGA94_54	520822	6449461	296	-60	134	RC	
98TC10	Big Hill	134	MGA94_54	521018	6449576	282	-50	173	RC	
8TC11	Railway	35	MGA94_54	522411	6451374	267	-60	133	RC	
BOBGH06	Big Hill	68.04	MGA94_54	520880	6449472	299	-60	171	RCDDH	58
BOBGH08	Big Hill	79.7	MGA94_54	520769	6449391	296	-60	127	RCDDH	69.9
0BGH07	Big Hill	23	MGA94_54	521137	6449599	274	-60	178	RC	0010
3MGM01	Pyrite Hill	70	MGA94_54	518185	6449714	286	-60	223	RDDH	24
3MGM02	Pyrite Hill	180	MGA94_54	518515	6449455	285	-60	259	RDDH	48
1PHR01	Pyrite Hill	150	MGA94_54	518435	6449073	285	-60	279	RC	
1PHR02	Pyrite Hill	198	MGA94_54	518500	6449159	284	-60	279	RC	
1PHR03	Pyrite Hill	240	MGA94_54	518560	6449190	280	-60	279	RC	
1PHR04	Pyrite Hill	186	MGA94_54	518529	6449257	284	-60	279	RC	
1PHR05	Pyrite Hill	234	MGA94_54	518584	6449398	280	-60	259	RC	
1PHR06	Pyrite Hill	180	MGA94_54	518491	6449523	284	-60	234	RC	
1PHR07	Pyrite Hill	174	MGA94_54	518413	6449593	283	-60	219	RC	
1PHR08	Pyrite Hill	180	MGA94_54	518343	6449656	283	-60	218	RC	
1PSR01	Pyrite Hill	59	MGA94_54	518743	6448864	268	-60	258	RC	
1PSR02	Pyrite Hill	132	MGA94_54	518719	6448960	270	-60	255	RC	
1PSR03	Pyrite Hill	78	MGA94_54	518687	6449055	273	-60	255	RC	
2BER01	Railway	157	MGA94_54	521667	6449893	278	-60	141	RC	
2BER02	Railway	132	MGA94_54	521007	6449691	276	-60	162	RC	
2BER02	Railway	151	MGA94_54	521213	6450435	289	-60	102	RC	
LULINUU	nanway	101	WUA34_04	522354	0400400	203	-00	102	RC	

DDH Diamond drill hole

PDDH Diamond drill hole with percussion pre-collar

RDDH Diamond drill hole with rotary air blast pre-collar

RC Reverse Circulation drill hole

Drill hole summaries (continued)

