# Market Announcement



### 5 June 2017

Highlights

### **Cobalt Blue Holdings Ltd** A Green Energy Exploration Company



COB

\$0.22

#### Commodity Exposure: Cobalt & Sulphur

#### Directors & Management:

ASX Code:

| Robert Biancardi | Non-Exec Chairman   |
|------------------|---------------------|
| Hugh Keller      | Non-Exec Director   |
| Trangie Johnston | Non-Exec Director   |
| Joe Kaderavek    | CEO & Exec Director |
| lan Morgan       | Company Secretary   |
|                  |                     |

### **Capital Structure**

| Ordinary Shares at 2/06/2017: | 95m          |
|-------------------------------|--------------|
| Options (ASX Code: COBO):     | 21.2m        |
| Market Cap (undiluted):       | <b>\$22m</b> |
|                               |              |

#### Share Price:

Share Price at 2/06/2017:



#### **Cobalt Blue Holdings Limited**

| ACN:     | 614 466 607                 |
|----------|-----------------------------|
| Address: | Level 2, 66 Hunter St,      |
|          | Sydney NSW 2000             |
|          | +61 2 9966 5629             |
| Nebsite: | www.cobaltblueholdings.com  |
|          | info@cobaltblueholdings.com |
| Social:  | I Cobalt.Blue.Energy        |
|          | 🖬 cobalt-blue-holdings      |
|          |                             |

## Significant resource upgrade for the Thackaringa Cobalt Project

- tonnage up 66%, grade up 9% on previous estimate

- Cobalt Blue (ASX:COB) is pleased to announce a significant resource upgrade at the Thackaringa Project, located near Broken Hill, NSW. This upgrade is the result of a substantial drilling campaign including 7,957m of diamond drilling (DD) and reverse circulation (RC) drilling completed during 2016/17.
- The global Mineral Resource estimate at Thackaringa now comprises 54.9Mt at 910ppm cobalt, 9.56% sulphur & 10.19% iron for 50Kt contained cobalt (at a 500ppm cobalt cut-off) compared to the January 2017 Mineral Resource estimate (detailed in ASX release of 31 January 2017) the new estimate reflects a 66% increase in overall tonnes and a 9% increase in cobalt grade.
- Increased geological confidence has supported the classification of approximately 12% of the Mineral Resource as Indicated.
- In addition, a global exploration target comprising 18–26Mt at 800–1000ppm cobalt, 8.5–10.5% sulphur and 8–12% iron has been defined. The potential quantity and grade of this target is conceptual in nature. There has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in determination of a Mineral Resource.
- These results, in conjunction with the Scoping Study (to be delivered by 30 June 2017), represent a significant milestone for the Thackaringa Project.
- The COB Board, encouraged by the total potential resource at Thackaringa, is examining the use of aerial geophysical survey techniques to determine additional exploration targets.
- The shallow nature of mineralisation is considered to make these resources amenable to open pit mining.
- Thackaringa remains on target to become a world class cobalt project.

MARKET ANNOUNCEMENT – 5 JUNE 2017



The updated Total Mineral Resource estimate at Thackaringa is apportioned to the three main deposits as follows (minor rounding errors may have occurred in the compilation of this table):

| Pyrite Hill (at a 500ppm Co cut-off)           Indicated         2.8         1001         10.99         10.42         19.54         2,758         0.54         2.87           Inferred         20.8         948         11.03         10.22         19.16         19,710         3.98         2.87 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Indicated         2.8         1001         10.99         10.42         19.54         2,758         0.54         2.87           Inferred         20.8         948         11.03         10.22         19.16         19,710         3.98         2.87                                                |  |
| Inferred 20.8 948 11.03 10.22 19.16 19,710 3.98 2.87                                                                                                                                                                                                                                               |  |
|                                                                                                                                                                                                                                                                                                    |  |
| Total         23.5         954         11.02         10.24         19.21         22,468         4.52         2.87                                                                                                                                                                                  |  |
| Big Hill (at a 500ppm Co cut-off)                                                                                                                                                                                                                                                                  |  |
| Indicated 0.8 787 7.41 6.77 12.7 596 0.1 2.76                                                                                                                                                                                                                                                      |  |
| Inferred 7.4 760 7.42 7.19 13.49 5,638 1 2.78                                                                                                                                                                                                                                                      |  |
| Total         8.2         763         7.42         7.15         13.41         6,234         1.1         2.78                                                                                                                                                                                       |  |
| Railway (at a 500ppm Co cut-off)                                                                                                                                                                                                                                                                   |  |
| Indicated 3 947 10.93 10.29 19.29 2,828 0.58 2.87                                                                                                                                                                                                                                                  |  |
| Inferred 20.2 913 10.23 9.63 18.05 18,456 3.65 2.85                                                                                                                                                                                                                                                |  |
| Total         23.2         917         10.32         9.71         18.21         21,284         4.22         2.85                                                                                                                                                                                   |  |
| Total (at a 500ppm Co cut-off)                                                                                                                                                                                                                                                                     |  |
| Indicated 6.5 951 10.54 9.93 18.63 6,182 1.21 2.86                                                                                                                                                                                                                                                 |  |
| Inferred 48.4 905 10.14 9.51 17.83 43,804 8.63 2.85                                                                                                                                                                                                                                                |  |
| Total         54.9         910         10.19         9.56         17.92         49,986         9.84         2.85                                                                                                                                                                                   |  |

(Pyrite grade generated stoichiometrically from sulphur assay using formula Pyrite = (sulphur/53.333) \* 100)

The resource upgrade represents a major stepping stone in the development of the Thackaringa Project, as shown in Figure 1 below:

|                                                                               | JUNE                                                                                                                             |                                                                                                                                                 |                                                                                                                                                                                  |                                                   |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Aug 2016 - Feb 2017                                                           | 30 June 2017                                                                                                                     | 30 June 2018                                                                                                                                    | 30 June 2019                                                                                                                                                                     |                                                   |
| Complete                                                                      | Stage One                                                                                                                        | Stage Two                                                                                                                                       | Stage Three                                                                                                                                                                      | Stage                                             |
| Cobalt Blue formed<br>JV & Farm-in<br>JORC 2012 upgrade<br>Cobalt Blue listed | A\$2m expenditure in<br>the ground delivered.<br>Resource restated.<br>Deliver:<br>Scoping Study<br>Target Date:<br>30 June 2017 | A\$2.5m expenditure<br>in ground – Indicated<br>Resource Target<br>Deliver:<br>Preliminary Feasibility<br>Study<br>Target Date:<br>30 June 2018 | A\$5.0m expenditure<br>in ground – Measured<br>Resource + Reserves<br>Target<br>Deliver:<br>Bankable Feasibility<br>Study + Project<br>Approvals<br>Target Date:<br>30 June 2019 | Four<br>Decision<br>to Mine<br>Project<br>Finance |





Stage One activities have been focussed on the three known deposits; namely Pyrite Hill, Big Hill and the Railway. Resource definition work will continue during Stage Two of the JV, targeting conversion of exploration targets to Mineral Resources. A key requirement of Stage 2 is to define a sufficient quantity of Indicated Resources to support the optimal mining throughput defined in the Scoping Study due end June 2017.

Additional resource potential has been defined through the identification of the following exploration targets:

| Prospect    | Mt           | Co ppm      | Fe %       | S %         | Pyrite %     |
|-------------|--------------|-------------|------------|-------------|--------------|
| Pyrite Hill | 5 to 7       | 850 to 1050 | 10 to 13   | 9.5 to 11.5 | 18 to 22     |
| Big Hill    | 2.5 to 3.5   | 650 to 750  | 6.5 to 7.5 | 7 to 8      | 11.5 to 13.5 |
| Railway     | 11.5 to 15.5 | 850 to 950  | 9 to 10    | 8.5 to 9.5  | 16 to 18     |
| Total       | 18 to 26     | 800 to 1000 | 8 to 12    | 8.5 to 10.5 | 16 to 20     |

The potential quantity and grade of these targets is conceptual in nature. There has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in determination of a Mineral Resource.

COB Chairman, Rob Biancardi commented:

"Shareholders should be delighted with the significant upgrade to the Mineral Resource. The increased grade and additional tonnage confirm Thackaringa as a significant stand-alone cobalt project, a unique deposit in Australia. The upgrade provides a major tailwind as the Thackaringa JV continues with feasibility studies, with the Preliminary Feasibility Study scheduled for completion by 30 June 2018."

### **Cobalt Blue Background**

Cobalt Blue ("COB") is an exploration company focussed on green energy technology and strategic development to upgrade the existing mineral resource from Inferred to Indicated status at the Thackaringa Cobalt Project in New South Wales. This strategic metal is in strong demand for new generation batteries, particularly lithium-ion batteries now being widely used in clean energy systems.

COB is undertaking exploration and development programs on the Thackaringa Cobalt Project pursuant to a farm-in joint venture agreement entered into with Broken Hill Prospecting Limited ("BPL"). Subject to the achievement of milestones, COB will be entitled to acquire 100% of the Thackaringa Cobalt Project

The Thackaringa Project, 23 km west of Broken Hill and 400km by rail from Port Pirie consists of four granted tenements (EL6622, EL8143, ML86 and ML87) with total area of 63km<sup>2</sup>. The main target for exploration is well known and documented large tonnage cobalt-bearing pyrite deposits. The project area is under-explored, with the vast majority of historical exploration directed at or around the outcropping pyritic cobalt deposits at Pyrite Hill and Big Hill.

Potential to extend the Mineral Resource at Pyrite Hill, Big Hill, Railway and the other prospects is high. Numerous other prospects within COB's tenement package are early stage and under-explored.

Looking forward, we would like our shareholders to keep in touch with COB updates and related news items, which we will post on our website, the ASX announcements platform, as well as social media such as as Facebook (1) and LinkedIn (1). Please don't hesitate to join the 'COB friends' on social media and also to join our newsletter mailing list at our at our website.

Judal

Joe Kaderavek Chief Executive Officer info@cobaltblueholdings.com P: (02) 9966 5629



### **Competent Person Statement**

The information in this report that relates to Exploration Results is based on information compiled by Mr Anthony Johnston, BSc (Hons), who is a Member of the Australian Institute of Mining and Metallurgy and who is a non-executive director of Cobalt Blue Holdings Limited, the Chief Executive Officer of Broken Hill Prospecting Limited and the Technical Manager of the Joint Venture.

The information in this report that relates to Mineral Resource estimates is based on information compiled by Mr Simon Tear, Director and Consulting Geologist – H & S Consultants Pty Ltd. Mr Tear is a member of the Australasian Institute of Mining and Metallurgy and a full time employee of H & S Consultants Pty Ltd, a geological consultancy which has been paid at usual commercial rates for the work which has been completed for Cobalt Blue Holdings Limited.

Mr Johnston and Mr Tear have sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activities undertaken, to qualify as a Competent Person as defined in the 2004 & 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Johnston and Mr Tear consent to the inclusion in this announcement of the matters based on the information in the form and context in which it appears.

### **Released Information**

This ASX announcement refers to information extracted from the following reports, which are available for viewing on COB's website www.cobaltblueholdings.com

- 25 May 2017: Stage One Drilling Program delivers robust results resource upgrade to follow
- 4 May 2017: 2017 Update Strong Drilling Results Continue
- 27 March 2017: Assays confirm Thackaringa as a Significant Cobalt-Pyrite Project
- 31 January 2017: Replacement Prospectus dated 3 January 2017 (Replacement Prospectus) supplemented by the supplementary prospectus dated 10 January 2017 (Supplementary Prospectus)

COB confirms it is not aware of any new information or data that materially affects the information included in the original market announcement, and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. COB confirms that the form and context in which the Competent Person's findings presented have not been materially modified from the original market announcement.

### **Mineral Resource Estimate Overview**

The revised Mineral Resource was independently prepared by H & S Consultants Pty Ltd using an Ordinary Kriging ('OK') method of estimation, suitable for the style of mineralisation comprising the Thackaringa deposits. Mr Simon Tear, Director and Consulting Geologist at H&SC, was engaged to estimate the Mineral Resource as the independent Competent Person. The Mineral Resource has been estimated and reported in accordance with the guidelines of the 2012 edition of the Australasian Code for the Reporting of Exploration Results, Minerals Resources and Ore Reserves ('2012 JORC Code').

Cobalt Blue considers that the shallow depth of the Thackaringa deposit offers potential for an open-pit mining operation. The Mineral Resource estimates are reported using a cobalt cut-off grade of 500ppm and are constrained to between 200–300m below surface.

The revised Mineral Resource estimate reflects the culmination of a focussed exploration effort by COB, commencing with detailed geological mapping and development of the 3D geological model in 2016. With improved geological context recent drilling (2016-2017) confirmed continuity of mineralisation and defined multiple high-grade zones within the broader mineralised envelope. The program reflected the most significant campaign at Thackaringa to date; comprising 22 diamond and 38 reverse circulation drill holes for a total of 7,956.9 metres.

Results of this drilling program were presented in previous ASX Announcements including 3 March 2017, 28 March 2017, 4 May 2017 and 25 May 2017.





Figure 2: Plan view of Railway Deposit





Figure 3: Plan view of Pyrite Hill Deposit





Figure 4: Plan view of Big Hill Deposit





Figure 5: Railway Mineral Resource – Oblique view looking north west illustrating resource blocks comprising the Inferred (blue) and Indicated (yellow) components of the Mineral Resource estimate.



Figure 6: Pyrite Hill Mineral Resource – Oblique view looking north west illustrating resource blocks comprising the Inferred (blue) and Indicated (yellow) components of the Mineral Resource estimate.





Figure 7: Big Hill Mineral Resource – Oblique view looking north west illustrating resource blocks comprising the Inferred (blue) and Indicated (yellow) components of the Mineral Resource estimate.

### **Geology and Geological Interpretation**

The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal rock succession named the Willyama Supergroup, which crops out as several inliers in western New South Wales, including the Broken Hill Block. Exploration by Broken Hill Prospecting Limited (BPL) has been focused on the discovery of cobaltiferous pyrite deposits and Broken Hill type base-metal mineralisation both of which are known from historical exploration in the district.

The project area covers portions of the Broken Hill and Thackaringa group successions which host the majority of mineralisation in the region, including the world-class Broken Hill Ag-Pb-Zn deposit. The extensive sequence of quartz-albite gneiss that hosts the cobaltiferous pyrite mineralisation is interpreted as belonging to the Himalaya Formation, which is stratigraphically at the top of the Thackaringa Group.

The Thackaringa mineralisation comprises moderate to steeply dipping, cobalt-rich, strongly pyritic quartz-albite gneiss. The rocks have been metamorphosed to amphibolite grade and feature internal zones of complex ductile deformation often contributing to localised structural thickening. Mineralisation is predominantly located in the fresh rock zone forming outcropping ridgelines with only minor oxidation averaging 10 metres from surface.





### Sampling and sub-sampling Techniques and Sample Analysis Method

Sampling and sub-sampling techniques have varied between phases of exploration at the Thackaringa Project and are summarised below:

### Pre-1990

Diamond drilling was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were hand-split or sawn. Samples were submitted for analysis using a mixed acid digestion and AAS methodology.

### Post-1990

Diamond drilling (one drill hole) was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were sawn (quarter core for HQ). Samples were submitted for analysis using a mixed acid digestion and ICP-OES methodology.

### **2016 Metallurgical Drilling**

Diamond drilling was used to obtain core from which regular (one-metre) intervals were sawn with one half core dispatched for analysis using a mixed acid digestion and ICP-AES methodology and the other half further sawn such that one quarter-core was sent for metallurgical test work and the other quarter-core retained for archival purposes.

### **Historical Reverse Circulation Drilling**

RC drilling was used to obtain a representative sample by means of riffle splitting with samples submitted for analysis using a mixed acid digestion and ICP-OES methodology. Pre-2000 drill samples were assayed for a small and variable suite of elements (sometimes only cobalt). The post-2000 drill samples (5,095 samples) were assayed by a mixed acid digestion and by ICP-AES/MS method for a suite of 33 elements.

### **2017 Diamond Drilling**

Diamond drilling (17THD01-14) was used to obtain core from which regular (one-metre) intervals were sawn with one quarter – one half core dispatched for analysis using a four acid digestion and ICP-AES/MS methodology (47 elements) and the other half – three quarters retained for future metallurgical test work and archival purposes.

### 2017 RC drilling Program

RC drilling was used to obtain a representative sample by means of riffle splitting with samples submitted for analysis using the above-mentioned methodologies for a suite of 47 elements.

### **Mineral Resource Estimation Methodology**

The revised Mineral Resource estimates have incorporated a total of 129 holes (diamond core and RC) comprising 16,846.63 metres. Hole spacing is variable between 50 and 100m between sections with spacing on section nominally 50m to 150m. Downhole sample spacing is nominally 1m within the mineral zone for the recent drilling. Domaining of the deposits has been based on changes in strike and or dip direction and amount to two for Pyrite Hill, two for Big Hill and four for Railway. Three sub-domains have been defined from two wireframed 3D surfaces representing the different levels of oxidation. Cobalt mineralisation was interpreted as 3D wireframes reflecting logged pyritic quartz albite gneiss supported by additional downhole lithogeochemical and surface mapping inputs. These wireframes broadly correspond to a 1% sulphur boundary equating to approximately 100ppm cobalt.

Cobalt assays were composited at 1m intervals from within the mineral wireframes with the data not significantly skewed and with moderate coefficients of variation. There are strong correlations between cobalt and sulphur and sulphur and iron such that Conditional Expectation was used to generate missing sulphur and iron values for some historical drilling. Ordinary Kriging ("OK") was used as the estimation methodology and is considered an appropriate grade interpolation technique for this style of mineralisation. The maximum strike and down dip extrapolation distances for the estimates are about 50m and the oxidation limits were treated as soft boundaries. A set of Inverse Distance Squared check models were completed.

Density data comprises 755 samples for both mineralisation and waste rock. Analysis of the density data for the pyritic units (>10% sulphur) from the different prospects indicated a correlation between sulphur (a proxy for pyrite) and density. Conditional Expectation was used to generate regression equations for density from the sulphur assay grade. This produced the same number of density composites available for OK modelling as the cobalt, sulphur and iron composites.