Hole ID	Deposit	Max Depth (m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Pre-Colla Depth
12BER05	Railway	145	MGA94_54	522439	6451168	300	-60	124	RC	Dopui
12BER06	Railway	169	MGA94_54	522433	6451091	296	-60	118	RC	
12BER07	Railway	115	MGA94_54	522324	6450749	278	-60	144	RC	
									RC	
12BER08	Railway	193	MGA94_54	522221	6450812	273	-60	129		
2BER09	Railway	139.75	MGA94_54	522101	6450881	276	-60	129	RC	
12BER10	Railway	151	MGA94_54	521953	6450716	284	-60	129	RC	
12BER11	Railway	193	MGA94_54	522737	6451377	266	-60	153	RC	
12BER12	Railway	111	MGA94_54	522910	6451517	277	-60	153	RC	
12BER13	Railway	205	MGA94_54	522884	6451558	271	-60	156	RC	
2BER14	Railway	151	MGA94_54	523125	6451637	288	-60	152	RC	
12BER15	Railway	109	MGA94_54	523311	6451842	284	-60	154	RC	
2BER16	Railway	115	MGA94_54	522994	6451592	276	-60	156	RC	
I2BER17	Railway	115.5	MGA94_54	522517	6451315	269	-60	153	RC	
I2BER18	Railway	157	MGA94_54	522333	6451281	272	-60	129	RC	
2BER19	Railway	97	MGA94_54	522241	6451067	276	-60	135	RC	
2BER20	Railway	120	MGA94_54	521292	6449734	277	-60	165	RC	
13BED01	Railway	349.2	MGA94_54	522480	6451092	296	-60	301	DDH	
6DM01	Pyrite Hill	161.6	MGA94_54	518411	6449594	283	-60	216	DDH	
6DM02	Pyrite Hill	183.4	MGA94_54	518527	6449262	284	-60	285	DDH	
16DM03	Big Hill	126.5	MGA94_54	521037	6449567	283	-60	159	DDH	
6DM04	Big Hill	105.4	MGA94_54	520815	6449464	296	-55	129	DDH	
6DM05	Railway	246.5	MGA94_54	522104	6450882	277	-60	129	DDH	
6DM06	Railway	160.4	MGA94_54	522912	6451519	279	-60	153	DDH	
6DM07	Railway	242.5	MGA94_54	522995	6451598	276	-60	156	DDH	
6DM08	Railway	258.5	MGA94_54	522351	6451273	274	-60	131	DDH	
7THD01	Pyrite Hill	124.2	MGA94_54	518382	6449551	289	-40	222	DDH	
17THD02	Pyrite Hill	149.7	MGA94_54	518475	6449445	291	-40	258	DDH	
17THD03	Pyrite Hill	78.5	MGA94_54	518370	6449190	303	-40	285	DDH	
17THD04	Big Hill	119.8	MGA94_54	521078	6449589	278	-45	155	DDH	
17THD05	Big Hill	99.5	MGA94_54	521669	6449889	279	-40	131	DDH	
7THD06	Railway	165.5	MGA94_54	521970	6450705	287	-45	128	DDH	
17THD07	Railway	274.6	MGA94_54	522569	6451282	271	-45	157	DDH	
7THD08	Railway	132.5	MGA94_54	522784	6451280	269	-45	326	DDH	
7THD09	Railway	120.5	MGA94_54	522905	6451511	278	-40	153	DDH	
17THD10	Railway	84.2	MGA94_54	522992	6451569	280	-45	130	DDH	
17THD11	Railway	111.5	MGA94_54	523109	6451682	281	-40	161	DDH	
17THD12	Railway	126.5	MGA94_54	522796	6451419	273	-40	141	DDH	
7THD13	Railway	105.5	MGA94_54	522836	6451456	277	-40	139	DDH	
17THD14	Pyrite Hill	99	MGA94_54	518375	6449089	294	-60	285	DDH	
7THR001	Railway	156	MGA94_54	522615	6451277	268	-60	120	RC	
17THR002	Railway	160	MGA94_54	522573	6451299	269	-60	120	RC	
7THR003	Railway	96	MGA94_54	522124	6450868	277	-60	130	RC	
7THR004	Railway	150	MGA94_54	522387	6451319	271	-60	120	RC	
7THR005	Railway	72	MGA94_54	522024	6450783	282	-60	120	RC	
17THR006	Railway	114	MGA94_54	522049	6450780	284	-58	125	RC	
17THR007	Railway	180	MGA94_54	521965	6450699	287	-59	125	RC	
17THR008	Railway	132	MGA94_54	521917	6450562	292	-56	105	RC	
17THR009	Railway	120	MGA94_54	521906	6450496	293	-58	105	RC	
17THR010	Railway	72	MGA94_54	521959	6450398	286	-56	285	RC	
17THR011	Railway	126	MGA94_54	522302	6451169	277	-56	120	RC	
	,	180	MGA94_54	522440	6451304	275	-58	173	RC	

DDH Diamond drill hole

PDDH Diamond drill hole with percussion pre-collar

RDDHDiamond drill hole with rotary air blast pre-collar**RC**Reverse Circulation drill hole

Drill hole summaries (continued)

		Max Depth								Pre-Collar
Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
17THR013	Big Hill	102	MGA94_54	521750	6449942	285	-60	131	RC	
17THR014	Big Hill	104	MGA94_54	521628	6449796	278	-53	130	RC	
17THR015	Big Hill	108	MGA94_54	521793	6449918	285	-58	310	RC	
17THR016	Pyrite Hill	138	 MGA94_54	518446	6449209	290	-57	283	RC	
17THR017	Pyrite Hill	120	MGA94_54	518449	6449263	293	-56	282	RC	
17THR018	Pyrite Hill	78	MGA94_54	518027	6449806	290	-60	222	RC	
17THR019	Pyrite Hill	72	MGA94_54	518105	6449754	288	-55	222	RC	
17THR020	Pyrite Hill	66	MGA94_54	518166	6449695	289	-60	222	RC	
17THR020	Pyrite Hill	78	MGA94_54	518183	6449717	286	-60	222	RC	
17THR022	Pyrite Hill	156	MGA94_54	518510	6449306	287	-55	281	RC	
17THR022	Pyrite Hill	150	MGA94_54	518506	6449377	289	-57	265	RC	
17THR023	Pyrite Hill	150		518457	6449498	288	-59.5	203	RC	
			MGA94_54			287	-60	229	RC	
17THR025	Pyrite Hill	114	MGA94_54	518311	6449609					
17THR026	Pyrite Hill	114	MGA94_54	518268	6449681	284	-60	222	RC	
17THR027	Pyrite Hill	72	MGA94_54	518243	6449646	287	-60	222	RC	
17THR028	Railway	150	MGA94_54	522457	6451167	301	-60	350	RC	
17THR029	Railway	162	MGA94_54	522482	6451084	296	-60	175	RC	
17THR030	Railway	138	MGA94_54	522783	6451423	271	-55	140	RC	
17THR031	Railway	120	MGA94_54	522945	6451566	276	-55	145	RC	
17THR032	Railway	132	MGA94_54	522819	6451473	274	-53	140	RC	
17THR033	Railway	120	MGA94_54	522501	6451315	270	-60	175	RC	
17THR034	Railway	132	MGA94_54	522321	6451214	276	-55	127	RC	
17THR035	Railway	156	MGA94_54	522259	6451120	276	-55.2	130	RC	
17THR036	Railway	92	MGA94_54	522186	6450998	275	-61.2	130	RC	
17THR037	Railway	126	MGA94_54	522148	6450941	274	-55	126	RC	
17THR038	Railway	168	MGA94_54	521927	6450619	290	-55	108	RC	
17THD015	Railway	81.6	MGA94_54	522038	6450826	279	-80	304	DDH	
17THD016	Railway	176.9	MGA94_54	522089	6450774	287	-70	122	DDH	
17THD017	Railway	255.9	MGA94_54	522615	6451279	268	-80	350	DDH	
17THD018	Railway	72.5	MGA94_54	523013	6451491	295	-70	150	DDH	
17THD019	Railway	151.3	MGA94_54	522667	6451229	267	-70	140	DDH	
17THD020	Railway	121.7	MGA94_54	523052	6451545	290	-55	310	DDH	
17THD021	Big Hill	100	MGA94_54	521708	6449928	281	-50	133	DDH	
17THD022	Big Hill	70	MGA94_54	521618	6449729	278	-56	316	DDH	
17THD023	Big Hill	99.5	MGA94_54	521164	6449537	275	-55	337	DDH	
17THD024	Railway	69.6	MGA94_54	521164	6449536	275	-80	150	DDH	
17THD025	Pyrite Hill	24.2	MGA94_54	518588	6449334	281	-75	90	DDH	
17THD026	Pyrite Hill	240.7	MGA94_54	518586	6449334	281	-55	272	DDH	
17THD027	Big Hill	141.6	MGA94_54	520947	6449513	294	-75	130	DDH	
17THD028	Big Hill	171.7	MGA94_54	520862	6449317	285	-56	321	DDH	
17THD029	Pyrite Hill	200.5	MGA94_54	518489	6449338	290	-70	90	DDH	
17THD030	Pyrite Hill	201.5	MGA94_54	518351	6449706	281	-55	222	DDH	
17THD031	Pyrite Hill	229	MGA94_54	518289	6449629	287	-65	50	DDH	
17THR039	Railway	210	MGA94_54	522477	6451299	274	-55.8	168.7	RC	
17THR040	Railway	276	MGA94_54	522528	6451300	270	-55	164	RC	
17THR041	Railway	210	MGA94_54	522692	6451244	265	-55	339	RC	
17THR042	Railway	234	MGA94_54	522588	6451160	283	-55	336	RC	
17THR042	Railway	200	MGA94_54	522531	6451185	289	-55	341	RC	
17THR043	Railway	180	MGA94_54	522420	6451159	298	-55	311	RC	
17THR044		210	MGA94_54	522526	6451168	290	-55	311	RC	
	Railway	210					-56		RC	
17THR046	Railway	210	MGA94_54	522501	6451203	291	-00	311	ПU	

DDH Diamond drill hole

PDDH Diamond drill hole with percussion pre-collar

RDDHDiamond drill hole with rotary air blast pre-collar**RC**Reverse Circulation drill hole

Drill hole summaries (continued)