### **Cut-off Grade**

Mineralised domains were interpreted as 3D wireframes reflecting logged pyritic quartz albite gneiss supported by additional downhole lithogeochemical and surface mapping inputs. These wireframes broadly correspond to a 1% sulphur boundary equating to approximately 100ppm cobalt.

The Mineral Resource has been reported at a cut-off of 500ppm cobalt to appropriately reflect the tonnes and grade of estimated blocks that will meet potential beneficiation processes currently under consideration. A second constraint is the truncation of the mineral wireframe by the base of partial oxidation surface to produce a 'sulphide' wireframe from within which the resource estimates are reported using a partial percent volume adjustment factor.

### **Modifying Factors**

The shallow nature of mineralisation at the Pyrite Hill, Railway and Big Hill deposits is considered to make these resources amenable to an open pit mining method whereby all deposits form ridge lines that are topographically higher than the surrounding landscape. Preliminary pit optimisations will be undertaken as part of additional technical studies to be finalised for the Scoping Study due 30 June 2017.

Metallurgical test work has indicated the mineralisation may be amendable to gravity and or flotation processing to produce a pyrite concentrate containing the bulk of the cobalt. Further there are a variety of pyrometallurgical and hydrometallurgical processes of treating such a concentrate for the potential recovery of cobalt, sulphuric acid and high iron residue. These beneficiation processes are currently being considered for the Scoping Study however, the Mineral Resource estimates do not consider recovery of any potential by-products.

The potential environmental impacts of the project are not well advanced with preliminary considerations noting:

- The project is approximately 25 kilometres west-southwest of Broken Hill and more than 90 kilometres from the nearest National Park and or Wilderness Area (Kinchega National Park) and approximately 20 kilometres south of the nearest Water Supply Reserve (Umberumberka Reservoir Water Supply Reserve).
- Detailed cultural heritage, flora and fauna surveys are yet to be completed .
- It is considered that climatic conditions will assist in the management of wet residues whereby evaporation rates are expected to exceed precipitation.
- Studies related to the mine waste characterisation and appropriate storage have not yet been completed.
- The construction of a suitable tailings facility is assumed for processing waste. It is considered a portion of water from such a facility could be recovered for re-use as process water.



### Appendix – JORC Code, 2012 Edition – Table 1

#### Section 1 – Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

| Criteria                           | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Criteria<br>Sampling<br>techniques | <ul> <li>JORC Code Explanation</li> <li>Nature and quality of sampling<br/>(e.g. cut channels, random<br/>chips, or specific specialised<br/>industry standard measurement<br/>tools appropriate to the minerals<br/>under investigation, such as<br/>down-hole gamma sondes, or<br/>handheld XRF instruments, etc).<br/>These examples should not<br/>be taken as limiting the broad<br/>meaning of sampling.</li> <li>Include reference to measures<br/>taken to ensure sample repre-<br/>sentivity and the appropriate<br/>calibration of any measurement</li> </ul>                                                              | <ul> <li>Diamond Drilling (DDH)</li> <li>Pre-1990</li> <li>Diamond drilling was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were hand-split or sawn. Samples were submitted for analysis using a mixed acid digestion and AAS methodology.</li> <li>Post-1990</li> <li>Diamond drilling (one drill hole) was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were sawn (quarter core for HQ). Samples were submitted for analysis using a mixed acid digestion and ICP-OES methodology.</li> <li>Eight HQ diameter diamond drill holes (DDH) were drilled at the Device Term.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|                                    | <ul> <li>tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>the Thackaringa project in late 2016. They will be used as metallurgical reference holes and to twin some of the previous reverse circulation percussion (RC) holes for QA/QC and assay comparison between DDH and RC. There were two holes drilled at Pyrite Hill, two at Big Hill and four at Railway:</li> <li>Diamond drilling was used to obtain core from which regular (one-metre) intervals were sawn with: <ul> <li>one half core dispatched for analysis using a four acid digestion and ICP-AES/MS methodology;</li> <li>the other half was further sawn such that one quartercore was sent for metallurgical test work and the other quarter-core retained for archival purposes.</li> </ul> </li> <li>Historical Reverse Circulation Drilling</li> <li>RC drilling was used to obtain a representative sample by means of riffle splitting with samples submitted for analysis using the above-mentioned methodologies.</li> <li>Pre-2000 drill samples were assayed for a small and variable suite of elements (sometimes only cobalt). The post-2000 drill samples (5,095 samples) were assayed by a mixed acid digestion and ICP-AES/MS method for a suite of 33 elements.</li> </ul> |  |  |  |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2017 Diamond Drilling Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Fourteen HQ diameter diamond drill holes (DDH) were assayed at the Thackaringa project. They will be used as metallurgical reference holes and to twin some of the previous reverse circulation percussion (RC) holes for QA/QC and assay comparison between DDH and RC. There were four holes drilled at Pyrite Hill, two at Big Hill and 8 at Railway:</li> <li>Diamond drilling (17THD01-03) was used to obtain core from which regular (one-metre) intervals were sawn with:</li> <li>one half core dispatched for analysis using a four acid digestion and ICP-AES/MS methodology (47 elements);</li> <li>the other half was retained for future metallurgical test work and archival purposes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |

- Diamond drilling (17THD04-14) was used to obtain core from which regular (one-metre) intervals were sawn with:
  - one quarter core dispatched for analysis using a four acid digestion and ICP-AES/MS methodology (47 elements);
  - the other three quarters was retained for future metallurgical test work and archival purposes.



| Criteria                              | JORC Code Explanation                                                                                                                                                                                                                                                                                                                       | <ul> <li>Commentary</li> <li>2017 RC drilling Program</li> <li>Thirty-eight (38) RC drill holes (DDH) were drilled &amp; assayed at the Thackaringa project to infill historic holes and allow re-estimation of the existing Mineral Resources. There were 12 holes drilled at Pyrite Hill, three at Big Hill and 23 at Railway:</li> <li>RC drilling was used to obtain a representative sample by means of riffle splitting with samples submitted for analysis using the above-mentioned methodologies for a suite of 47 elements.</li> </ul>                                                                                                                                                                                     |                                                                                                                                                                                       |                                                         |  |  |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| Sampling<br>techniques<br>(continued) |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                       |                                                         |  |  |
| Drilling<br>techniques                | <ul> <li>Drill type (e.g. core, reverse<br/>circulation, open-hole hammer,<br/>rotary air blast, auger, Bangka,<br/>sonic, etc) and details (e.g.<br/>core diameter, triple or standard<br/>tube, depth of diamond tails,<br/>face-sampling bit or other type,<br/>whether core is oriented and if<br/>so, by what method, etc).</li> </ul> | <ul> <li>The Thackaringa drilling database comprises a total of forty-eight (48) diamond drill holes and eighty-one (81) reverse circulation (RC) drill holes. Diamond drilling was predominantly completed with standard diameter, conventional HQ and NQ utilising RC and percussion pre-collars to an average 25 metres (see Drill hole Information for further details). Early (1960-1970) drill holes utilised HX – AX diameters dependent on drilling depth. Reverse circulation drilling utilised standard hole diameters (4.8"-5.5") with a face sampling hammer.</li> <li>During 2013, a single diamond drill hole (13BED01) was completed at the Railway deposit using a triple tube system with a HQ3 diameter</li> </ul> |                                                                                                                                                                                       |                                                         |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Drilling                                                                                                                                                                              | Metres                                                  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 diamond drill hole                                                                                                                                                                  | 304.2                                                   |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 1970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 diamond drill holes                                                                                                                                                                 | 496.6                                                   |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 diamond and 1 RC drill hole                                                                                                                                                        | 1711.23                                                 |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2 diamond drill holes                                                                                                                                                                 | 250                                                     |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 RC drill holes                                                                                                                                                                     | 1093.25                                                 |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 RC drill holes                                                                                                                                                                     | 1811                                                    |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20 RC drill holes                                                                                                                                                                     | 2874.25                                                 |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 diamond drill hole                                                                                                                                                                  | 349.2                                                   |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 2016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 diamond drill holes                                                                                                                                                                 | 1484.8                                                  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | 2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14 diamond drill holes and 38 RC drill holes                                                                                                                                          | 6472.1                                                  |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 diamond and 81 RC drill holes                                                                                                                                                      | 16,846.63                                               |  |  |
|                                       |                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Durir<br/>tube<br/>betw<br/>was</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ng 2016–2017, diamond drilling was complet<br>system with a HQ3 diameter.Holes were drill<br>veen 40 and 60 degrees from horizontal and t<br>oriented as part of the logging process. | ed using a triple<br>ed at angles<br>the resulting core |  |  |



| Criteria                             | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria<br>Drill sample<br>recovery | <ul> <li>JORC Code Explanation</li> <li>Method of recording and<br/>assessing core and chip sample<br/>recoveries and results assessed.</li> <li>Measures taken to maximise<br/>sample recovery and ensure<br/>representative nature of the<br/>samples.</li> <li>Whether a relationship exists<br/>between sample recovery and<br/>grade and whether sample<br/>bias may have occurred due<br/>to preferential loss/gain of fine/<br/>coarse material.</li> </ul> | <ul> <li>Commentary</li> <li>Diamond Drilling</li> <li>Historical core recoveries were accurately quantified through measurement of actual core recovered versus drilled intervals.</li> <li>Historical diamond drilling employed conventional drilling techniques while diamond drilling completed by Broken Hill Prospecting utilised a triple-tube system to maximise sample recovery.</li> <li>Core recovery of 99.7% was achieved during completion of drill hole 13BED01.</li> <li>Core recovery of 98% was achieved during the 2016 diamond drilling program.</li> <li>Core recovery of 93.3% was achieved during the 2017 diamond drilling program.</li> <li>No relationship between sample recovery and grade has been observed.</li> <li>Everse Circulation Drilling</li> <li>Reverse circulation sample recoveries were visually estimated during drilling programs. Where the estimated sample recovery was below 100% this was recorded in field logs by means of qualitative observation.</li> </ul> |
|                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <ul> <li>Reverse circulation drilling employed adequate air (using a compressor and booster) to maximise sample recovery.</li> <li>No relationship between sample recovery and grade has been observed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| Critoria | IOPC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | Commonton                                                                                                      |                                                              |                            |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------|--|
| Griteria |                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   | Commentary                                                                                                     |                                                              |                            |  |
| Logging  | <ul> <li>Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.</li> <li>Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.</li> <li>The total length and percentage of the relevant intersections logged.</li> </ul> | <ul> <li>A qualified geoscientist has logged all reported drill holes in their entirety. This logging has been completed to a level of detail considered to accurately support Mineral Resource estimation and metallurgical studies. The parameters logged include lithology, alteration, mineralisation and oxidation. These parameters are both qualitative and quantitative in nature.</li> <li>Diamond drilling completed in 2017 by BPL has been subject to geotechnical logging with parameters recorded including rock-quality designation (RQD), fracture frequency and hardness.</li> <li>During 2013, a considerable amount of historical drilling was re-logged through review of available core stored at Broken Hill as well the re-interpretation of historical reports where core or percussion samples no longer exist. A total of eight (8) diamond drill holes and sixteen (16) diamond drill holes with pre-collars were re-logged as detailed below:</li> </ul> |                                                                                                                                   |                                                                                                                |                                                              |                            |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | Hole ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Deposit                                                                                                                           | Max Depth                                                                                                      | Hole Type                                                    | Pre-Collar<br>Depth (m)    |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 67TH01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrite Hill                                                                                                                       | 304.2                                                                                                          | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70TH02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrite Hill                                                                                                                       | 148.6                                                                                                          | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70TH03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pyrite Hill                                                                                                                       | 141.4                                                                                                          | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70BH01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Big Hill                                                                                                                          | 102.7                                                                                                          | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 70BH02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Big Hill                                                                                                                          | 103.9                                                                                                          | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 77                                                                                                             | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 300.3                                                                                                          | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80BGH09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Big Hill                                                                                                                          | 100.5                                                                                                          | DDH <sup>1</sup>                                             | _                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 24.53                                                                                                          | PDDH <sup>2</sup>                                            | 6                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 51.3                                                                                                           | PDDH <sup>2</sup>                                            | 33.58                      |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 55                                                                                                             | PDDH <sup>2</sup>                                            | 38.7                       |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 93.6                                                                                                           | PDDH <sup>2</sup>                                            | 18                         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 85.5                                                                                                           | PDDH <sup>2</sup>                                            | 18                         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 94.5                                                                                                           | PDDH <sup>2</sup>                                            | 12                         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 110                                                                                                            | PDDH <sup>2</sup>                                            | 8                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 100.5                                                                                                          | PDDH <sup>2</sup>                                            | 8                          |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 145.3                                                                                                          | PDDH <sup>2</sup>                                            | 25.5                       |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 103.1                                                                                                          | PDDH <sup>2</sup>                                            | 18                         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80PYH12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 109.5                                                                                                          | PDDH <sup>2</sup>                                            | 4.2                        |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80BGH05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Big Hill                                                                                                                          | 54.86                                                                                                          | RCDDH <sup>3</sup>                                           | 45.5                       |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80BGH06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Big Hill                                                                                                                          | 68.04                                                                                                          | RCDDH <sup>3</sup>                                           | 58                         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 80BGH08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Big Hill                                                                                                                          | 79.7                                                                                                           | RCDDH <sup>3</sup>                                           | 69.9                       |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 93MGM01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 70                                                                                                             | RDDH <sup>4</sup>                                            | 24                         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 93MGM02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pyrite Hill                                                                                                                       | 180                                                                                                            | RDDH <sup>4</sup>                                            | 48                         |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 Diamond<br>2 Diamond<br>3 Diamond<br>4 Diamond<br>• Litho-g<br>where a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I drill hole<br>I drill hole with per<br>I drill hole with reve<br>I drill hole with rota<br>eochemistry ha<br>available for dril | cussion pre-collar<br>erse circulation pre-<br>ary air blast pre-colla<br>as been used to<br>lling completed b | <sup>collar</sup><br>ar<br>verify geologic<br>by Broken Hill | cal logging<br>Prospecting |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                      | post 20<br>Represe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 010.<br>entative referer                                                                                                          | nce trays of chips                                                                                             | s from reverse                                               | e circulation              |  |

Representative reference trays of chips from reverse circulation drilling completed post 2010 have been retained by Broken Hill Prospecting.



| Criteria                                                                                         | JORC Code Explanation                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                 |  |  |  |
|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Sub-sampling                                                                                     | <ul> <li>If core, whether cut or sawn and<br/>whether quarter, half or all core</li> </ul>                                                                                                                                             | Diamond Drilling (DDH)<br>Pre-1990                                                                                                                                                                                                                                                                         |  |  |  |
| and sample<br>preparation                                                                        | <ul> <li>taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.</li> </ul>                                                                                                      | <ul> <li>Core samples were hand-split or sawn with re-logging of available<br/>historical core (see Logging) indicating a 70:30 (retained:assayed)<br/>split was typical. The variation of sample ratios noted are consid-<br/>ered consistent with the sub-sampling technique (hand-splitting)</li> </ul> |  |  |  |
|                                                                                                  | • For all sample types, the nature,                                                                                                                                                                                                    | <ul> <li>No second half samples were submitted for analysis</li> </ul>                                                                                                                                                                                                                                     |  |  |  |
|                                                                                                  | quality and appropriateness of the sample preparation                                                                                                                                                                                  | <ul> <li>It is considered water used for core cutting is unprocessed and<br/>unlikely to have introduced sample contamination</li> </ul>                                                                                                                                                                   |  |  |  |
|                                                                                                  | e Quality control procedures                                                                                                                                                                                                           | <ul> <li>Procedures relating to the definition of the line of cutting or splitting<br/>are not available. It is expected that 'standard industry practice' for<br/>the period was applied to maximize sample representivity.</li> </ul>                                                                    |  |  |  |
|                                                                                                  | stages to maximise representivity                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                  | of samples.                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                  | <ul> <li>Measures taken to ensure that</li> </ul>                                                                                                                                                                                      | NQ drilling core was sawn with nair core submitted for assay                                                                                                                                                                                                                                               |  |  |  |
|                                                                                                  | the sampling is representative                                                                                                                                                                                                         | <ul> <li>HQ drilling core was sawn with quarter core submitted for analysis</li> <li>No second balf samples were submitted for analysis</li> </ul>                                                                                                                                                         |  |  |  |
|                                                                                                  | of the in situ material collected,                                                                                                                                                                                                     | <ul> <li>No second hall samples were submitted for analysis</li> <li>It is considered water used for core cutting is unprocessed and</li> </ul>                                                                                                                                                            |  |  |  |
|                                                                                                  | for field duplicate/second-half                                                                                                                                                                                                        | unlikely to have introduced sample contamination                                                                                                                                                                                                                                                           |  |  |  |
| <ul> <li>sampling.</li> <li>Whether sample sizes are appropriate to the grain size of</li> </ul> | <ul> <li>Procedures relating to the definition of the line of cutting or splitting<br/>are not available. It is expected that 'standard industry practice' for<br/>the period was applied to maximise sample representivity</li> </ul> |                                                                                                                                                                                                                                                                                                            |  |  |  |
|                                                                                                  | the material being sampled.                                                                                                                                                                                                            | 2016 Metallurgical Drilling                                                                                                                                                                                                                                                                                |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>All HQ drill core was sawn into halves, with each half then re-sawn<br/>to provide 4 lengths of quarter core for each interval</li> </ul>                                                                                                                                                         |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>One half core was submitted for assay</li> </ul>                                                                                                                                                                                                                                                  |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>One quarter core was submitted for metallurgical test work</li> </ul>                                                                                                                                                                                                                             |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>One quarter core was retained for archive</li> </ul>                                                                                                                                                                                                                                              |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>It is considered that the water used for core cutting is most<br/>unlikely to have introduced sample contamination</li> </ul>                                                                                                                                                                     |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>Sample sawing and processing for test work were undertaken<br/>according to 'standard industry practice' to maximise sample<br/>representivity</li> </ul>                                                                                                                                         |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | 2017 Diamond Drilling                                                                                                                                                                                                                                                                                      |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>All HQ drill core was sawn into halves, with each half then re-sawn to<br/>provide 4 lengths of quarter core for each interval</li> </ul>                                                                                                                                                         |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | One guarter – one half core was submitted for assay                                                                                                                                                                                                                                                        |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>One quarter – three quarter core was retained for archive</li> </ul>                                                                                                                                                                                                                              |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>It is considered that the water used for core cutting is most unlikely<br/>to have introduced sample contamination</li> </ul>                                                                                                                                                                     |  |  |  |
|                                                                                                  |                                                                                                                                                                                                                                        | <ul> <li>Sample sawing and processing for test work were undertaken<br/>according to 'standard industry practice' to maximise sample<br/>representivity.</li> </ul>                                                                                                                                        |  |  |  |