		Max Depth								Pre-Colla
Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
17THR047	Railway	246	MGA94_54	522438	6451115	297	-55	311	RC	
17THR048	Railway	122	MGA94_54	522481	6451124	298	-55	310	RC	
17THR049	Railway	138	MGA94_54	522378	6451130	292	-55	310	RC	
17THR050	Railway	154	MGA94_54	522657	6451143	274	-63	344	RC	
17THR051	Railway	174	MGA94_54	522364	6451070	283	-55	308	RC	
17THR052	Railway	246	MGA94_54	522642	6451184	274	-55	334	RC	
17THR053	Railway	156	MGA94_54	522315	6451028	278	-55	314	RC	
17THR054	Railway	180		522671	6451232	267	-60	333	RC	
17THR055	Railway	114		522261	6450987	278	-55	313	RC	
17THR056	Railway	102		522558	6451285	271	-55	158	RC	
17THR057	Railway	111		522220	6450909	274	-55	308	RC	
17THR058	Railway	210	MGA94_54	522467	6451328	270	-55	160	RC	
17THR059	Railway	150	MGA94_54	522198	6450857	274	-55	306	RC	
17THR060	Railway	181	MGA94_54	523006	6451494	294	-55	331	RC	
17THR061	Railway	138	MGA94_54	522161	6450789	277	-55	307	RC	
17THR062	Railway	168	MGA94_54	522983	6451450	296	-60	327	RC	
17TRD063	Railway	169.5	MGA94_54	522137	6450725	280	-55	305	RCDDH	96.7
17THR064	Railway	171	MGA94_54	522931	6451403	295	-56.1	329	RC	00.1
17THR065	Railway	174	MGA94_54	522108	6450664	283	-55	304	RC	
17THR066	Railway	168	MGA94_54	522865	6451367	292	-60	318	RC	
17THR067	Railway	150	MGA94_54	522022	6450479	284	-50	291	RC	
17THR068	Railway	210	MGA94_54	522752	6451407	268	-60	148	RC	
7THR069	Railway	96	MGA94_54	522008	6450647	301	-60	117	RC	
17THR070	Railway	228	MGA94_54	522813	6451242	266	-60	300	RC	
17THR071	Railway	142	MGA94_54	522070	6450846	279	-60	130	RC	
17TRD072	Railway	210	MGA94_54	522623	6451044	273	-60	320	RCDDH	155.6
17TRD072	Railway	195.4	MGA94_54	522025	6450817	280	-55	126	RCDDH	134.9
17THR074	Railway	300	MGA94_54	522572	6450985	271	-60	310	RC	134.9
17THR075	Railway	148	MGA94_54	522013	6450770	283	-55	121	RC	
17THR075	Railway	300	MGA94_54	522013	6450945	203	-60	355	RC	
17THR070	Railway	180	_	521993	6450743	285	-55	117	RC	
17THR077	Pyrite Hill	157	MGA94_54 MGA94_54	518220	6449774	283	-60	222	RC	
17THR078	,	120		521912			-55		RC	
	Railway		MGA94_54		6450597	289		116	RC	
7THR080	Pyrite Hill	67	MGA94_54	518024	6449782	292	-55	190	RC	
17THR081	Railway	184	MGA94_54	522340	6451239	276	-55	125		
7THR082	Pyrite Hill	67	MGA94_54	517972	6449842	290	-55	222	RC	
17THR083	Railway	156	MGA94_54	522365	6451282	274	-55	133	RC	
17THR084	Pyrite Hill	97	MGA94_54	518343	6449588	287	-55	205	RC	
17THR085	Big Hill	210	MGA94_54	520878	6449523	287	-60	141	RC	
17THR086	Pyrite Hill	157	MGA94_54	518427	6449541	287	-55	218	RC	
17THR087	Pyrite Hill	181	MGA94_54	518466	6449587	282	-60	218	RC	
7THR088	Pyrite Hill	175	MGA94_54	518392	6449633	282	-55	213	RC	
7THR089	Big Hill	108	MGA94_54	521571	6449709	274	-60	141	RC	
7THR090	Big Hill	96	MGA94_54	521692	6449794	284	-55	312	RC	
17THR091	Pyrite Hill	211	MGA94_54	518424	6449679	279	-55	219	RC	
17THR092	Pyrite Hill	139	MGA94_54	518301	6449661	285	-55	219	RC	
17THR093	Pyrite Hill	151	MGA94_54	518270	6449732	281	-55	219	RC	
17THR094	Pyrite Hill	240	MGA94_54	518568	6449501	279	-60	253	RC	
17THR095	Pyrite Hill	205	MGA94_54	518509	6449194	283	-55	273	RC	
17THR096	Pyrite Hill	187	MGA94_54	518540	6449419	284	-60	257	RC	

 DDH
 Diamond drill hole

 PDDH
 Diamond drill hole with percussion pre-collar

 Page 1
 Diamond drill hole with percussion pre-collar

RDDHDiamond drill hole with rotary air blast pre-collar**RC**Reverse Circulation drill hole

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	 Drilling Drill hole intercept grades are typically reported as down-hole length-weighted averages with any non-recovered sample within the reported intervals treated as no grade. The cut-off used for selecting significant intersections is selected to reflect the overall tenor of mineralisation, in most cases 500ppm cobalt. No top cuts have been applied when calculating average grades for reported significant intersections. No metal equivalent values are reported.
Relationship between mineralis- ation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drill holes at the Thackaringa project are typically angled at 50° or 60° and drilled perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences. Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width. There is insufficient geological knowledge to accurately estimate true widths and as such all drill intersections are reported as down hole lengths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• Appropriate maps and sections are presented in the accompanying ASX release.
Balanced reporting	 Where comprehensive reporting of all exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Only mineralised drill hole intersections regarded as highly anomalous and of economic interest are reported. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the total drill hole depth. All assay results for drill holes included in the various Mineral Resource estimates have been considered and comprise results not necessarily regarded as anomalous.

Criteria	JORC Code Explanation	Commentary
Other substantive exploration data	ration meaningful and material, should be reported including (but not limited to): geological obser- vations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, ground-	 A PFS was commenced in August 2017. The first stage of the process is to prepare a concentrate from the ore. A composite of diamond drilling core samples from the 2016 program, was prepared using quarter core samples previously held in storage by ALS Metallurgy Burnie. The composite grade was 607 ppm which is about 300 ppm less than the average grade of the combined Thackaringa resources (Pyrite Hill, Railway and Big Hill). For clarity, the composite tested represents "low-grade" ore rather than the average grade ore.
	water, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• The ore composite was crushed to 1.2 mm and passed through a gravity-flotation circuit. From the 820 kg of ore, 139 kg of concentrate was produced. The cobalt recovery was 92% to concentrate. The metal content in the ore and concentrate was determined using industry standard XRF and ICP methods by ALS.
		90 kg of concentrate was processed through a laboratory furnace by ALS, producing 70 kg of calcine for leaching studies. The process conditions were varied, to identify the optimum condi- tions for converting >95% of the pyrite into pyrrhotite. Elemental sulphur was recovered from the off-gas of the furnace. The metal content in the calcine and elemental sulphur was determined using industry standard XRF and ICP methods by ALS.
		30 kg of calcine was processed through a laboratory autoclave by ALS. The process conditions were varied, to identify the optimum conditions for extracting cobalt. The optimum results were an average of 96% extraction of cobalt. The metal content in the calcine and leach residue was determined using industry standard XRF and ICP methods by ALS.
		 Additional work is being undertaken on the further process steps to produce a final product.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). 	 The nature and scale of planned further work will be determined following the completion of the Preliminary Feasibility Study forecast for 30 June 2018.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	

Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation		Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral 	•	The Thackaringa drilling database exists in electronic form under the independent management of Maxwell GeoServices. The Maxwell Data Schema (MDS) strictly applies integrity to all downhole and measurement recordings. If data fails the integrity rules, the data is NOT loaded into the database.
	Resource estimation purposes.		In general, the following rules are applied:
	 Data validation procedures 		Downhole intervals Depth_To > Depth_From
	used.		 Downhole intervals < Max depth
			 No overlapping intervals
			 Dips between -90 & 90°
			Azimuths, dip direction, alpha, beta are all between 0 & 360
			 Gamma between 0 & 90°
			 Individual percentage values <= 100%; total of all percentage values <=100%
			Recovery values <= 110%; RQD values <= 100%
			 Incremental values must have data in preceding values before the next can be entered (e.g. Cannot have Lith2 unless Lith1 exists)
			 Cannot enter qualifiers unless the primary code is populated (e.g. Cannot have a Lith_Grainsize or a Lith_Colour unless Lith_Code is populated)
			 Dates <= current daily (load) date; start dates <= complete dates etc.
			 Codes for fields linked to corresponding library tables can only be loaded if they are set to Is_Active = 'TRUE' in the library table
			 Once drill holes, linear sites and point sites have been set to Validated = 'TRUE', no data related to these can be update inserted or deleted.
			 Once Load_Date and Loaded_By fields have been populate upon database loading these fields are unable to be modi- fied. Instead any updates are recorded in the Modified_Date and Modified_By fields.
			A Data_Source field is required for ALL data tables
			Additionally, the MDS stores every instance (record) of data loading, data modification, and who loaded and modified that particular data, as well as data sources where appropriate. This makes the data loading process highly auditable.
		•	The database was extensively examined by SRK Consulting with various minor issues identified and addressed during the geological modelling and Mineral Resource estimation process. Examples of issues examined and rectified include:
			 Correct prioritisation of assay method where upper limits of detection are exceeded;
			 Inclusion / exclusion and quality of historic assays;
			 Use of correct downhole survey grid systems and survey prioritisation
			 Inclusion of up to date density information
			 Inclusion of up to date QAQC data including standards, duplicates, blanks and lab repeats

Criteria	JORC Code Explanation	Commentary
Site Visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	• The geological model used for the resource estimation has been developed by Dr Stuart Munroe of SRK Consulting in conjunction with other consultants and COB employees, following a review of previous mapping, over approximately nine days on site at the Thackaringa project during drilling in November 2017.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. 	The mineralisation at Thackaringa is well exposed at surface and forms prominent topographic highs. The mineralisation has been mapped by previous lease holders and presented in statutory annual reports which are in the public domain. The previous mapping has been compiled and re-mapped by Mr Garry Johansen for COB. Dr Stuart Munroe of SRK Consulting completed reconnaissance mapping and reviewed the controls on mineralisation in preparation for this resource estimate update. Confidence in the current geological model has been greatly improved by the drilling completed during 2017.
	 The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology 	The geological model has been developed from a good understanding of the distribution of surface mineralisation, observed controls on mineralisation and the extensive drill hole intersections. Two key structural controls on mineralisation are, (1); the primary foliation (bedding), as a fluid flow pathway and site for deposition of cobaltiferous pyrite, and (2); bedding parallel shear zones at the contact of quartz – albite gneiss. These shear zones appear to be responsible for fold thickening of the quartz – albite gneiss. Much of the folding appears to be slump or soft-sediment folding. The fold hinges have a variable plunge (moderate to steeply east to north-east).
		No viable alternative mineralisation models have been developed.
		The mineralisation host is a quartz + albite + cobaltiferous pyrite gneiss. This rock is defined by the presence of disseminated pyrite, concentrated parallel to the primary foliation in a fine-grained, recrystalised quartz + albite groundmass. Where the pyrite is present there is an increase in the silica content and an almost complete absence of biotite and sericite. In addition to the logged geology, most of the drill holes have multi-element analysis. These data have been used to develop a lithogeochemical profile for each rock type logged. The lithogeochemistry, logged geology, structure at surface, Cobalt assay and Sulphur assay have all been used to guide the mineralised domain that contain the resource.
		The gradation from a biotite schist to (quartz + albite) to (pyrite + quartz + albite) suggests the sulphide may accompany silica + sodic alteration of a micaceous schist protolith. Across the shear zones mapped at surface, the transition is rapid, however where there is no shearing at the contact, a gradational contact from biotite to albite to pyrite + albite + silica is observed. Parallel to bedding and bedding parallel shear zones (faults), continuity of the mineralisation is strong, particularly close to the shear zones.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource 	The Railway Big Hill portion of the deposit is approximately 3500m along strike, 350m down dip and between 20m and 300m across strike averaging around 70m across strike. This portion is partially a steeply dipping linear formation but with a complexly folded area to the North East. The linear portion is distinguished by a distinct high grade Western Hanging wall zone.
		 The Pyrite Hill portion of the deposit is an arc like formation some 1000m along strike, 300m down dip and between 10m and 100m across strike