| Criteria                   | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                     |                                                                                 |                                                   |                                         |
|----------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------|
| Sub-sampling               |                       | Historical Reverse Circulation Drilling                                                                                                                                                                                                                                                                                                                                                                          |                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                     |                                                                                 |                                                   |                                         |
| techniques<br>and sample   |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                | Sub-sam<br>achieved                                                                        | pling of reverse<br>using a cyclor                                                                                              | e circulation/pe<br>ne with cone or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rcussion chip<br>riffle splitter                                                                               | os was                                                                                              |                                                                                 |                                                   |                                         |
| preparation<br>(continued) |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                | During dr                                                                                  | illing operation<br>cleaned to pre                                                                                              | s, the sample over the sample of the sample | cyclone and s<br>sample cont                                                                                   | splitter were<br>tamination                                                                         |                                                                                 |                                                   |                                         |
| (oor tai taoay             |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                | Dry samp                                                                                   | oling was achie<br>sor and booste                                                                                               | eved with the user, where groun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | se of adequat<br>dwater was e                                                                                  | te air, using a<br>encountered                                                                      |                                                                                 |                                                   |                                         |
|                            |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                | During re<br>Prospecti<br>These we<br>sacks usin<br>samples we<br>these wer                | verse circulatic<br>ng, duplicate s<br>re obtained by<br>ng a spear mac<br>were speared th<br>re combined to                    | n drilling comp<br>amples were co<br>spearing the bu<br>le of 40mm diar<br>rrough the full d<br>form one samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | leted by Brok<br>ollected at the<br>lk material hel<br>neter PVC pip<br>epth of the bu<br>le                   | en Hill<br>time of drilling.<br>d in the PVC<br>be; three<br>Ilk material and                       |                                                                                 |                                                   |                                         |
|                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                  | The Thac<br>duplicates<br>a ratio of<br>(3.1%) for<br>for 4469 i<br>42 sampli<br>for 5801. | karinga drilling<br>s collected duri<br>approximately<br>r drill holes whe<br>metres) and an<br>es (2.4%) for al<br>5 metres).  | database includ<br>ng reverse circu<br>one field duplica<br>ere duplicates w<br>overall ratio of<br>I reverse circula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | des a total of<br>ulation drilling.<br>ate in every 32<br>rere collected<br>one field dupl<br>tion drill holes | 139 field<br>. This reflects<br>2 samples<br>(31 drill holes<br>icate in every<br>s (43 drill holes |                                                                                 |                                                   |                                         |
|                            |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                | Statistical<br>complete<br>86% of al<br>chromium<br>samples.<br>side of ze<br>the origina  | analysis of field<br>d by Broken Hi<br>I field duplicate<br>n, lanthanum ar<br>For cobalt, the<br>ro and the dup<br>al samples. | d duplicates col<br>Il Prospecting (1<br>s) considered 1<br>nd titanium show<br>confidence limi<br>licates are deen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lected during<br>19 duplicates<br>8 elements of<br>v some bias ir<br>ts were evenly<br>ned to be repr          | drilling<br>representing<br>which only<br>the duplicate<br>placed either<br>resentative of          |                                                                                 |                                                   |                                         |
|                            |                       | <ul> <li>2017 Reverse Circulation Drilling</li> <li>Sub-sampling of reverse circulation/percussion chips was achieved using a riffle splitter.</li> <li>During drilling operations, the splitter was regularly cleaned to prevent down hole sample contamination.</li> <li>Dry sampling was achieved with the use of adequate air, using a compressor and booster, where groundwater was encountered.</li> </ul> |                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                |                                                                                                     |                                                                                 |                                                   |                                         |
|                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | was achieved                                                                                        |                                                                                 |                                                   |                                         |
|                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | eaned to                                                                                            |                                                                                 |                                                   |                                         |
|                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                | air, using a<br>countered.                                                                          |                                                                                 |                                                   |                                         |
|                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            |                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | During rev<br>Prospecti<br>These we<br>following                                                               | verse circulation<br>ng, duplicate sa<br>re obtained by<br>collection of the                        | n drilling comple<br>amples were co<br>riffle splitting the<br>e primary split. | eted by Broker<br>Ilected at the<br>e remnant bul | n Hill<br>time of drilling.<br>k sample |
|                            |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                | Field dupl<br>every 18tl                                                                   | licate samples v<br>h sample on av                                                                                              | were collected r<br>erage).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | egularly during                                                                                                | g drilling (for                                                                                     |                                                                                 |                                                   |                                         |
|                            |                       | •                                                                                                                                                                                                                                                                                                                                                                                                                | Assay res<br>pairs from                                                                    | ults received to<br>38 RC drill ho                                                                                              | date include al<br>les.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nalysis of 201                                                                                                 | field duplicate                                                                                     |                                                                                 |                                                   |                                         |
|                            |                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                | A measur<br>preparatic<br>difference<br>below.                                             | e of the averag<br>on and assaying<br>(MPD) assay v                                                                             | e precision of th<br>g methods, give<br>alues of the dup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ne sampling, s<br>in by the mear<br>plicate pairs is                                                           | sample<br>n per cent<br>s summarised                                                                |                                                                                 |                                                   |                                         |
|                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                            | RC I                                                                                                                            | Field Duplicate Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | airs                                                                                                           |                                                                                                     |                                                                                 |                                                   |                                         |
|                            |                       | Co                                                                                                                                                                                                                                                                                                                                                                                                               | Cut-Off                                                                                    | Count                                                                                                                           | Co MPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S MPD                                                                                                          | Fe MPD                                                                                              |                                                                                 |                                                   |                                         |
|                            |                       | Al                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                            | 201                                                                                                                             | 10%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8%                                                                                                             | 9%                                                                                                  |                                                                                 |                                                   |                                         |



| Criteria                                      | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality<br>of assay<br>data and<br>laboratory | <ul> <li>The nature, quality and<br/>appropriateness of the assaying<br/>and laboratory procedures used<br/>and whether the technique is</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        | <ul> <li>The nature and quality of all assaying and laboratory procedures<br/>employed for samples obtained through drilling (diamond and<br/>reverse circulation) are considered 'industry standard' for the<br/>respective periods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tests                                         | <ul> <li>considered partial or total.</li> <li>For geophysical tools,<br/>spectrometers, handheld XRF<br/>instruments, etc, the parameters<br/>used in determining the analysis<br/>including instrument make<br/>and model, reading times,<br/>calibrations factors applied and<br/>their derivation, etc.</li> <li>Nature of quality control proce-<br/>dures adopted (e.g. standards,<br/>blanks, duplicates, external<br/>laboratory checks) and whether<br/>acceptable levels of accuracy<br/>(i.e. lack of bias) and precision<br/>have been established.</li> </ul> | <ul> <li>The assay techniques employed for drilling (diamond and reverse circulation) include mixed acid digestion with ICP-OES and AAS finishes. These methods are considered appropriate for the targeted mineralisation and regarded as a 'near total' digestion technique with resistive phases not expected to affect cobalt analyses</li> <li>All samples have been processed at independent commercial laboratories including AMDEL, Australian Laboratory Services (ALS), Analabs and Genalysis</li> <li>All samples from drilling completed by Broken Hill Prospecting during 2011-2012 were assayed at ALS in Orange, New South Wales. All samples from drilling completed by Broken Hill Prospecting during 2016-2017 were assayed at ALS Adelaide, South Australia. ALS is a NATA Accredited Laboratory and qualifies for JAS/ANZ ISO9001:2008 quality systems. ALS maintains robust internal QAQC procedures (including analysis of standards, repeats and blanks).</li> <li>To monitor the accuracy of assay results from the 2017 Thackaringa drilling, CRM standards were included in the assay sample stream every 24 samples (on average) for RC chips and every 30 samples for diamond core. The CRM samples were purchased from Ore Research &amp; Exploration Pty Ltd and the results are summarised below:</li> </ul> |

|       |                                         |       |     | Col | oalt |      | Sulphur |     |     | Iron |     |     |     |      |
|-------|-----------------------------------------|-------|-----|-----|------|------|---------|-----|-----|------|-----|-----|-----|------|
| OREAS | Standard                                | Count | 1SD | 2SD | 3SD  | +SD3 | 1SD     | 2SD | 3SD | +SD3 | 1SD | 2SD | 3SD | +SD3 |
| 160   | Low S Blank (2.8ppm Co)                 | 32    | 29  | 1   | _    | 2    | 24      | -   | _   | 8    | 12  | 6   | 10  | 4    |
| 162   | Med Grade (631ppm Co)                   | 70    | 50  | 16  | 4    | _    | 45      | 22  | 3   | _    | 16  | 17  | 16  | 21   |
| 163   | Low Grade (230ppm Co), mod<br>S (10.4%) | 57    | 44  | 11  | 2    | 1    | 11      | 35  | 10  | 2    | 3   | 4   | 4   | 47   |
| 165   | High Grade (2445ppm Co)                 | 37    | 30  | 7   | _    | _    | 21      | 13  | 3   | _    | 5   | 9   | 10  | 13   |
| 166   | High Grade (1970ppm Co)                 | 60    | 48  | 11  | _    | 1    | 50      | 8   | _   | 2    | 11  | 5   | 8   | 36   |
|       |                                         | 256   | 201 | 46  | 6    | 4    | 151     | 78  | 16  | 12   | 47  | 41  | 48  | 121  |
|       |                                         | PCT   | 79% | 18% | 2%   | 2%   | 59%     | 30% | 6%  | 5%   | 18% | 16% | 19% | 47%  |

#### Cobalt CRM Standards

Internal COB assay QA/QC protocols, cobalt performed well with 96% standard analyses falling within two standard deviations of the certified value; and 79% within one SD. No systematic out-of-specification trends were identified, and there was no discernible tendency for a particular Co standard to preferentially assay either higher or lower than the certified Co concentration.

#### **Cobalt Blanks**

A number of blanks were also submitted with the RC chip and diamond core samples — the OREAS160 CRM is essentially a low-sulfide blank with respect to cobalt (2.8ppm) and the results of assay of this standard are summarised above.

Based on the assay of standards and blanks with 96% of the Co results falling within two standard deviations of the certified value, it is concluded that the assay results for Co are likely to be representative for the material submitted with no additional source of inaccuracy or bias identified.

#### Sulfur CRM Standards

Sulfur was reasonably well-performed with 89% of the total 256 standard analyses falling within two standard deviations of the certified value and 96% within 3SD.

#### Iron CRM Standards

Iron analysis of standards showed poor accuracy with a tendency to assay low -47% of the assays fall outside of 3 SD, typically, but not exclusively, lower than the certified value.



| Criteria                                    | JORC Code Explanation                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Verification<br>of sampling<br>and assaying | <ul> <li>The verification of significant<br/>intersections by either inde-<br/>pendent or alternative company<br/>personnel.</li> </ul>                                                    | <ul> <li>Historical drilling intersections were internally verified by personnel<br/>employed by previous explorers including CRAE Pty Limited,<br/>Central Austin Pty Limited and Hunter Resources. Broken Hill<br/>Prospecting has completed a systematic review of the related data.</li> </ul>                                                                                          |
|                                             | <ul> <li>The use of twinned holes.</li> <li>Documentation of primary<br/>data, data entry procedures,<br/>data verification, data storage<br/>(physical and electronic)</li> </ul>         | <ul> <li>The Thackaringa drilling database exists in electronic form as a<br/>Microsoft Access database. Information related to individual drill<br/>holes is stored in digital files as extracted from historical reports<br/>(typically including location plan, section, logs, photos, surveys,<br/>assays and petrology).</li> </ul>                                                    |
|                                             | protocols.                                                                                                                                                                                 | <ul> <li>Historical drilling data available in electronic form has been<br/>re-formatted and imported into the drilling database.</li> </ul>                                                                                                                                                                                                                                                |
|                                             | assay data.                                                                                                                                                                                | <ul> <li>Quantitative historical drilling data, including assays, have been<br/>captured electronically during systematic data compilation and<br/>validation completed by Broken Hill Prospecting.</li> </ul>                                                                                                                                                                              |
|                                             |                                                                                                                                                                                            | <ul> <li>Samples returning assays below detection limits are assigned half<br/>detection limit values in the database.</li> </ul>                                                                                                                                                                                                                                                           |
|                                             |                                                                                                                                                                                            | <ul> <li>All significant intersections are verified by the Company's<br/>Exploration Manager and independent geological consultant</li> </ul>                                                                                                                                                                                                                                               |
| Location of<br>data points                  | <ul> <li>Accuracy and quality of surveys<br/>used to locate drill holes (collar<br/>and down-hole surveys),<br/>trenches, mine workings and</li> </ul>                                     | <ul> <li>Historical drill collars have been relocated and surveyed using a<br/>differential GPS (DGPS). In the instances where no collar could<br/>be located the position has been derived from georeferenced<br/>historical plans.</li> </ul>                                                                                                                                             |
|                                             | <ul> <li>other locations used in Mineral<br/>Resource estimation.</li> <li>Specification of the grid system<br/>used.</li> <li>Quality and adequacy of<br/>topographic control.</li> </ul> | During systematic data validation completed in 2016, three drill<br>holes at Big Hill were found to be incorrectly located. One collar<br>was located and surveyed by GPS and two were digitised from<br>georeferenced historical plans (reported to the nearest metre) as<br>the collars had been destroyed. These corrections were captured<br>in the Big Hill Mineral Resource estimate. |
|                                             | topographic control.                                                                                                                                                                       | <ul> <li>Down hole surveys using digital cameras were completed on all<br/>post 2000 drilling. Down hole surveys for some earlier drilling were<br/>estimated from hole trace and section data where raw survey<br/>data was not reported.</li> </ul>                                                                                                                                       |
|                                             |                                                                                                                                                                                            | <ul> <li>All 2017 Thackaringa drill hole collars were located and surveyed<br/>with DGPS by an independent surveyor with reported accuracy of<br/>±0.05m in horizontal and vertical measurement.</li> </ul>                                                                                                                                                                                 |
|                                             |                                                                                                                                                                                            | <ul> <li>Downhole surveys using digital cameras were completed on all<br/>2017 drill-holes.</li> </ul>                                                                                                                                                                                                                                                                                      |
|                                             |                                                                                                                                                                                            | • All data is recorded in the GDA94 datum; UTM Zone 54 (MGA54).                                                                                                                                                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                            | <ul> <li>3D validation of drilling data has been completed by independent<br/>geological consultants to support detailed geological modelling in<br/>Micromine<sup>™</sup> software.</li> </ul>                                                                                                                                                                                             |
|                                             |                                                                                                                                                                                            | <ul> <li>The quality of topographic control is deemed adequate in<br/>consideration of the results presented in this release.</li> </ul>                                                                                                                                                                                                                                                    |
| Data<br>spacing and<br>distribution         | <ul> <li>Data spacing for reporting of<br/>Exploration Results.</li> <li>Whether the data spacing and</li> </ul>                                                                           | <ul> <li>The data density of existing drill holes at Thackaringa has been<br/>materially increased by the 2017 drilling program which was<br/>undertaken primarily to undertake infill drilling.</li> </ul>                                                                                                                                                                                 |
|                                             | distribution is sufficient to estab-<br>lish the degree of geological and<br>grade continuity appropriate for                                                                              | <ul> <li>Detailed geological mapping supported by drill-hole data of<br/>sufficient spacing and distribution to establish a 3D geological<br/>model.</li> </ul>                                                                                                                                                                                                                             |
|                                             | <ul> <li>the Mineral Resource and Ore<br/>Reserve estimation procedure(s)<br/>and classifications applied.</li> <li>Whether sample compositing<br/>has been applied.</li> </ul>            | <ul> <li>The level of geological and grade continuity is appropriate for<br/>the Mineral Resource estimation methodologies used and the<br/>classifications applied (being wholly Inferred Mineral Resources).<br/>Note that a recalculation of the Mineral Resource using 2017<br/>drilling and assay data will commence in May 2017.</li> </ul>                                           |
|                                             |                                                                                                                                                                                            | <ul> <li>INO sample compositing has been applied to reported<br/>intersections.</li> </ul>                                                                                                                                                                                                                                                                                                  |



| Criteria                                                            | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Orientation<br>of data in<br>relation to<br>geological<br>structure | <ul> <li>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</li> <li>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</li> </ul> | •                                                                                                                                                                                           | <ul> <li>The 2017 drill holes at the Thackaringa project were typically angled at -40° or -60° to the horizontal and drilled perpendicular the mineralised trend with drilling orientations adjusted along strit to accommodate folded geological sequences.</li> <li>Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be great than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width.</li> <li>The drilling orientation is not considered to have introduced a sampling bias on assessment of the current geological interpretation.</li> </ul> |  |  |  |  |  |  |
| Sample<br>security                                                  | <ul> <li>The measures taken to ensure<br/>sample security.</li> </ul>                                                                                                                                                                                                                                                                                                                              | <ul> <li>Sample security procedures are considered to be 'industry standard' for the respective periods.</li> <li>Following recent drilling completed by BPL, samples were truck</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                           | <ul> <li>Following recent drilling completed by BPL, samples were trucked<br/>by an independent courier directly from Broken Hill to ALS, Adelaide</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | •                                                                                                                                                                                           | BPL consider that risks associated with sample security are limited given the nature of the targeted mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| Audits or reviews                                                   | <ul> <li>The results of any audits or<br/>reviews of sampling techniques</li> </ul>                                                                                                                                                                                                                                                                                                                | •                                                                                                                                                                                           | In late 2016 an independent validation of the Thackaringa drilling database was completed:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
|                                                                     | and data.                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                             | <ul> <li>The data validation process consisted of systematic review of<br/>drilling data (collars, assays and surveys) for identification of<br/>transcription errors</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             | <ul> <li>Following review, historical drill hole locations were also<br/>validated against georeferenced historical maps to confirm<br/>their location</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             | Three (3) drill holes at Big Hill were found to be incorrectly<br>located. One collar was located and surveyed by GPS<br>and two were digitised from georeferenced historical plans<br>(reported to the nearest metre) as the collars had been<br>destroyed. These corrections were captured in the Big Hill<br>Mineral Resource estimate                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             | <ul> <li>Total depths for all holes were checked against original<br/>reports</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             | ■ Final 3D validation of drilling data has been completed by<br>independent geological consultants to support detailed<br>geological modelling in Micromine <sup>™</sup> software                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
|                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                           | Audits and reviews of QAQC results and procedures are further described in preceding sections of this table including <b>Quality of assay data and laboratory tests</b> , <b>Sub-sampling techniques and sample preparation</b> and <b>Logging</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |



# Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

| Criteria                                | JORC Code Explanation                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                         |                                                                                     |                                                                           |                                                                                                                                                                                                           |                                                           |                                          |  |  |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------|--|--|
| Mineral<br>tenement<br>and land         | <ul> <li>Type, reference name/number,<br/>location and ownership<br/>including agreements or material<br/>including with third partias graph</li> </ul>                       | <ul> <li>The Thackaringa Cobalt project is located approximately<br/>25 kilometres west-southwest of Broken Hill and comprises<br/>four tenements with a total area of 63 km<sup>2</sup>:</li> </ul>                                                                               |                                                                                     |                                                                           |                                                                                                                                                                                                           |                                                           |                                          |  |  |
| tenure status                           | as joint ventures, partners such<br>as joint ventures, partnerships,<br>overriding royalties, native<br>title interests, historical sites,<br>wilderness or national park and | Tenement                                                                                                                                                                                                                                                                           | Registered<br>& Beneficial<br>Holder                                                | Minerals                                                                  | Grant Date                                                                                                                                                                                                | Expiry Date                                               | Annual<br>Expenditure<br>Commit-<br>ment |  |  |
|                                         | <ul> <li>The security of the tenure held<br/>of the time of reporting along</li> </ul>                                                                                        | EL6622                                                                                                                                                                                                                                                                             | Broken Hill<br>Prospecting<br>Limited (BPL)                                         | Group 1                                                                   | 30/08/2006                                                                                                                                                                                                | 29/08/2017                                                | \$47,000                                 |  |  |
|                                         | with any known impediments to                                                                                                                                                 | EL 8143                                                                                                                                                                                                                                                                            | BPL                                                                                 | Group 1                                                                   | 26/07/2013                                                                                                                                                                                                | 26/07/2017                                                | \$14,000                                 |  |  |
|                                         | obtaining a licence to operate in the area.                                                                                                                                   | ML86                                                                                                                                                                                                                                                                               | BPL                                                                                 | Cobalt,<br>iron,<br>nickel,<br>platinum,<br>sulphur                       | 05/11/1975                                                                                                                                                                                                | 04/11/2017                                                | \$75,000                                 |  |  |
|                                         |                                                                                                                                                                               | ML87                                                                                                                                                                                                                                                                               | BPL                                                                                 | Cobalt,<br>iron,<br>nickel,<br>platinum,<br>sulphur                       | 05/11/1975                                                                                                                                                                                                | 04/11/2017                                                | \$75,000                                 |  |  |
|                                         |                                                                                                                                                                               | <ul> <li>The project tenure is subject to a Farm-In agreement between<br/>Cobalt Blue Holdings Limited (COB) and Broken Hill Prospecting<br/>Limited (BPL). The nature of this agreement is detailed in the CO<br/>Replacement Prospectus (as released 4 January 2017).</li> </ul> |                                                                                     |                                                                           |                                                                                                                                                                                                           |                                                           |                                          |  |  |
|                                         |                                                                                                                                                                               | <ul> <li>The nearest residence (Thackaringa Station) is located approxi-<br/>mately three kilometres west of EL6622.</li> </ul>                                                                                                                                                    |                                                                                     |                                                                           |                                                                                                                                                                                                           |                                                           |                                          |  |  |
|                                         |                                                                                                                                                                               | <ul> <li>EL6622 is transected by the Transcontinental Railway; the Barrier<br/>Highway is located the north of the licence boundaries.</li> </ul>                                                                                                                                  |                                                                                     |                                                                           |                                                                                                                                                                                                           |                                                           |                                          |  |  |
|                                         |                                                                                                                                                                               | <ul> <li>The r<br/>Lease<br/>Howe<br/>Tradit<br/>to Cr</li> </ul>                                                                                                                                                                                                                  | najority of the<br>e which is col<br>ever, Native T<br>tional Owners<br>own Land pa | e project te<br>nsidered t<br>Title Deterr<br>s 8) is curr<br>rcels (e.g. | t tenure is covered by Western Lands<br>d to extinguish native title interest.<br>termination NC97/32 (Barkandji<br>current over the area and may be releva<br>e.g. public roads) within the project area |                                                           |                                          |  |  |
|                                         |                                                                                                                                                                               | <ul> <li>The project tenure is more than 90 kilometres from the near<br/>National Park and or Wilderness Area (Kinchega National F<br/>and approximately 20 kilometres south of the nearest Wate<br/>Supply Reserve (Umberumberka Reservoir Water Supply F</li> </ul>              |                                                                                     |                                                                           |                                                                                                                                                                                                           | e nearest<br>onal Park)<br>Water<br>oply Reserve)         |                                          |  |  |
|                                         |                                                                                                                                                                               | <ul> <li>The Company is not aware of any impediments to obtaining<br/>a licence to operate in the area.</li> </ul>                                                                                                                                                                 |                                                                                     |                                                                           |                                                                                                                                                                                                           |                                                           |                                          |  |  |
| Exploration<br>done by other<br>parties | <ul> <li>Acknowledgment and appraisal<br/>of exploration by other parties.</li> </ul>                                                                                         | <ul> <li>A definition</li> <li>undefinition</li> <li>the J</li> <li>Document</li> </ul>                                                                                                                                                                                            | railed and cor<br>rtaken prior to<br>ORC Table 1<br>Iment, availab                  | mplete rec<br>o the BPL<br>which form<br>ole on the                       | ord of all exp<br>2016 drilling<br>ms part of th<br>COB websit                                                                                                                                            | oloration activ<br>9 program is a<br>1e Cobalt Blue<br>e. | vities<br>appended to<br>e Prospectus    |  |  |



| <ul> <li>Deposit type, geological setting<br/>and style of mineralisation.</li> </ul>                                                                                                                                                                                                                            | <ul> <li>Regional Geological Setting</li> <li>The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal succession named the Willyama Supergroup, which crops out as several inliers in western New South Wales, including the Broken Hill Block (Willis, et al., 1982).</li> </ul>                                                                                                                                                                        |                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>Exploration by BPL Limited has been focused on the discovery<br/>of cobaltiferous pyrite deposits and Broken Hill type base-metal<br/>mineralisation both of which are known from historical exploration<br/>in the district.</li> </ul>                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | • The project area covers portions of the Broken Hill and Thackaringa<br>group successions which host the majority of mineralisation in<br>the region, including the Broken Hill base-metal deposit. The<br>Sundown Group suite is also present. The extensive sequence<br>of quartz-albite-plagioclase rock that hosts the cobaltiferous pyrite<br>mineralisation is interpreted as belonging to the Himalaya Formation,<br>which is stratigraphically at the top of the Thackaringa Group. |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | Local Geological Setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>The oldest rocks in the region belong to the Curnamona Craton<br/>which outcrops on the Broken Hill and Euriowie blocks.</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | The overlying Proterozoic rocks have been broadly subdivided<br>into three major groupings, of which the oldest groups are the<br>highly deformed metasediments and igneous derived rocks of the<br>Thackaringa and Broken Hill groups. They comprise a major part<br>of the Willyama Supergroup and host the giant Broken Hill massive<br>Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill block<br>of the Curnamona Craton.                                                    |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | Mineralisation Style                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>The Thackaringa Mineral deposits (Pyrite Hill, Big Hill and Railway)<br/>are characterised by large tonnage cobaltiferous-pyrite minerali-<br/>sation hosted within siliceous albitic gneisses and schists of the<br/>Himalaya Formation.</li> </ul>                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>Cobalt mineralisation exists within stratabound pyritic horizons<br/>where cobalt is present within the pyrite lattice. Mineralogical<br/>studies have indicated the majority of cobalt (~85%) is found in<br/>solid solution with primary pyrite (Henley 1998).</li> </ul> |
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>A strong correlation between pyrite content and cobalt grade is<br/>observed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>The regional geological setting indicates additional mineralisation<br/>targets including:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>Stratiform Broken Hill Type (BHT) Copper-Lead-Zinc-Silver<br/>deposits</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>Copper-rich BHT deposits</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | <ul><li>Stratiform to stratabound Copper-Cobalt-Gold deposits</li><li>Epigenetic Gold and Base metal deposits</li></ul>                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      |
| <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea</li> </ul> | See drill holle summaries below:                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                      |
| level in metres) of the drill hole collar                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |
| <ul> <li>dip and azimuth of the hole</li> <li>down hole length and<br/>interception depth</li> </ul>                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                  | <ul> <li>Deposit type, geological setting and style of mineralisation.</li> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:</li> <li>easting and northing of the drill hole collar</li> <li>elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> </ul>       |                                                                                                                                                                                                                                                                                      |



### **Drill hole summaries**

|          |             | Max Depth |             |         |          |         |       |         |                  | Pre-Collar |
|----------|-------------|-----------|-------------|---------|----------|---------|-------|---------|------------------|------------|
| Hole ID  | Deposit     | (m)       | NAT Grid ID | Easting | Northing | RL      | Dip   | Azimuth | Hole Type        | Depth      |
| 17THD01  | Pyrite Hill | 124.2     | MGA54       | 518382  | 6449551  | 289.06  | -40   | 222     | DDH <sup>1</sup> |            |
| 17THD02  | Pyrite Hill | 149.7     | MGA54       | 518475  | 6449445  | 290.54  | -40   | 258     | DDH <sup>1</sup> |            |
| 17THD03  | Pyrite Hill | 78.5      | MGA54       | 518370  | 6449190  | 303.28  | -40   | 285.1   | DDH <sup>1</sup> |            |
| 17THD04  | Big Hill    | 119.8     | MGA54       | 521078  | 6449589  | 278.41  | -45   | 155.1   | DDH <sup>1</sup> |            |
| 17THD05  | Big Hill    | 99.5      | MGA54       | 521669  | 6449889  | 278.5   | -40   | 131     | DDH <sup>1</sup> |            |
| 17THD06  | Railway     | 165.5     | MGA54       | 521970  | 6450705  | 287.2   | -45   | 128     | DDH <sup>1</sup> |            |
| 17THD07  | Railway     | 274.6     | MGA54       | 522569  | 6451282  | 270.67  | -45   | 156.5   | DDH <sup>1</sup> |            |
| 17THD08  | Railway     | 132.5     | MGA54       | 522784  | 6451280  | 268.881 | -45   | 326     | DDH <sup>1</sup> |            |
| 17THD09  | Railway     | 120.5     | MGA54       | 522905  | 6451511  | 278.471 | -40   | 152.5   | DDH <sup>1</sup> |            |
| 17THD10  | Railway     | 84.2      | MGA54       | 522992  | 6451569  | 279.779 | -45   | 130     | DDH <sup>1</sup> |            |
| 17THD11  | Bailway     | 111.5     | MGA54       | 523109  | 6451682  | 280.847 | -40   | 160.5   | DDH <sup>1</sup> |            |
| 17THD12  | Bailway     | 126.5     | MGA54       | 522796  | 6451419  | 272 936 | -40   | 140 75  |                  |            |
| 17THD13  | Bailway     | 105.5     | MGA54       | 522836  | 6451456  | 276.747 | -40   | 138.5   |                  |            |
| 17THD14  | Pvrite Hill | 99        | MGA54       | 518375  | 6449089  | 294.25  | -60   | 285     |                  |            |
| 17THB001 | Bailway     | 156       | MGA54       | 522615  | 6451277  | 267 561 | -60   | 120     | BC <sup>5</sup>  |            |
| 17THR002 | Railway     | 160       | MGA54       | 522573  | 6451299  | 268 511 | -60   | 120     | BC <sup>5</sup>  |            |
| 17THR002 | Railway     | 96        | MGA54       | 522124  | 6450868  | 277 39  | -60   | 120     | RC <sup>5</sup>  |            |
| 17THR004 | Railway     | 150       | MGA54       | 522387  | 6451310  | 271 453 | -60   | 120     | BC <sup>5</sup>  |            |
| 17THR005 | Railway     | 70        | MGA54       | 522007  | 6450783  | 282 154 | -00-  | 120     | RC <sup>5</sup>  |            |
|          | Doilwov     | 11/       | MCA54       | 522024  | 6450700  | 202.134 | -00   | 120     | PC5              |            |
|          | Poilwov     | 100       | MGA54       | 521065  | 6450600  | 204.01  | -00   | 125     |                  |            |
|          | Doilwov     | 100       | MCA54       | 521900  | 6450599  | 200.000 | -09   | 105     |                  |            |
|          | Deilway     | 100       | MCA54       | 521917  | 0430302  | 291.002 | -00   | 105     |                  |            |
| 17THR009 | Railway     | 70        | MCA54       | 521900  | 6450209  | 292.701 | -08   | 100     | RU°<br>DC5       |            |
|          | Rallway     | 100       | MGA54       | 521959  | 0450398  | 280.440 | -00   | 280     | RU <sup>3</sup>  |            |
|          | Rallway     | 120       | MGA54       | 522302  | 0451109  | 2/0.012 | -00   | 120     | RU <sup>3</sup>  |            |
| 171HR012 | Rallway     | 180       | MGA54       | 522440  | 6451304  | 274.931 | -58   | 1/3     | RC <sup>5</sup>  |            |
| 171HR013 | BIG HIII    | 102       | MGA54       | 521750  | 6449942  | 284.89  | -60   | 130.5   | RC <sup>5</sup>  |            |
| 171HR014 | BIG HIII    | 104       | MGA54       | 521628  | 6449796  | 277.545 | -53   | 130     | RC <sup>5</sup>  |            |
| 171HR015 | BIG HIII    | 108       | MGA54       | 521793  | 6449918  | 284.847 | -58   | 310     | RC <sup>3</sup>  |            |
| 17THR016 | Pyrite Hill | 138       | MGA54       | 518446  | 6449209  | 290.391 | -57   | 283     | RC <sup>o</sup>  |            |
| 1/IHR01/ | Pyrite Hill | 120       | MGA54       | 518449  | 6449263  | 293.147 | -56   | 281.5   | RC <sup>o</sup>  |            |
| 17THR018 | Pyrite Hill | 78        | MGA54       | 518027  | 6449806  | 289.567 | -60   | 222     | RC°              |            |
| 171HR019 | Pyrite Hill | 72        | MGA54       | 518105  | 6449754  | 287.701 | -55   | 222     | RC <sup>o</sup>  |            |
| 17THR020 | Pyrite Hill | 66        | MGA54       | 518166  | 6449695  | 288.685 | -60   | 222     | RC⁵              |            |
| 17THR021 | Pyrite Hill | 78        | MGA54       | 518183  | 6449717  | 286.007 | -60   | 222     | RC⁵              |            |
| 17THR022 | Pyrite Hill | 156       | MGA54       | 518510  | 6449306  | 286.82  | -55   | 281     | RC⁵              |            |
| 17THR023 | Pyrite Hill | 150       | MGA54       | 518506  | 6449377  | 289.481 | -57   | 264.5   | RC⁵              |            |
| 17THR024 | Pyrite Hill | 150       | MGA54       | 518457  | 6449498  | 288.137 | -59.5 | 228.5   | RC⁵              |            |
| 17THR025 | Pyrite Hill | 114       | MGA54       | 518311  | 6449609  | 287.463 | -60   | 222     | RC⁵              |            |
| 17THR026 | Pyrite Hill | 114       | MGA54       | 518268  | 6449681  | 284.164 | -60   | 222     | RC⁵              |            |
| 17THR027 | Pyrite Hill | 72        | MGA54       | 518243  | 6449646  | 287.176 | -60   | 222     | RC⁵              |            |
| 17THR028 | Railway     | 150       | MGA54       | 522457  | 6451167  | 300.659 | -60   | 350     | RC⁵              |            |
| 17THR029 | Railway     | 162       | MGA54       | 522482  | 6451084  | 295.964 | -60   | 175     | RC⁵              |            |
| 17THR030 | Railway     | 138       | MGA54       | 522783  | 6451423  | 270.814 | -55   | 140     | RC⁵              |            |
| 17THR031 | Railway     | 120       | MGA54       | 522945  | 6451566  | 276.19  | -55   | 145     | RC⁵              |            |
| 17THR032 | Railway     | 132       | MGA54       | 522819  | 6451473  | 273.712 | -53   | 140     | RC⁵              |            |
| 17THR033 | Railway     | 120       | MGA54       | 522501  | 6451315  | 269.63  | -60   | 175     | RC⁵              |            |
| 17THR034 | Railway     | 132       | MGA54       | 522321  | 6451214  | 275.947 | -55   | 127     | RC⁵              |            |
| 17THR035 | Railway     | 156       | MGA54       | 522259  | 6451120  | 275.749 | -55.2 | 130     | RC⁵              |            |
| 17THR036 | Railway     | 92        | MGA54       | 522186  | 6450998  | 275.339 | -61.2 | 130     | RC⁵              |            |
| 17THR037 | Railway     | 126       | MGA54       | 522148  | 6450941  | 274.202 | -55   | 126     | RC⁵              |            |
| 17THR038 | Railway     | 168       | MGA54       | 521927  | 6450619  | 289.555 | -55   | 108     | RC⁵              |            |