Criteria	JORC Code Explanation	Commentary
Estimation and modelling techniques	The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen, include a description of computer software and parameters used.	 The wireframe geological modelling, database validation and compositing were carried out in the Leapfrog software package. The estimation and classification were completed in the Isatis software package. The final model is presented in the Surpac software package. Three variables Co, Fe and S are highly correlated and have bee Co-Kriged. Co-kriging involves simultaneous fitting of variogram models to the three main variables and to three cross variogram and simultaneous estimation accounting for the spatial continuit of all three variables at once. This maintains the correlations between variable which are not necessarily honoured when independent kriging is performed.
	 The availability of check esti- mates, previous estimates and/ or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. 	 The orientations of both variograms and search ellipses is varied a block by block basis. The orientations are controlled by the set of trend and fold wireframes. Each wireframe triangle centroid is assigned a dip and strike and these are estimated using a neares neighbour estimate into the blocks prior to grade estimation. Eleven domains are used all with hard boundaries to control geology, geometry and grade and ensure appropriate samples
	 The assumptions made regarding recovery of by-products. 	 selected for estimation. No top cuts or caps are used for any of the variables as the gradistributions are not highly skewed and the estimated validate validate.
	 Estimation of deleterious elements or other non-grade variables of economic signif- icance (e.g. sulphur for acid mine drainage characterisation). In the append block model 	 without the need for cutting or capping. Multivariate variography was completed for all domains with sufficient data. Given the folded nature of many of the domains and the use of local orientations, only two multivariate models were utilised for estimation. One for the Pyrite Hill domain and another for all of the remaining Big Hill and Railway domains.
	 In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed. 	5m composites are used with residual short lengths being incorporated and redistributed such that final composite lengths may be slightly shorter and longer than 5m. This length was choser to be consistent with the 5m x 10m x 10m block dimensions a the assumed bulk mining approach.
	 Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geolog- ical interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or 	Estimation utilised a single pass approach with interpolation enclextrapolation limited by both optimum sample numbers controller by sectors and by overall search ellipse distances. Search distances are anisotropic to the ratios of the search ellipse (5:1 cross strike, 1:1 down dip), that is samples are selected / prioritised within successively larger ellipses rather than by spherical distances. A minimum of 4 samples, an optimum of 8 composite and a maximum of 16 composites was used. A higher sample search with an optimum of 32 composites and maximum of 64 was tested maximising the regression slopes and smoothing the estimate but this excessively smoothed the block distribution and an eximum of the set of the search with an optimum of the set of the search with an excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but this excessively smoothed the block distribution and an estimate but the
	 capping. The process of validation, the checking process used, the comparison of model data to drillhole data, and use of reconciliation data if available 	 did not reflect the true block variability. Block size used is 5m in Easting, 10m in Northing and 10m in elevation. This compares to an average drill spacing of between 25m and 60m along strike with average sample lengths of 1m combined with variogram ranges between 115m and 160m alor strike, 70m to 80m down dip and 18m to 40m across strike. Variography shown moderate to low nuggets effect. Validation was completed by: statistical comparisons to declustered composite average: ner domain at zero aut off
		 per domain at zero cut off statistical inspection of density, regression slopes, kriging efficiency, number of composites used visual inspection of grades, regression slopes, kriging efficiency, number of composites used Comparison of grades and tonnages above cut off to previous estimates Swath plots Global change of support checks
		 Maximum extrapolation for Inferred material is approximately 120m and averages around 80m.

Criteria	JORC Code Explanation	Commentary
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnage and assays are on a dry basis.
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. 	 The Mineral Resource has been reported at a cut-off of 500ppm cobalt to appropriately reflect the tonnes and grade of estimated blocks that will meet the potential beneficiation process currently under consideration. The reported Mineral Resource includes only material categorised as 'sulphide'; constrained by the modelled 'base of partial weathering' surface. A complete review of modifying factors as supported by technical studies currently being completed for the Preliminary Feasibility Study will assist in deriving an economic cut-off grade reflective of the proposed product stream. SRK is unaware of any other similar style of deposit that is at surface and amenable to open cut mining.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Open pit mining is assumed as the deposits outcrop at surface. Preliminary pit optimisations were completed for the Scoping Study using the preceding Mineral Resource estimates. These optimisations supported an open pit mining methodology with near surface resources indicating low strip ratios. Revised pit optimisations are to be completed during the Preliminary Feasibility Study in support of Ore Reserve estimation.
Metallurgical factors or assumptions	The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Detailed metallurgical studies completed for the Preliminary Feasibility Study have examined a processing pathway comprising four primary stages of ore treatment: Concentrate: Preparation of a sulphide concentrate from the ore Calcine: Calcination (thermal treatment) of the concentrate Leaching: Leaching of the calcine Product Recovery: purification of leach liquor, followed by crystallisation of cobalt sulphate Results from test work related to the stages above are summarised in the following: Concentrate Ore was processed by crushing to p100 at 1.2 mm and passed through a gravity spiral circuit. The tails were screened, with the fines subjected to froth flotation. The gravity and flotation concentrates were combined into a single concentrate. Approximately 144kg of concentrate was produced from the 820 kg of ore composite, with a recovery of 92% of the cobalt to concentrate.