Diamond drill hole 1

2 Diamond drill hole with percussion pre-collar

Diamond drill hole with rotary air blast pre-collar 4

3 Diamond drill hole with reverse circulation pre-collar 5 Reverse Circulation drill hole



### Historic down-hole information

|           |             | Max Depth |             |            |            |         |       |         |                    | Pre-Collar |
|-----------|-------------|-----------|-------------|------------|------------|---------|-------|---------|--------------------|------------|
| Hole ID   | Deposit     | (m)       | NAT Grid ID | Easting    | Northing   | RL      | Dip   | Azimuth | Hole Type          | Depth      |
| 67TH01    | Pyrite Hill | 304.2     | MGA94_54    | 518564.805 | 6449460.03 | 280.643 | -55   | 260.6   | DDH <sup>1</sup>   |            |
| 70TH02    | Pyrite Hill | 148.6     | MGA94_54    | 518272.42  | 6449680.54 | 284.08  | -61   | 218.6   | DDH <sup>1</sup>   |            |
| 70TH03    | Pyrite Hill | 141.4     | MGA94_54    | 518449.85  | 6449211.88 | 289.81  | -62   | 283.6   | DDH <sup>1</sup>   |            |
| 70BH01    | Bia Hill    | 102.7     | MGA94 54    | 520850.56  | 6449308.5  | 284.56  | -47   | 318.6   | DDH <sup>1</sup>   |            |
| 70BH02    | Bia Hill    | 103.9     | MGA94 54    | 520786.12  | 6449264.4  | 280.1   | -50   | 318.6   | DDH <sup>1</sup>   |            |
| 80PYH13   | Pvrite Hill | 77        | MGA94 54    | 518358.2   | 6449037.7  | 290.35  | -50   | 280.7   | DDH <sup>1</sup>   |            |
| 80PYH14   | Pyrite Hill | 300.3     | MGA94 54    | 518661.18  | 6449287.62 | 277.96  | -60   | 280.7   |                    |            |
| 80PYH03   | Pyrite Hill | 35        | MGA94_54    | 518251.5   | 6449569.9  | 299.4   | -60   | 220.7   |                    | 22         |
| 80BGH09   | Bia Hill    | 100.5     | MGA94 54    | 520657.43  | 6449292.52 | 272.80  | -50   | 144.7   | DDH1               |            |
| 80PYH01   | Pyrite Hill | 24.53     | MGA94_54    | 518246.2   | 6449565 7  | 301.1   | -60   | 202 7   |                    | 6          |
| 80PYH02   | Pyrite Hill | 51.3      | MGA94_54    | 518260 7   | 6449574 2  | 297.6   | -60   | 220.7   |                    | 33.58      |
| 80PYH04   | Pyrite Hill | 55        | MGA94_54    | 518366.55  | 6449231 74 | 308.34  | -60   | 295.7   | PDDH <sup>2</sup>  | 38.7       |
| 80PYH05   | Pyrite Hill | 93.6      | MGA94 54    | 518226.97  | 6449678 19 | 285.18  | -49   | 222.7   |                    | 18         |
| 80PYH06   | Pyrite Hill | 85.5      | MGA94 54    | 518163.48  | 6449757.3  | 283.73  | -54.4 | 222.7   |                    | 18         |
| 80PYH07   | Pyrite Hill | 94.5      | MGA94 54    | 518084.06  | 6449818.36 | 285.16  | -55   | 222.7   |                    | 12         |
| 80PYH08   | Pyrite Hill | 110       | ΜGΔ94_54    | 518009.54  | 6449885.43 | 286.14  | -60   | 222.7   |                    | 8          |
| 80PVH00   | Pyrito Hill | 100 5     | MGAQ4_54    | 517017 A   | 6449003.43 | 286 55  | -48.5 | 222.1   |                    | 8          |
|           | Durito Hill | 145.3     | MGA04_54    | 518302.06  | 6440565.06 | 200.00  | -40.0 | 222.1   |                    | 25.5       |
|           | Durito Hill | 143.3     | MCA04_54    | 518440.06  | 6449303.90 | 203.33  | -50   | 222.7   |                    | 18         |
|           | Durito Hill | 100.1     | MGA04_54    | 518407.28  | 6449529.52 | 297.23  | -50   | 280.7   |                    | 10         |
| 80RGH05   | Rig Hill    | 54.86     | MCA04_54    | 520055 35  | 6449137.31 | 292.03  | -50   | 163.7   |                    | 4.2        |
| 000001000 | Dig Hill    | 100       | MCA04_54    | 520955.55  | 6451220 72 | 200.93  | -00   | 159.0   |                    | 40.0       |
| 901001    | Doilwov     | 100       | MCA04_54    | 5227 30.00 | 6451339.73 | 201.21  | -00   | 140.0   |                    |            |
| 901002    |             | 100       | MGA94_34    | 522392.41  | 0401300.03 | 200.70  | -00   | 140.9   |                    |            |
| 901003    |             | 100.05    | MGA94_34    | 520610.45  | 0449309.39 | 313.00  | -00   | 140.0   |                    |            |
| 981004    |             | 138.20    |             | 520860.05  | 6449450.85 | 304.09  | -60   | 140.9   | RU°                |            |
| 981005    | BIG HIII    | 100       | MGA94_54    | 520728     | 6449328.07 | 288.03  | -50   | 122.9   | RU°                |            |
| 981006    | BIG HIII    | 108       | MGA94_54    | 520715     | 6449343    | 285.13  | -60   | 125.9   | RU°                |            |
| 981007    | BIG HIII    | 120       | MGA94_54    | 520785.97  | 6449388.21 | 299.22  | -50   | 133.9   | RC <sup>3</sup>    |            |
| 981008    | BIG HIII    | 90        | MGA94_54    | 520801.95  | 6449477.81 | 291.01  | -60   | 150.9   | RC <sup>3</sup>    |            |
| 981009    | Big Hill    | 114       | MGA94_54    | 520822.21  | 6449460.79 | 296.25  | -60   | 133.9   | RC <sup>5</sup>    |            |
| 981010    | Big Hill    | 134       | MGA94_54    | 521018     | 6449576    | 281.5   | -50   | 172.9   | RC <sup>o</sup>    |            |
| 981C11    | Railway     | 35        | MGA94_54    | 522411.2   | 6451373.96 | 267.01  | -60   | 132.9   | RC <sup>o</sup>    | = 0        |
| 80BGH06   | Big Hill    | 68.04     | MGA94_54    | 520880     | 6449472    | 299     | -60   | 1/0./   | RCDDH <sup>3</sup> | 58         |
| 80BGH08   | Big Hill    | 79.7      | MGA94_54    | 520768.79  | 6449390.93 | 296.29  | -60   | 126.7   | RCDDH <sup>3</sup> | 69.9       |
| 80BGH07   | Big Hill    | 23        | MGA94_54    | 521136.56  | 6449599    | 274.11  | -60   | 177.7   | RC°                |            |
| 93MGM01   | Pyrite Hill | 70        | MGA94_54    | 518185.44  | 6449713.77 | 286.28  | -60   | 222.8   | RDDH <sup>4</sup>  | 24         |
| 93MGM02   | Pyrite Hill | 180       | MGA94_54    | 518515.45  | 6449454.67 | 284.79  | -60   | 258.8   | RDDH⁴              | 48         |
| 11PHR01   | Pyrite Hill | 150       | MGA94_54    | 518435.47  | 6449072.76 | 285.34  | -60   | 279.06  | RC⁵                |            |
| 11PHR02   | Pyrite Hill | 198       | MGA94_54    | 518499.92  | 6449159.31 | 283.79  | -60   | 279.06  | RC⁵                |            |
| 11PHR03   | Pyrite Hill | 240       | MGA94_54    | 518560.3   | 6449189.61 | 280.26  | -60   | 279.06  | RC⁵                |            |
| 11PHR04   | Pyrite Hill | 186       | MGA94_54    | 518528.63  | 6449257    | 284.03  | -60   | 279.06  | RC⁵                |            |
| 11PHR05   | Pyrite Hill | 234       | MGA94_54    | 518584.25  | 6449397.62 | 280.22  | -60   | 259.06  | RC⁵                |            |
| 11PHR06   | Pyrite Hill | 180       | MGA94_54    | 518490.9   | 6449522.59 | 284.02  | -60   | 234.06  | RC⁵                |            |
| 11PHR07   | Pyrite Hill | 174       | MGA94_54    | 518413.47  | 6449592.9  | 282.86  | -60   | 219.06  | RC⁵                |            |
| 11PHR08   | Pyrite Hill | 180       | MGA94_54    | 518342.74  | 6449655.85 | 282.88  | -60   | 218.06  | RC⁵                |            |
| 11PSR01   | Pyrite Hill | 59        | MGA94_54    | 518742.73  | 6448864    | 268.38  | -60   | 258.06  | RC⁵                |            |
| 11PSR02   | Pyrite Hill | 132       | MGA94_54    | 518719.38  | 6448960.01 | 270.41  | -60   | 255.06  | RC⁵                |            |
| 11PSR03   | Pyrite Hill | 78        | MGA94_54    | 518686.99  | 6449055.35 | 272.79  | -60   | 255.06  | RC⁵                |            |
| 12BER01   | Railway     | 157       | MGA94_54    | 521667.31  | 6449893.23 | 277.69  | -60   | 141     | RC⁵                |            |
| 12BER02   | Railway     | 132       | MGA94_54    | 521212.67  | 6449690.67 | 273.53  | -60   | 162     | RC⁵                |            |
| 12BER03   | Railway     | 151       | MGA94 54    | 521879.01  | 6450435.47 | 288.59  | -60   | 102     | RC⁵                |            |

Diamond drill hole 1

2

Diamond drill hole with rotary air blast pre-collar 4

Reverse Circulation drill hole 5

Diamond drill hole with percussion pre-collar 3 Diamond drill hole with reverse circulation pre-collar



### Historic down-hole information (continued)

|         |             | Max Depth |             |           |            |        |     |         |                  | Pre-Collar |
|---------|-------------|-----------|-------------|-----------|------------|--------|-----|---------|------------------|------------|
| Hole ID | Deposit     | (m)       | NAT Grid ID | Easting   | Northing   | RL     | Dip | Azimuth | Hole Type        | Depth      |
| 12BER04 | Railway     | 148       | MGA94_54    | 522353.92 | 6451268.35 | 274.35 | -60 | 131     | RC⁵              |            |
| 12BER05 | Railway     | 145       | MGA94_54    | 522439.47 | 6451167.84 | 299.73 | -60 | 124     | RC⁵              |            |
| 12BER06 | Railway     | 169       | MGA94_54    | 522481.37 | 6451091.35 | 295.95 | -60 | 118     | RC⁵              |            |
| 12BER07 | Railway     | 115       | MGA94_54    | 522323.72 | 6450748.75 | 277.91 | -60 | 144     | RC⁵              |            |
| 12BER08 | Railway     | 193       | MGA94_54    | 522220.79 | 6450811.8  | 273.16 | -60 | 129     | RC⁵              |            |
| 12BER09 | Railway     | 139.75    | MGA94_54    | 522101.25 | 6450881.44 | 275.91 | -60 | 129     | RC⁵              |            |
| 12BER10 | Railway     | 151       | MGA94_54    | 521953.45 | 6450716.18 | 284.49 | -60 | 129     | RC⁵              |            |
| 12BER11 | Railway     | 193       | MGA94_54    | 522737.22 | 6451376.61 | 265.83 | -60 | 153     | RC⁵              |            |
| 12BER12 | Railway     | 111       | MGA94_54    | 522909.73 | 6451516.76 | 277.36 | -60 | 153     | RC⁵              |            |
| 12BER13 | Railway     | 205       | MGA94_54    | 522883.81 | 6451557.54 | 271.03 | -60 | 156     | RC⁵              |            |
| 12BER14 | Railway     | 151       | MGA94_54    | 523124.83 | 6451637.07 | 288.36 | -60 | 152     | RC⁵              |            |
| 12BER15 | Railway     | 109       | MGA94_54    | 523311.3  | 6451841.7  | 283.95 | -60 | 154     | RC⁵              |            |
| 12BER16 | Railway     | 115       | MGA94_54    | 522994.08 | 6451591.99 | 275.95 | -60 | 156     | RC⁵              |            |
| 12BER17 | Railway     | 115.5     | MGA94_54    | 522516.5  | 6451314.94 | 269.1  | -60 | 153     | RC⁵              |            |
| 12BER18 | Railway     | 157       | MGA94_54    | 522332.75 | 6451281.31 | 272.29 | -60 | 129     | RC⁵              |            |
| 12BER19 | Railway     | 97        | MGA94_54    | 522240.55 | 6451067.15 | 276.16 | -60 | 135     | RC⁵              |            |
| 12BER20 | Railway     | 120       | MGA94_54    | 521291.69 | 6449733.63 | 276.95 | -60 | 165     | RC⁵              |            |
| 13BED01 | Railway     | 349.2     | MGA94_54    | 522480.21 | 6451092.43 | 296.01 | -60 | 300.7   | DDH <sup>1</sup> |            |
| 16DM01  | Pyrite Hill | 161.6     | MGA94_54    | 518411.38 | 6449593.89 | 282.69 | -60 | 215.5   | DDH <sup>1</sup> |            |
| 16DM02  | Pyrite Hill | 183.4     | MGA94_54    | 518526.62 | 6449261.58 | 284.18 | -60 | 285.0   | DDH <sup>1</sup> |            |
| 16DM03  | Big Hill    | 126.5     | MGA94_54    | 521037.1  | 6449567.49 | 283.01 | -60 | 158.5   | DDH <sup>1</sup> |            |
| 16DM04  | Big Hill    | 105.4     | MGA94_54    | 520814.74 | 6449464.4  | 296.18 | -55 | 128.5   | DDH <sup>1</sup> |            |
| 16DM05  | Railway     | 246.5     | MGA94_54    | 522103.7  | 6450881.87 | 276.62 | -60 | 128.5   | DDH <sup>1</sup> |            |
| 16DM06  | Railway     | 160.4     | MGA94_54    | 522911.57 | 6451519.13 | 278.5  | -60 | 152.5   | DDH <sup>1</sup> |            |
| 16DM07  | Railway     | 242.5     | MGA94_54    | 522995.26 | 6451598.26 | 276.36 | -60 | 156.1   | DDH <sup>1</sup> |            |
| 16DM08  | Railway     | 258.5     | MGA94_54    | 522351.45 | 6451273.07 | 273.85 | -60 | 130.9   | DDH <sup>1</sup> |            |

1 Diamond drill hole

2 Diamond drill hole with percussion pre-collar

3 Diamond drill hole with reverse circulation pre-collar

4 Diamond drill hole with rotary air blast pre-collar

5 Reverse Circulation drill hole



### Down hole length and interception depth – 2017 holes

| Hole ID   | From (m) | To (m) | Interval (m) | Co (ppm) | S (%) | Fe (%) |
|-----------|----------|--------|--------------|----------|-------|--------|
| 17THD01   | 34       | 123    | 89           | 982      | 9.4   | 8.7    |
| including | 35       | 41     | 6            | 1143     | 11.9  | 10.6   |
| and       | 50       | 55     | 5            | 1311     | 13.1  | 11.5   |
| and       | 81       | 122    | 41           | 1366     | 11.8  | 11     |
| 17THD02   | 47       | 134    | 87           | 911      | 8.8   | 9.2    |
| including | 48       | 77     | 29           | 1238     | 11.1  | 11.4   |
| and       | 116      | 134    | 18           | 1199     | 11.0  | 11.1   |
| 17THD03   | 40       | 63.5   | 23.5         | 894      | 11.6  | 10.8   |
| including | 49       | 63     | 14           | 1076     | 14.3  | 12.4   |
| 17THD04   | 20       | 29     | 9            | 1033     | 8.6   | 8      |
|           | 72       | 96     | 24           | 703      | 8.8   | 8.1    |
| 17THD05   | 44       | 60     | 16           | 993      | 9.8   | 8.5    |
| including | 44       | 56     | 12           | 1094     | 10.9  | 9.4    |
|           | 71       | 76     | 5            | 840      | 6.4   | 6.3    |
| 17THD06   | 39       | 85     | 46           | 1136     | 11.4  | 10.1   |
| including | 40       | 70     | 30           | 1227     | 12.2  | 10.4   |
| and       | 76       | 85     | 9            | 1148     | 10.7  | 10.0   |
| 17THD07   | 15       | 128    | 113          | 879      | 8.1   | 8.8    |
| including | 47       | 55     | 8            | 1048     | 11.7  | 10.3   |
| and       | 61       | 102    | 41           | 1452     | 12.5  | 12.3   |
|           | 142      | 152    | 10           | 704      | 6     | 10.2   |
|           | 199      | 204    | 5            | 706      | 4.9   | 6.5    |
| 17THR001  | 27       | 63     | 36           | 1075     | 10.6  | 10.4   |
| including | 37       | 63     | 26           | 1280     | 11.9  | 11.5   |
| -         | 75       | 84     | 9            | 755      | 9.1   | 13.9   |
| 17THR002  | 37       | 43     | 6            | 711      | 6.9   | 8.2    |
|           | 91       | 136    | 45           | 983      | 9.8   | 10.5   |
| including | 102      | 136    | 34           | 1190     | 11.7  | 11.8   |
| 17THR003  | 4        | 59     | 55           | 937      | 9.3   | 9.4    |
| including | 10       | 46     | 36           | 1212     | 11.6  | 11.0   |
| 17THR004  | 49       | 146    | 97           | 888      | 10.2  | 10.2   |
| including | 51       | 113    | 62           | 1051     | 11.4  | 11.3   |
| 17THR005  | 52       | 72     | 20           | 1053     | 12.8  | 12.6   |
| including | 53       | 63     | 10           | 1145     | 12.5  | 13.0   |
| 17THR006  | 14       | 74     | 60           | 754      | 8.6   | 8.7    |
| including | 17       | 44     | 27           | 1176     | 12.5  | 12.1   |
| 17THR007  | 5        | 22     | 17           | 837      | 0     | 12.5   |
| including | 12       | 19     | 7            | 1049     | 0     | 10.5   |
|           | 128      | 154    | 26           | 1034     | 11.4  | 11.5   |
| including | 128      | 146    | 18           | 1321     | 14.4  | 14.3   |
| 17THR008  | 37       | 78     | 41           | 1319     | 12.2  | 11.2   |
| 17THR009  | 29       | 65     | 36           | 957      | 9.4   | 9.2    |
| including | 34       | 60     | 26           | 1150     | 11.1  | 10.2   |
|           | 100      | 105    | 5            | 833      | 12.9  | 12.7   |
| 17THR010  | 51       | 57     | 6            | 729      | 4.9   | 5.3    |
| 17THR011  | 30       | 83     | 53           | 1116     | 12    | 10.9   |
| including | 31       | 62     | 31           | 1423     | 15.5  | 13.5   |
| 17THR012  | 50       | 117    | 67           | 748      | 7.5   | 8.6    |
| including | 59       | 67     | 8            | 1084     | 10.3  | 12.6   |
| and       | 75       | 102    | 27           | 1120     | 11.0  | 11.3   |
|           | 172      | 177    | 5            | 725      | 6.4   | 6.4    |