Criteria	JORC Code Explanation	Commentary
Metallurgical factors or assumptions (continued)		 Further work examining finer grind sizing was then conducted. Results indicated that varying the particle size down to 425um permitted 94% recovery of cobalt to concentrate.
(continueu)		 Calcine and Leach
		 A total of 90 kg of gravity-float concentrate has been calcined by ALS Metallurgy in Perth, producing approximately 70 kg of calcine. Process conditions have been varied to determine the optimum parameters for selection as design criteria set-point for the PFS engineering design study. Importantly, the target conversion of >95% of the pyrite into pyrrhotite has been repeatedly achieved, with no loss of cobalt to the sulphur collected from the off-gas. Further, the typical removal of sulphur from the head feed has increased from 35% (27 Dec 2017) to 40% in recent tests. Potential equipment vendors are presently involved with the PFS engineering study. Preliminary marketing studies have now commenced for the elemental sulphur product. A total of 56 leach tests have been completed on the calcine by ALS Metallurgy Burnie, systematically varying temperature, liquor composition, solids density, residence time, particle size, and oxygen uptake. The optimum conditions have achieved repeatable cobalt extractions of 95-98% with the average being 96%.
Environ- mental factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported with an explanation of the environmental assumptions made.	 In acid mine drainage terms, both economic and waste material contain significant amounts potentially acid forming materials (Pyrite and sulphur bearing minerals > 0.05% Sulphur). Sulphur has been estimated in both the Resource and waste material where information is available. A background S value of 0.05% S has been included where no assay information is available and where expected lithology types are typically below the 0.05% S value. The construction of a suitable tailings facility is assumed for processing waste. It is considered a portion of water from such a facility could be recovered for re-use as process water.

Criteria	JORC Code Explanation	Commentary
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials 	 Bulk density has been determined using the Archimedes method (weigh in water weight in air). Some 1527 core samples between 1.2m and 0.1m from across the deposit have been utilised. These samples are examined statistically to eliminate errors and outliers. The valid samples are then matched with the Co, Fe and S assay values for their respective intervals. Good linear regressions are obtained with all three elements. The final densities are assigned on a block by block basis using a linear regression derived from the combined Co Fe and S assays. The regression equation is: Bulk density = 0.0143*(Co ppm /10000 + Fe % + S %) + 2.5722
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	 Classification is based on the kriging regression slope with class surfaces created from viewing the regression slopes of the estimated blocks in section. Indicated is defined as all material above the 0.5 kriging regression slope surface and lnferred as all material above the 0.5 kriging regression slope surface. There is some Indicated material near surface that has regression slopes less than 0.5 and this is included as Indicated due to the known mapped outcrop at surface. In addition to this a depth limit has been imposed at Railway and Big Hill. The depth limit at Big Hill is 150m elevation. The depth limit at Railway is mostly at 50m elevation. These depth limits are imposed approximately 50m below the base of the previous 2017 pit optimisations. Material below these depths is currently considered not to have reasonable prospects of eventual economic extraction. These depths may change in the future when additional metallurgical, geotechnical and additional exploration reflects the competent persons view of the deposit.
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 No audits or external reviews of this Resource have been completed to date.

Criteria	JORC Code Explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate, a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 Accuracy and confidence in the estimation is expressed by the Indicated and Inferred classification applied. No additional confidence measures have been estimated or applied. Global change of support calculations indicate that the estimate still contains an amount of smoothing that may be underestimating the grade and overestimating the tonnage above 500ppm in the order of 5% to 10%. The current estimate is therefore a compromise between local block and global grade and tonnage accuracy which is considered appropriate in the competent persons view and experience. No mining or production has taken place.