### Down hole length and interception depth – 2017 holes (continued)

| Hole ID   | From (m)  | To (m)      | Interval (m)  | Co (ppm) | S (%)        | Fe (%)      |
|-----------|-----------|-------------|---------------|----------|--------------|-------------|
| 17THR013  | 19        | 73          | 54            | 888      | 5.4          | 5           |
| including | 19        | 29          | 10            | 2576     | 8.8          | 7.7         |
| 17THR014  | 12        | 45          | 33            | 749      | 8.1          | 7.4         |
| including | 25        | 33          | 8             | 1148     | 11.3         | 9.4         |
| 17THR015  | 40        | 48          | 8             | 995      | 8.9          | 8.1         |
| 17THR016  | 66        | 115         | 49            | 1096     | 12.9         | 13.4        |
| including | 66        | 81          | 15            | 1184     | 14.2         | 13.9        |
| and       | 89        | 114         | 25            | 1183     | 13.4         | 14.1        |
| 17THR017  | 54        | 112         | 58            | 1383     | 13.2         | 12.8        |
| including | 56        | 85          | 29            | 2042     | 18.3         | 15.8        |
| 17THR018  | 47        | 63          | 16            | 1124     | 15.1         | 14.1        |
| 17THR019  | 42        | 59          | 17            | 1032     | 10.7         | 11.4        |
| 17THR020  | 29        | 49          | 20            | 1067     | 11.6         | 11.5        |
| including | 29        | 36          | 7             | 1352     | 13.5         | 12.6        |
| 17THR021  | 44        | 64          | 20            | 1204     | 13.1         | 12.7        |
| 17THR022  | 101       | 138         | 37            | 1152     | 10.7         | 12          |
| 17THR023  | 91        | 137         | 46            | 1271     | 13.9         | 13.3        |
| including | 91        | 97          | 6             | 1953     | 18.7         | 16.6        |
| and       | 114       | 125         | 11            | 2707     | 31.1         | 26.5        |
| 17THR027  | 29        | 54          | 25            | 1176     | 12.6         | 11.8        |
| including | 30        | 47          | 17            | 1382     | 14.1         | 12.5        |
| 17THD08   | 19        | 103         | 84            | 1013     | 12.8         | 15.6        |
| 17THD09   | 19        | 65          | 46            | 1234     | 14.8         | 13.8        |
| 17THD10   | 24        | 58.8        | 34.8          | 1269     | 14.2         | 12.5        |
| including | 32.1      | 43.5        | 11.4          | 1454     | 15.5         | 13.4        |
| and       | 49.5      | 58.8        | 9.3           | 1777     | 20.9         | 16.7        |
| 17THD11   | 69.1      | 85          | 15.9          | 911      | 12.9         | 13.2        |
| including | 75        | 85          | 10            | 1116     | 15.5         | 14.8        |
| 17THD12   | 19        | 63          | 44            | 956      | 10.7         | 10.9        |
| including | 36        | 42          | 6             | 1064     | 13.6         | 12.9        |
| and       | 43        | 63          | 20            | 1228     | 13.4         | 13.7        |
| 17THD13   | 35.2      | 63.16       | 27.96         | 943      | 11.1         | 10.1        |
|           | 35.2      | 55<br>76 65 | 19.8<br>00.65 | 1040     | 11.8         | 10.7        |
|           | 54        | 70.00       | 22.00         | 929      | 10.9         | 10.0        |
| 17THP024  | 68        | 82          | 14            | 1390     | 13.7<br>12 1 | 13.0        |
| 171111024 | 00        | 120         | 14            | 1082     | 0.0          | 0.2         |
| includina | 50<br>110 | 139         | 43<br>29      | 1363     | 9.0<br>10 5  | 3.2<br>10 5 |
| 17THB025  | 59        | 103         | 44            | 956      | 10.8         | 12.4        |
| includina | 60        | 73          | 1.3           | 1493     | 15.4         | 14.0        |
| and       | 92        | 103         | 11            | 1147     | 12.5         | 15.0        |
| 17THR026  | 66        | 89          | 23            | 1122     | 11.5         | 11.6        |
| 17THR028  | 19        | 39          | 20            | 1163     | 8.1          | 7.5         |
| including | 20        | 30          | 10            | 1578     | 11.1         | 9.9         |
|           | 78        | 138         | 60            | 831      | 8.2          | 7.8         |
| including | 98        | 138         | 40            | 1012     | 9.6          | 8.7         |
| and       | 98        | 113         | 15            | 1979     | 19.3         | 16.5        |
| 17THR029  | 18        | 90          | 72            | 766      | 7.4          | 9.5         |
| including | 43        | 75          | 32            | 1043     | 9.2          | 12.3        |
| 17THR030  | 24        | 81          | 57            | 1097     | 11.9         | 12.6        |
| 17THR032  | 26        | 31          | 5             | 1323     | 9.0          | 8.0         |
|           | 44        | 97          | 53            | 1218     | 15.9         | 16.3        |



### Down hole length and interception depth – 2017 holes (continued)

| Hole ID   | From (m) | To (m) | Interval (m) | Co (ppm) | S (%) | Fe (%) |
|-----------|----------|--------|--------------|----------|-------|--------|
| 17THR033  | 31       | 48     | 17           | 842      | 7.2   | 6.9    |
| including | 39       | 48     | 9            | 1223     | 10.1  | 9.2    |
|           | 97       | 115    | 18           | 685      | 6.1   | 5.9    |
| 17THR034  | 38       | 94     | 56           | 1036     | 10.2  | 10.6   |
| including | 38       | 74     | 36           | 1217     | 12.1  | 11.5   |
| 17THR035  | 54       | 78     | 24           | 812      | 8.6   | 8.0    |
| Including | 58       | 69     | 11           | 1008     | 10.3  | 9.6    |
|           | 125      | 131    | 6            | 771      | 6.3   | 6.6    |
| 17THR036  | 26       | 87     | 61           | 921      | 8.9   | 9.1    |
| including | 26       | 72     | 46           | 1115     | 10.6  | 10.2   |
| 17THR037  | 18       | 67     | 49           | 1094     | 11.0  | 10.5   |
| 17THR038  | 69       | 96     | 27           | 1237     | 12.3  | 11.4   |

### Down hole length and interception depth - historic holes

| Hole ID | From (m) | To (m) | Interval (m) | Co (ppm) | S (%) | Fe (%) |
|---------|----------|--------|--------------|----------|-------|--------|
| 11PHR02 | 74       | 114    | 40           | 875      | 10.8  | 11.6   |
| 11PHR03 | 150      | 162    | 12           | 750      | 8.3   | 9.6    |
| 11PHR03 | 163      | 190    | 27           | 732      | 10.6  | 11.9   |
| 11PHR03 | 206      | 227    | 21           | 988      | 11.7  | 13     |
| 11PHR04 | 124      | 172    | 48           | 1049     | 12.8  | 12.9   |
| 11PHR05 | 197      | 219    | 22           | 1138     | 10.7  | 13.3   |
| 11PHR06 | 104      | 135    | 31           | 854      | 8.3   | 11.5   |
| 11PHR06 | 155      | 171    | 16           | 1315     | 12    | 12.2   |
| 11PHR07 | 96       | 147    | 51           | 941      | 9.5   | 9.9    |
| 11PHR08 | 103      | 115    | 12           | 1417     | 13.9  | 14.8   |
| 11PHR08 | 126      | 144    | 18           | 1048     | 12.6  | 14.2   |
| 12BER01 | 115      | 139    | 24           | 768      | 7.2   | 7.4    |
| 12BER02 | 18       | 25     | 7            | 1062     | 10.3  | 9.3    |
| 12BER02 | 113      | 123    | 10           | 907      | 8.5   | 8.6    |
| 12BER04 | 41       | 90     | 49           | 1191     | 11.4  | 12.7   |
| 12BER04 | 121      | 126    | 5            | 1241     | 9     | 11.2   |
| 12BER05 | 33       | 39     | 6            | 1109     | 7.9   | 9.2    |
| 12BER05 | 65       | 76     | 11           | 721      | 6.3   | 6.6    |
| 12BER06 | 131      | 169    | 38           | 844      | 8.3   | 12.8   |
| 12BER07 | 38       | 43     | 5            | 704      | 10    | 10.1   |
| 12BER09 | 33       | 92     | 59           | 841      | 9     | 11.6   |
| 12BER11 | 31       | 62     | 31           | 738      | 8.4   | 12.6   |
| 12BER11 | 92       | 159    | 67           | 1061     | 10    | 13.1   |
| 12BER11 | 173      | 193    | 20           | 737      | 6.7   | 8.3    |
| 12BER12 | 27       | 81     | 54           | 1430     | 18.1  | 18.9   |
| 12BER13 | 21       | 42     | 21           | 761      | 7.4   | 9.1    |
| 12BER13 | 65       | 75     | 10           | 1882     | 20.4  | 21.6   |
| 12BER14 | 28       | 55     | 27           | 1013     | 12.5  | 12.9   |
| 12BER16 | 25       | 100    | 75           | 1008     | 10.6  | 10.7   |
| 12BER17 | 92       | 99     | 7            | 739      | 6     | 6.3    |
| 12BER18 | 117      | 157    | 40           | 1017     | 11.2  | 11.4   |
| 12BER19 | 34       | 56     | 22           | 1151     | 10.4  | 10.8   |
| 12BER19 | 68       | 75     | 7            | 780      | 6.1   | 6      |
| 12BER20 | 21       | 46     | 25           | 731      | 6.9   | 7.5    |
| 13BED01 | 266      | 291.5  | 25.5         | 872      | 8.5   | 7.8    |



### Down hole length and interception depth - historic holes (continued)

| Hole ID  | From (m) | To (m) | Interval (m) | Co (ppm) | S (%) | Fe (%) |
|----------|----------|--------|--------------|----------|-------|--------|
| 16DM01   | 96       | 147    | 51           | 851      | 9.1   | 8.6    |
| 16DM02   | 127      | 172    | 45           | 1118     | 13.8  | 13.6   |
| 16DM03   | 104      | 111    | 7            | 838      | 10.3  | 9      |
| 16DM04   | 91       | 99     | 8            | 887      | 9.1   | 8.4    |
| 16DM05   | 30       | 103    | 73           | 793      | 8.2   | 9      |
| 16DM05   | 199      | 211    | 12           | 830      | 25.1  | 22.1   |
| 16DM06   | 28       | 84     | 56           | 1280     | 16.2  | 16.7   |
| 16DM06   | 138      | 146    | 8            | 722      | 7.8   | 11.2   |
| 16DM07   | 35       | 60     | 25           | 1232     | 11.1  | 11.1   |
| 16DM07   | 71       | 104    | 33           | 1224     | 13.3  | 13.4   |
| 16DM08   | 76       | 100    | 24           | 1026     | 11    | 12     |
| 16DM08   | 165      | 177    | 12           | 921      | 12.2  | 12.6   |
| 17THD01  | 34       | 123    | 89           | 982      | 9.4   | 8.7    |
| 17THD02  | 47       | 134    | 87           | 911      | 8.8   | 9.2    |
| 17THD03  | 40       | 63.5   | 23.5         | 894      | 11.6  | 10.8   |
| 17THD04  | 20       | 29     | 9            | 1033     | 8.6   | 8      |
| 17THD04  | 72       | 96     | 24           | 703      | 8.8   | 8.1    |
| 17THD05  | 44       | 60     | 16           | 993      | 9.8   | 8.5    |
| 17THD05  | 71       | 76     | 5            | 840      | 6.4   | 6.3    |
| 17THD06  | 39       | 85     | 46           | 1136     | 11.4  | 10.1   |
| 17THD07  | 15       | 128    | 113          | 879      | 8.1   | 8.8    |
| 17THD07  | 142      | 152    | 10           | 704      | 6     | 10.2   |
| 17THD07  | 199      | 204    | 5            | 706      | 4.9   | 6.5    |
| 17THR001 | 27       | 63     | 36           | 1075     | 10.6  | 10.4   |
| 17THR001 | 75       | 84     | 9            | 755      | 9.1   | 13.9   |
| 17THR002 | 37       | 43     | 6            | 711      | 6.9   | 8.2    |
| 17THR002 | 91       | 136    | 45           | 983      | 9.8   | 10.5   |
| 17THR003 | 4        | 59     | 55           | 937      | 9.3   | 9.4    |
| 17THR004 | 49       | 146    | 97           | 888      | 10.2  | 10.2   |
| 17THR005 | 52       | 72     | 20           | 1053     | 12.8  | 12.6   |
| 17THR006 | 14       | 74     | 60           | 754      | 8.6   | 8.7    |
| 17THB007 | 5        | 22     | 17           | 837      | 0     | 12.5   |
| 17THR007 | 128      | 154    | 26           | 1034     | 11.4  | 11.5   |
| 17THR008 | 37       | 78     | 41           | 1319     | 12.2  | 11.2   |
| 17THR009 | 29       | 65     | 36           | 957      | 9.4   | 9.2    |
| 17THR009 | 100      | 105    | 5            | 833      | 12.9  | 12.7   |
| 17THR010 | 51       | 57     | 6            | 729      | 4.9   | 5.3    |
| 17THR011 | 30       | 83     | 53           | 1116     | 12    | 10.9   |
| 17THR012 | 50       | 117    | 67           | 748      | 7.5   | 8.6    |
| 17THR012 | 172      | 177    | 5            | 725      | 6.4   | 6.4    |
| 17THR013 | 19       | 73     | 54           | 888      | 5.4   | 5      |
| 17THR014 | 12       | 45     | 33           | 749      | 8.1   | 7.4    |
| 17THR015 | 40       | 48     | 8            | 995      | 8.9   | 8.1    |
| 17THR016 | 66       | 115    | 49           | 1096     | 12.9  | 13.4   |
| 17THR017 | 54       | 112    | 58           | 1383     | 13.2  | 12.8   |
| 17THR018 | 47       | 63     | 16           | 1124     | 15.1  | 14.1   |
| 17THR019 | 42       | 59     | 17           | 1032     | 3.2   | 11.4   |
| 17THB020 | 29       | 49     | 20           | 1067     | 11.6  | 11.5   |
| 17THR021 | 44       | 64     | 20           | 1204     | 13.1  | 12.7   |
| 17THR022 | 101      | 138    | 37           | 1152     | 10.7  | 12     |
| 17THR023 | .91      | 137    | 46           | 1271     | 13.9  | 13.3   |
| 17THB027 | 29       | 54     | 25           | 1176     | 12.6  | 11.8   |
|          | 20       | 01     | 20           |          | 12.0  | 1110   |



### Down hole length and interception depth - historic holes (continued)

| Hole ID | From (m) | To (m) | Interval (m) | Co (ppm) | S (%) | Fe (%) |
|---------|----------|--------|--------------|----------|-------|--------|
| 67TH01  | 123.44   | 200.01 | 76.57        | 979      | 0     | 0      |
| 70BH01  | 39.62    | 53.34  | 13.72        | 3323     | 3.1   | 0      |
| 70BH01  | 64.31    | 84.43  | 20.12        | 1203     | 9.5   | 0      |
| 70BH02  | 74.06    | 86.86  | 12.8         | 704      | 7.5   | 0      |
| 70TH02  | 78       | 84.1   | 6.1          | 1666     | 17.5  | 15.4   |
| 70TH02  | 87.1     | 102.1  | 15           | 1661     | 8     | 7.2    |
| 70TH03  | 77.7     | 129.5  | 51.8         | 1016     | 12.9  | 13.2   |
| 80BGH05 | 39       | 49     | 10           | 752      | 0     | 0      |
| 80BGH06 | 18       | 68.04  | 50.04        | 969      | 0     | 0      |
| 80BGH08 | 44       | 78.15  | 34.15        | 939      | 0     | 0      |
| 80PYH01 | 7.5      | 17     | 9.5          | 725      | 0     | 0      |
| 80PYH02 | 34.1     | 48.25  | 14.15        | 1121     | 0     | 0      |
| 80PYH03 | 23       | 35     | 12           | 711      | 0     | 0      |
| 80PYH04 | 39.75    | 55     | 15.25        | 735      | 0     | 0      |
| 80PYH05 | 36.7     | 65     | 28.3         | 1160     | 11.8  | 0      |
| 80PYH06 | 54       | 62     | 8            | 905      | 0     | 0      |
| 80PYH07 | 67       | 79.4   | 12.4         | 1113     | 12.5  | 0      |
| 80PYH10 | 48.45    | 137.4  | 88.95        | 831      | 8.6   | 0      |
| 80PYH11 | 34.6     | 46.5   | 11.9         | 916      | 8     | 0      |
| 80PYH11 | 57.2     | 91.05  | 33.85        | 1239     | 10.6  | 0      |
| 80PYH12 | 30.2     | 36.5   | 6.3          | 791      | 10.2  | 0      |
| 80PYH12 | 85.15    | 90.8   | 5.65         | 857      | 14.6  | 0      |
| 80PYH14 | 251.8    | 273.4  | 21.6         | 1252     | 13.1  | 0      |
| 93MGM02 | 85       | 160    | 75           | 941      | 8.5   | 0      |
| 98TC01  | 20       | 47     | 27           | 744      | 9.1   | 12.6   |
| 98TC01  | 48       | 71     | 23           | 917      | 11.9  | 16.4   |
| 98TC03  | 34       | 45     | 11           | 1480     | 5.5   | 6      |
| 98TC03  | 68       | 79     | 11           | 1095     | 4.3   | 4.2    |
| 98TC04  | 84       | 94     | 10           | 966      | 3.9   | 4      |
| 98TC04  | 107      | 133    | 26           | 771      | 7.7   | 8.2    |
| 98TC05  | 24       | 62     | 38           | 754      | 6.4   | 7      |
| 98TC06  | 66       | 72     | 6            | 727      | 10.4  | 11.1   |
| 98TC06  | 76       | 101    | 25           | 767      | 10.1  | 10.6   |
| 98TC07  | 35       | 46     | 11           | 1546     | 16.5  | 17.1   |
| 98TC07  | 61       | 82     | 21           | 728      | 9.1   | 9.4    |
| 98TC09  | 32       | 39     | 7            | 716      | 4.9   | 17.4   |
| 98TC09  | 82       | 107    | 25           | 732      | 6     | 6.7    |
| 98TC10  | 101      | 125    | 24           | 732      | 7.9   | 8      |



| Criteria                                                                          | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                    | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul> | <ul> <li>Drilling</li> <li>Drill hole intercept grades are typically reported as down-hole length-weighted averages with any non-recovered sample within the reported intervals treated as no grade. The cut-off used for selecting significant intersections is selected to reflect the overall tenor of mineralisation, in most cases 500ppm cobalt.</li> <li>No top cuts have been applied when calculating average grades for reported significant intersections.</li> <li>No metal equivalent values are reported.</li> </ul>                                                                                                                                                  |
| Relationship<br>between<br>mineralis-<br>ation widths<br>and intercept<br>lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').</li> </ul>                                                                                                                                                                              | <ul> <li>Drill holes at the Thackaringa project are typically angled at 50° or 60° and drilled perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences.</li> <li>Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width.</li> <li>There is insufficient geological knowledge to accurately estimate true widths and as such all drill intersections are reported as down hole lengths.</li> </ul> |
| Diagrams                                                                          | <ul> <li>Appropriate maps and sections<br/>(with scales) and tabulations of<br/>intercepts should be included<br/>for any significant discovery<br/>being reported These should<br/>include, but not be limited to<br/>a plan view of drill hole collar<br/>locations and appropriate<br/>sectional views.</li> </ul>                                                                                                                                                                                                                                                                           | <ul> <li>Appropriate diagrams are presented in the accompanying ASX release.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Balanced<br>reporting                                                             | <ul> <li>Where comprehensive reporting<br/>of all exploration results is not<br/>practicable, representative<br/>reporting of both low and high<br/>grades and/or widths should be<br/>practiced to avoid misleading<br/>reporting of Exploration Results.</li> </ul>                                                                                                                                                                                                                                                                                                                           | <ul> <li>Only mineralised drill hole intersections regarded as highly anomalous and of economic interest are reported. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the total drill hole depth.</li> <li>All assay results for drill holes included in the various Mineral Resource estimates have been considered and comprise results not necessarily regarded as anomalous.</li> </ul>                                                                                                                                                                                                 |



| Criteria                                    | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                  |  |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if<br/>meaningful and material, should<br/>be reported including (but not<br/>limited to): geological obser-<br/>vations; geophysical survey<br/>results; geochemical survey<br/>results; bulk samples – size and<br/>method of treatment; metallurgical<br/>test results; bulk density, ground-<br/>water, geotechnical and rock<br/>characteristics; potential<br/>deleterious or contaminating<br/>substances.</li> </ul> | <ul> <li>No further exploration data is deemed material to the results<br/>presented in this release.</li> </ul>                                                                            |  |  |  |
| Further work                                | <ul> <li>The nature and scale of planned<br/>further work (e.g. tests for lateral<br/>extensions or depth extensions<br/>or large-scale step-out drilling).</li> <li>Diagrams clearly highlighting<br/>the areas of possible extensions,<br/>including the main geological<br/>interpretations and future drilling<br/>areas, provided this information<br/>is not commercially sensitive.</li> </ul>                                                         | <ul> <li>The nature and scale of planned further work will be determined<br/>following the completion of the Project Scoping Study scheduled<br/>for completion by 30 June 2017.</li> </ul> |  |  |  |



# Section 3 Estimation and Reporting of Mineral Resources (Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                          | JORC Code Explanation                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Criteria<br>Database<br>Integrity | <ul> <li>JORC Code Explanation</li> <li>Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes.</li> <li>Data validation procedures used.</li> </ul> | <ul> <li>Commentary</li> <li>The Thackaringa drilling database exists in electronic form as a Microsoft Access database. Information related to individual drill holes is stored in digital files typically including location plan, section, logs, photos, surveys, assays and petrology (where available).</li> <li>Historical drilling data available in electronic form has been re-formatted and imported into the drilling database.</li> <li>Quantitative historical drilling data, including assays, have been captured electronically during systematic data compilation and validation completed by Broken Hill Prospecting ('BPL').</li> <li>In late 2016 an independent validation of the Thackaringa drilling database was completed:</li> <li>The data validation process consisted of systematic review of drilling data (collars, assays and surveys) for identification of transcription errors.</li> <li>Following review, historical drill hole locations were also validated against georeferenced historical maps to confirm their location.</li> <li>Total depths for all holes were checked against original reports.</li> <li>Final 3D validation of drilling data has been completed by independent validation confirmed the database integrity for the two Mineral Resource Estimates, Pyrite Hill and Railway, completed prior to the audit.</li> <li>Further, the validation identified incorrect collar locations for three (3) drill holes at Big Hill which were rectified prior to the now superseded Mineral Resource estimate completed by H&amp;SC Consultants ('H&amp;SC') and herein reported.</li> <li>For the purposes of the Mineral Resource Estimates reported (Pyrite Hill, Railway &amp; Big Hill):</li> <li>Data was provided to H&amp;SC as a series of Excel files that contained worksheets for drill-hole logs and assays; down hole surveys; collars; standards; sample repeats and summary intervals.</li> <li>H&amp;SC are not aware of the detailed procedures taken by BPL or Cobit Biv budditione (COD) to ensure ther drin.</li> </ul> |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                              | BPL or Cobalt Blue Holdings (COB) to ensure that data<br>has not been corrupted though it understands that an<br>independent geologist specialising in geological databases<br>was responsible for database assembly, QA/QC and data<br>integrity. H&SC's work was on the basis that COB took<br>responsibility for all provided data and that the data was<br>accurate and representative.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                              | Limited independent validation was conducted by H&SC to ensure<br>the drill-hole database was internally consistent. H&SC loaded the<br>supplied data into its own Access database undertaking checks for<br>duplicate data, missing data and wrongly formatted data. A second<br>set of checks including end of hole consistency, overlapping intervals<br>and incorrect sample intervals was completed using the SURPAC<br>database audit option. The minimum and maximum values of assays<br>were checked to ensure values are within expected ranges.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                              | <ul> <li>COB supplied digital images of detailed surface mapping which were<br/>draped over topography to constrain the geological interpretation.</li> <li>Assessment of the data confirme that it is quitable for recourse.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                   |                                                                                                                                                                                                                                                                                              | <ul> <li>Assessment of the data commits that it is suitable for resource<br/>estimation and appropriate for the reporting of Mineral Resource<br/>Estimates at the Indicated and Inferred level of confidence.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |



| Criteria                     | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site visits •                | Comment on any site visits<br>undertaken by the Competent<br>Person and the outcome of<br>those visits.                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>A representative of H&amp;SC completed a site visit in May 2011.<br/>Visual inspection of outcropping areas of the Pyrite Hill deposit<br/>were observed prior to the completion of the now superseded 2011<br/>Mineral Resource estimates.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                              | If no site visits have been<br>undertaken indicate why this is<br>the case.                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Geological<br>interpretation | Undertaken indicate why this is<br>the case.<br>Confidence in (or conversely,<br>the uncertainty of) the geological<br>interpretation of the mineral<br>deposit.<br>Nature of the data used and of<br>any assumptions made.<br>The effect, if any, of alternative<br>interpretations on Mineral<br>Resource estimation.<br>The use of geology in guiding<br>and controlling Mineral<br>Resource estimation.<br>The factors affecting continuity<br>both of grade and geology | <ul> <li>Pyrite Hill <ul> <li>COB supplied a digital 3D solid of mineralization based on the downward extrapolation of the surface mapping along with a csv file containing mineral intercepts for each hole. Cross sections were constructed along the strike of the mineralisation complete with slicing of the mineral lode. The outlines were used to design simplified wireframes that were snapped to drilholes and triangulated as a 3D shape. Estimates were completed on blocks within or partially within the overall envelope using data from that volume. The cobalt mineralisation is clearly defined and occurs continuously over a 1.2km strike. The upper and lower contacts are easily identifiable from cobalt grades, logged lithology (including lithogeochemical signatures) with the mineralisation generally corresponding to a sharp transition from low grade intervals to those above 500 ppm. A surface representing the estimates where weathering is interpreted to have depleted the cobalt concentrations.</li> <li>The mineralisation is stratabound, hosted within a pyriti quartz-albite gneiss.</li> <li>The deposit is characterised by a well-defined mineralised envelope with variable disruption resulting from complex ductile deformation. Internal folding is evident and is considered to influence inferred tickening/thinning of the mineralised body in some areas. It is considered that this structural complexity will affect continuity of grade and geology however the current drilling density is insufficient to completely resolve these factors.</li> </ul> </li> <li>Met COB supplied a digital 3D solid of mineralization based on the downward extrapolation of the surface mapping along with a correstive organeed with the foot-wall and hanging-wall rocks.</li> <li>Motoward extrapolation of the surface mapping along with a correstive strike of the mineralisation complete with slicing of the mineralisation complete with slicing of the mineralisation is clearly defined and cocurs on pared with the foot-wall and hanging-wall rocks.</li> </ul> |



| Criteria                          | JORC Code Explanation |     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------|-----------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Geological                        |                       | Rai | ilway (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>interpretation</b> (continued) |                       | •   | The mineralisation is stratabound, hosted within a pyritic quartz-albite gneiss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   |                       | •   | The Railway deposit is defined by a broadly linear mineralised<br>envelope with variable disruption resulting from complex ductile<br>deformation. Internal folding is evident and is considered to<br>influence inferred thickening/thinning of the mineralised body in<br>some areas. It is considered that this structural complexity will<br>affect continuity of grade and geology however the current drilling<br>density is insufficient to completely resolve these factors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   |                       | •   | The classification of the Indicated and Inferred Resources is<br>considered an appropriate reflection of the degree of certainty<br>associated with the geological interpretation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                   |                       | •   | Alternative interpretations of this volume are possible but are<br>unlikely to significantly change the resource estimate due to the<br>enhanced cobalt grades within the main body of mineralisation<br>compared with the foot-wall and hanging-wall rocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                       | Big | ; Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                   |                       | •   | COB supplied a digital 3D solid of mineralization based on the downward extrapolation of the surface mapping along with a csv file containing mineral intercepts for each hole. Cross sections were constructed along the strike of the mineralisation complete with slicing of the mineral lode. The outlines were used to design simplified wireframes that were snapped to drillholes and triangulated as a 3D shape. Estimates were completed on blocks within or partially within the overall envelope using data from that volume. The cobalt mineralisation is clearly defined and occurs continuously over a 1.5km strike. The upper and lower contacts are easily identifiable from cobalt grades, logged lithology (including lithogeochemical signatures) with the mineralisation generally corresponding to a sharp transition from low grade intervals to those above 500ppm. A surface representing the base of partial oxidation was used to restrict the reporting of estimates where weathering is interpreted to have depleted the cobalt concentrations. |
|                                   |                       | ٠   | The mineralisation is stratabound, hosted within a pyritic<br>quartz-albite gneiss.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                   |                       | •   | The Big Hill deposit is defined by a broadly linear mineralised<br>envelope with variable disruption resulting from complex ductile<br>deformation. Internal folding is evident and is considered to<br>influence inferred thickening/thinning of the mineralised body in<br>some areas. It is considered that this structural complexity will<br>affect continuity of grade and geology however the current drilling<br>density is insufficient to completely resolve these factors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   |                       | •   | The classification of the Indicated and Inferred Resources is considered an appropriate reflection of the degree of certainty associated with the geological interpretation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                       | •   | Alternative interpretations of this volume are possible but are<br>unlikely to significantly change the resource estimate due to the<br>enhanced cobalt grades within the main body of mineralisation<br>compared with the foot-wall and hanging-wall rocks.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



| Criteria   | JORC Code Explanation                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensions | • The extent and variability of the<br>Mineral Resource expressed as<br>length (along strike or other-<br>wise), plan width, and depth<br>below surface to the upper<br>and lower limits of the Mineral<br>Resource. | <ul> <li>Pyrite Hill</li> <li>The Pyrite Hill mineralised envelope extends over 1.2km and varies in thickness from approximately 10–60 metres. The estimates extend to between 100mRL–15mRL (approximately 160–300 metres below surface). A base of partial oxidation surface is generally between 10–15 metres below surface.</li> <li>Railway</li> <li>The Railway mineralised envelope extends over 1.9km and varies in thickness from approximately 40–190 metres. The estimates extend to between 150mRL–25mRL (approximately 150–270 metres below surface). A base of partial oxidation surface is generally between 10 and the surface.</li> </ul> |
|            |                                                                                                                                                                                                                      | <ul> <li>Big Hill</li> <li>The main Big Hill mineralised envelope extends over 0.8km with a subsidiary, along strike body having 0.5km of strike. Thicknesses vary between approximately 20–80 metres. The estimates extend to between 130mRL–100mRL (approximately 170–200 metres below surface). A base of partial oxidation surface is generally between 10–15 metres below surface.</li> </ul>                                                                                                                                                                                                                                                        |



| Criteria                                  | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                      | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimation<br>and modelling<br>techniques | <ul> <li>The nature and appropriateness<br/>of the estimation technique(s)<br/>applied and key assumptions,<br/>including treatment of extreme<br/>grade values, domaining,<br/>interpolation parameters<br/>and maximum distance of</li> </ul>                                                                                                                            | <ul> <li>Pyrite Hill</li> <li>H&amp;SC estimated cobalt concentrations using Ordinary Kriging using GS3M<sup>™</sup> software. Model validation and resource reporting was carried out using the Mining Software package SURPAC<sup>™</sup>. H&amp;SC considers Ordinary Kriging to be an appropriate estimation technique for the type of mineralisation.</li> </ul>                                                                                                                                                                                    |
|                                           | and maximum distance of<br>extrapolation from data points. If<br>a computer assisted estimation<br>method was chosen include<br>a description of computer<br>software and parameters used.                                                                                                                                                                                 | <ul> <li>The relatively low coefficient variance and absence of extreme values precluded the need for top-cutting of any of the estimated concentrations.</li> <li>One metre composites were created from 49 drillholes (RC and diamond) and estimates completed using the 1,876 data points occurring inside the Pyrite Hill mineralised envelope.</li> </ul>                                                                                                                                                                                           |
|                                           | <ul> <li>The availability of check estimates, previous estimates and/<br/>or mine production records and<br/>whether the Mineral Resource<br/>estimate takes appropriate<br/>account of such data.</li> </ul>                                                                                                                                                              | <ul> <li>Elements modelled include cobalt, iron and sulphur. Cobalt shows<br/>a strong correlation with sulphur and iron. Missing iron and sulphu<br/>composite data from earlier drilling was generated by using the<br/>Conditional Expectation method to create regression equations<br/>for sulphur from cobalt composites and iron grades from sulphur<br/>composites.</li> </ul>                                                                                                                                                                   |
|                                           | <ul> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).</li> <li>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</li> </ul> | <ul> <li>H&amp;SC used an 8 x 60 x 60m search with 12 to 32 data points and a minimum of 4 octants to estimate Indicated Resources. This was expanded to 15 x 120 x 120m with 6 to 32 data points and a minimum of 2 octants for Inferred Resources. A block size of 5 x 20 x 10 meters was used. Exploration potential size is based on a search of 20 x 150 x 150m designed to largely fill the modelled mineral wireframe with Co estimates. Search rotations are based on variation in the geological din and strike. 2 modelling domains</li> </ul> |
|                                           |                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>A check Inverse Distance Squared estimate using the supplied mineral wireframe showed comparable results.</li> <li>Estimates were completed on blocks within or partly within the</li> </ul>                                                                                                                                                                                                                                                                                                                                                    |
|                                           | <ul> <li>Any assumptions behind<br/>modelling of selective mining<br/>units.</li> <li>Any assumptions about</li> </ul>                                                                                                                                                                                                                                                     | <ul> <li>mineral shape using a partial percent volume adjustment.</li> <li>A surface representing the base of partial oxidation was used as a soft boundary in the grade interpolation but as a hard boundary fo constraining the reporting of estimates as weathering is interpreted to have depleted the cobalt concentrations.</li> </ul>                                                                                                                                                                                                             |
|                                           | <ul> <li>Description of how the geolog-<br/>ical interpretation was used to<br/>control the resource estimates.</li> <li>Discussion of basis for using<br/>or not using grade cutting or</li> </ul>                                                                                                                                                                        | <ul> <li>There has been no historical production at the Pyrite Hill deposit.</li> <li>The final H&amp;SC block model was reviewed visually by H&amp;SC and it was concluded that the block model fairly represents the grades observed in the drill holes. H&amp;SC also validated the block model statistically using a variety of statistical plots and summary statistics.</li> </ul>                                                                                                                                                                 |
|                                           | <ul> <li>The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.</li> </ul>                                                                                                                                                                                                    | Previous metallurgical test work has indicated the mineralisation<br>may be amendable to gravity and or flotation processing to<br>produce a pyrite concentrate containing the bulk of the cobalt.<br>Further there are a variety of pyrometallurgical and hydrometal-<br>lurgical processes of treating such a concentrate for the potential<br>recovery of cobalt, sulphuric acid and high iron residue. Despite<br>this, the Mineral Resource estimate does not consider the recover<br>of any potential by-products.                                 |



| Criteria                  | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimation                |                       | Pyrite Hill (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and modelling             |                       | Previous estimates are summarised:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| techniques<br>(continued) |                       | <ul> <li>CRA Exploration Pty Ltd (CRAE) completed a grade tonnage estimate for the Pyrite Hill deposit in 1981, prior to the enactment of the JORC code. CRAE employed a polygonal longitudinal section methodology which considered a mineralised envelope extending from surface to approximately 200 metres depth. This estimate comprised 10.6Mt at 998ppm (2.2lb/t) Co at a 500ppm Co cut-off. In 2010, this estimate was reviewed by an independent Competent Person whom considered the estimate adequately satisfied requirements under the JORC2004 code for Inferred classification.</li> <li>Hunter Exploration NL completed a grade tonnage estimate</li> </ul> |
|                           |                       | using a cross sectional polygonal methodology restricted<br>using a simple conceptual pit shell assuming 50° pit walls<br>and 100 metre total depth. The estimate allowed for near<br>surface depletion and comprised 7.7Mt at 1089ppm (2.4lb/t)<br>at a 500ppm Co cut-off. This estimate did not use categories<br>defined under the current JORC code (2012).                                                                                                                                                                                                                                                                                                             |
|                           |                       | These estimates completed by CRAE and Hunter<br>Exploration (10.6Mt at 998ppm (2.2lb/t) Co at a 500ppm<br>Co cut-off & 7.7Mt at 1089ppm (2.4lb/t) at a 500ppm<br>Co cut-off) are historical estimates and are not reported<br>in accordance with the JORC code. A competent<br>person has not done sufficient work to classify the<br>historical estimates in accordance with JORC 2012.                                                                                                                                                                                                                                                                                    |
|                           |                       | H&SC completed a Mineral Resource estimate in 2011 using<br>Ordinary Kriging which was subsequently reported under the<br>2012 JORC Code & Guidelines. Estimates were derived from<br>grade interpolation of 2m composites from within hanging wall<br>and footwall surfaces cut to the base of oxidation. The estimate<br>comprised 16.4Mt at 830ppm Co (at a 500ppm Co cut-off).                                                                                                                                                                                                                                                                                          |
|                           |                       | <ul> <li>These historical estimates were superseded by the reported<br/>Mineral Resource estimate completed by H&amp;SC in 2017<br/>and reported herein. As such they bear no materiality and<br/>or relevance to the reporting entity.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                           |                       | Railway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                           |                       | <ul> <li>H&amp;SC estimated cobalt concentrations using Ordinary Kriging<br/>using GS3M<sup>™</sup> software. Model validation and resource reporting<br/>was carried out using the Mining Software package SURPAC<sup>™</sup>.<br/>H&amp;SC considers Ordinary Kriging to be an appropriate estimation<br/>technique for the type of mineralisation.</li> </ul>                                                                                                                                                                                                                                                                                                            |
|                           |                       | <ul> <li>The relatively low coefficient variance and absence of extreme<br/>values precluded the need for top-cutting of any of the estimated<br/>concentrations.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                       | <ul> <li>4,183 one metre composites from 56 drillholes (RC &amp; Diamond)<br/>were used to estimate Indicated and Inferred Resources for the<br/>Railway deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                           |                       | <ul> <li>Elements modelled include cobalt, iron and sulphur. Cobalt shows<br/>a strong correlation with sulphur and iron.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                           |                       | H&SC used a 60 x 8 x 60m search with 12 to 32 data points and<br>a minimum of 4 octants to estimate Indicated Resources. This<br>was expanded to 120 x 15 x 120m with 6 to 32 data points and<br>a minimum of 2 octants. A block size of 20 x 5 x 10 meters was<br>used. Exploration potential size is based on a search of 150 x 20<br>x 150m designed to largely fill the modelled mineralised volume<br>with cobalt estimates. Search rotations are based on the dip and<br>strike of the mineralisation. 4 modelling domains were used, that<br>reflect the change in dip and strike of the mineralisation.                                                             |



| Criteria                    | JORC Code Explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimation<br>and modelling |                       | Railway (continued)  Estimates were completed on blocks within or partly within the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| techniques                  |                       | mineral shape using a partial percent volume adjustment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (continued)                 |                       | <ul> <li>A check Inverse Distance Squared estimate using the supplied<br/>mineral wireframe showed comparable results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                       | <ul> <li>A surface representing the base of partial oxidation was used as<br/>a soft boundary in the grade interpolation but as a hard boundary<br/>for constraining the reporting of estimates as weathering is<br/>interpreted to have depleted the cobalt concentrations.</li> </ul>                                                                                                                                                                                                                                                                                                                                              |
|                             |                       | <ul> <li>The final H&amp;SC block model was reviewed visually by H&amp;SC and<br/>it was concluded that the block model fairly represents the grades<br/>observed in the drill holes. H&amp;SC also validated the block model<br/>statistically using a variety of statistical plots and summary statistics</li> </ul>                                                                                                                                                                                                                                                                                                               |
|                             |                       | There has been no historical production at the Railway deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                             |                       | Previous metallurgical test work has indicated the mineralisation<br>may be amendable to gravity and or flotation processing to<br>produce a pyrite concentrate containing the bulk of the cobalt.<br>Further there are a variety of pyrometallurgical and hydrometal-<br>lurgical processes of treating such a concentrate for the potential<br>recovery of cobalt, sulphuric acid and high iron residue. Despite<br>this, the Mineral Resource estimate does not consider the<br>recovery of any potential by-products.                                                                                                            |
|                             |                       | H&SC completed a Mineral Resource estimate in 2012 using<br>Ordinary Kriging which was subsequently reported under the<br>2012 JORC Code & Guidelines. Estimates were derived from<br>grade interpolation of 1m composites from within hanging wall<br>and footwall surfaces cut to the base of oxidation. The estimate<br>comprised 14.9Mt at 831ppm Co (at a 500ppm Co cut-off). This<br>estimate is subsequently superseded by the Mineral Resource<br>estimate completed in 2017 and reported herein. As such this<br>preceding estimate bears no materiality and or relevance to the<br>reporting entity.                       |
|                             |                       | Big Hill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                             |                       | <ul> <li>H&amp;SC estimated cobalt concentrations using Ordinary Kriging<br/>using GS3M<sup>™</sup> software. Model validation and resource reporting<br/>was carried out using the Mining Software package SURPAC<sup>™</sup>.<br/>H&amp;SC considers Ordinary Kriging to be an appropriate estimation<br/>technique for the type of mineralisation.</li> </ul>                                                                                                                                                                                                                                                                     |
|                             |                       | <ul> <li>The relatively low coefficient variance and absence of extreme<br/>values precluded the need for top-cutting of any of the estimated<br/>concentrations.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                             |                       | <ul> <li>1,411 one metre composites from 25 drillholes (RC and diamond<br/>were used to estimate Indicated and Inferred Resources for the<br/>Big Hill deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                       | <ul> <li>Elements modelled include cobalt, iron and sulphur. Cobalt show<br/>a strong correlation with sulphur and iron.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                       | <ul> <li>Missing iron and sulphur composite data from earlier drilling was<br/>generated by using the Conditional Expectation method to create<br/>regression equations for sulphur from cobalt composites and iror<br/>grades from sulphur composites.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                   |
|                             |                       | <ul> <li>H&amp;SC used a 60 x 8 x 60m search with 12 to 32 data points and<br/>a minimum of 4 octants to estimate Indicated Resources. This<br/>was expanded to 120 x 15 x 120m with 6 to 32 data points and<br/>a minimum of 2 octants. A block size of 20 x 5 x 10 meters was<br/>used. Exploration potential size is based on a search of 150 x 20<br/>x 150m designed to largely fill the modelled mineralised volume<br/>with cobalt estimates. Search rotations are based on the dip and<br/>strike of the mineralisation. 2 modelling domains were used to<br/>reflect the change in strike of the mineralisation.</li> </ul> |



| Criteria                                   | JORC Code Explanation                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimation                                 |                                                                                                                                                   | Big Hill (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| and modelling<br>techniques<br>(continued) |                                                                                                                                                   | <ul> <li>A check Inverse Distance Squared estimate using the supplied<br/>mineral wireframe showed comparable results.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |
|                                            |                                                                                                                                                   | <ul> <li>Estimates were completed on blocks within or partially within the<br/>mineral shape using a partial percent volume adjustment.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                        |
|                                            |                                                                                                                                                   | A surface representing the base of partial oxidation was used as<br>a soft boundary in the grade interpolation but as a hard boundary<br>for constraining the reporting of estimates as weathering is<br>interpreted to have depleted the cobalt concentrations.                                                                                                                                                                                                                                                          |
|                                            |                                                                                                                                                   | <ul> <li>The final H&amp;SC block model was reviewed visually by H&amp;SC and<br/>it was concluded that the block model fairly represents the grades<br/>observed in the drill holes. H&amp;SC also validated the block model<br/>statistically using a variety of statistical plots and summary statistics</li> </ul>                                                                                                                                                                                                    |
|                                            |                                                                                                                                                   | <ul> <li>There has been no historical production at the Big Hill deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                            |                                                                                                                                                   | Previous metallurgical test work has indicated the mineralisation<br>may be amendable to gravity and or flotation processing to<br>produce a pyrite concentrate containing the bulk of the cobalt.<br>Further there are a variety of pyrometallurgical and hydrometal-<br>lurgical processes of treating such a concentrate for the potential<br>recovery of cobalt, sulphuric acid and high iron residue. Despite<br>this, the Mineral Resource estimate does not consider the<br>recovery of any potential by-products. |
|                                            |                                                                                                                                                   | <ul> <li>Previous estimates are summarised:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                            |                                                                                                                                                   | Hunter Exploration NL completed a grade tonnage estimate<br>using a cross sectional polygonal methodology restricted using<br>a simple conceptual pit shell assuming 50° pit walls and 100<br>metre total depth. The estimate comprised 4.4Mt at 910ppm<br>(2.2lb/t) at a 500ppm Co cut-off. This estimate did not use<br>categories defined under the current JORC code (2012).                                                                                                                                          |
|                                            |                                                                                                                                                   | The estimate completed by Hunter Exploration (4.4Mt<br>at 910ppm (2.2lb/t) at a 500ppm Co cut-off) is an<br>historical estimate and is not reported in accordance<br>with the JORC code. A competent person has not done<br>sufficient work to classify the historical estimates in<br>accordance with JORC 2012.                                                                                                                                                                                                         |
|                                            |                                                                                                                                                   | The historical estimate was superseded by the Inferred<br>Mineral Resource estimate completed by Geos Mining<br>comprising 1.8Mt at 870ppm cobalt and 6% Sulphur (at a<br>500ppm Co cut-off).                                                                                                                                                                                                                                                                                                                             |
|                                            |                                                                                                                                                   | These historical estimates were superseded by the reported<br>Mineral Resource estimate completed by H&SC in 2017<br>and reported herein. As such they bear no materiality and or<br>relevance to the reporting entity.                                                                                                                                                                                                                                                                                                   |
| Moisture                                   | • Whether the tonnages are<br>estimated on a dry basis or with<br>natural moisture, and the method<br>of determination of the moisture<br>content | <ul> <li>Tonnages are estimated on a dry weight basis; moisture contents<br/>are not known to have been determined, but are not expected to<br/>be significant for this primary ore type.</li> </ul>                                                                                                                                                                                                                                                                                                                      |
| Cut-off<br>parameters                      | <ul> <li>The basis of the adopted cut-off<br/>grade(s) or quality parameters<br/>applied.</li> </ul>                                              | A 500ppm cobalt cut-off has been adopted for the reporting<br>of the Mineral Resource estimates whereby this conforms with<br>historical reports. Previous studies support this as a reasonable<br>figure though future economic studies may determine a more<br>appropriate cut-off grade as further information related to material<br>assumptions affecting the Mineral Resources are determined.                                                                                                                      |
|                                            |                                                                                                                                                   | <ul> <li>A second constraint is the truncation of the mineral wireframe<br/>by the base of partial oxidation surface to produce a 'sulphide'<br/>wireframe from within which the resource estimates are reported<br/>using a partial percent volume adjustment factor.</li> </ul>                                                                                                                                                                                                                                         |



| Criteria                                     | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mining<br>factors or<br>assumptions          | Assumptions made regarding<br>possible mining methods,<br>minimum mining dimensions<br>and internal (or, if applicable,<br>external) mining dilution. It is<br>always necessary as part of the<br>process of determining reason-<br>able prospects for eventual<br>economic extraction to consider<br>potential mining methods, but<br>the assumptions made regarding<br>mining methods and parameters<br>when estimating Mineral<br>Resources may not always be<br>rigorous. Where this is the case,<br>this should be reported with an<br>explanation of the basis of the<br>mining assumptions made                                                                                                                                        | <ul> <li>The shallow nature of mineralisation at the Pyrite Hill, Railway and<br/>Big Hill deposits is considered to make these resources amenable<br/>to an open pit mining method.</li> <li>All deposits form ridge lines that are topographically higher than<br/>the surrounding landscape.</li> <li>Further work is expected to comprise preliminary pit optimisation to<br/>enable reporting of resource blocks within a conceptual open pit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Metallurgical<br>factors or<br>assumptions   | The basis for assumptions<br>or predictions regarding<br>metallurgical amenability. It is<br>always necessary as part of<br>the process of determining<br>reasonable prospects for<br>eventual economic extraction to<br>consider potential metallurgical<br>methods, but the assumptions<br>regarding metallurgical treatment<br>processes and parameters<br>made when reporting Mineral<br>Resources may not always be<br>rigorous. Where this is the case,<br>this should be reported with an<br>explanation of the basis of the<br>metallurgical assumptions made.                                                                                                                                                                        | <ul> <li>Previous metallurgical test work has indicated the mineralisation may be amendable to gravity and or flotation processing to produce a pyrite concentrate containing the bulk of the cobalt. Further there are a variety of pyrometallurgical and hydrometal-lurgical processes of treating such a concentrate for the potential recovery of cobalt, sulphuric acid and high iron residue.</li> <li>The results of preliminary metallurgical test work were not provided to H&amp;SC.</li> <li>The Mineral Resource estimates do not consider the recovery of any potential by-products.</li> <li>It is considered water required for processing could potentially be provided by the NSW government's planned Murray River to Broken Hill pipeline.</li> </ul>                                                                                                                                                                                                                                                               |
| Environment-<br>al factors or<br>assumptions | Assumptions made regarding<br>possible waste and process<br>residue disposal options. It is<br>always necessary as part of the<br>process of determining reason-<br>able prospects for eventual<br>economic extraction to consider<br>the potential environmental<br>impacts of the mining and<br>processing operation. While at<br>this stage the determination of<br>potential environmental impacts,<br>particularly for a greenfields<br>project, may not always be well<br>advanced, the status of early<br>consideration of these potential<br>environmental impacts should be<br>reported. Where these aspects<br>have not been considered this<br>should be reported with an<br>explanation of the environmental<br>assumptions made. | <ul> <li>The potential environmental impacts of the project are not well advanced with preliminary considerations noting:</li> <li>The project is approximately 25 kilometres west-southwest of Broken Hill and more than 90 kilometres from the nearest National Park and or Wilderness Area (Kinchega National Park) and approximately 20 kilometres south of the nearest Water Supply Reserve (Umberumberka Reservoir Water Supply Reserve).</li> <li>Detailed cultural heritage, flora and fauna surveys are yet to be completed.</li> <li>It is considered that climatic conditions will assist in the management of wet residues whereby evaporation rates are expected to exceed precipitation.</li> <li>Studies related to the mine waste characterisation and appropriate storage have not yet been completed.</li> <li>The construction of a suitable tailings facility is assumed for processing waste. It is considered a portion of water from such a facility could be recovered for re-use as process water.</li> </ul> |



| Criteria          | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bulk density      | <ul> <li>Whether assumed or determined.<br/>If assumed, the basis for the<br/>assumptions. If determined,<br/>the method used, whether wet<br/>or dry, the frequency of the<br/>measurements, the nature, size<br/>and representativeness of the<br/>samples.</li> <li>The bulk density for bulk material<br/>must have been measured by<br/>methods that adequately account<br/>for void spaces (vughs, porosity,<br/>etc.), moisture and differences<br/>between rock and alteration<br/>zones within the deposit.</li> <li>Discuss assumptions for bulk<br/>density estimates used in<br/>the evaluation process of the<br/>different materials.</li> </ul> | <ul> <li>Density data comprised 755 samples of mineralisation and waste which were well spread throughout the three deposits.</li> <li>The density measuring method was the weight in air &amp; weight in water immersion method (Archimedes Principle). A substantial portion of these samples were 1m lengths containing several bits of core and represent quality data. Rock types including mineralisation are generally non-porous with very limited permeability.</li> <li>A review of 219 pyritic (&gt;10% S) samples indicated that there was a very good correlation between sulphur and density such that Conditional Expectation could be used to generate a regression equation for density that was applicable to all three deposits. This meant that there was the same number of density composites as for cobalt.</li> <li>Density grade interpolation was completed using Ordinary Kriging in the GS3M software using the same search parameters and modelling domains as for the cobalt grade interpolation.</li> <li>Average density for resource estimates for the three deposits is 2.85t/m<sup>3</sup>.</li> </ul> |
| Classification    | <ul> <li>The basis for the classification of the Mineral Resources into varying confidence categories.</li> <li>Whether appropriate account has been taken of all relevant factors (i.e. relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</li> <li>Whether the result appropriately reflects the Competent Person's view of the deposit.</li> </ul>                                                                                                                                                                         | <ul> <li>The search pass category is used to allocate the resource classification to the blocks.</li> <li>The decision on what pass relates to a resource classification is a subjective opinion of the Competent Person.</li> <li>This classification considers all relevant factors including relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data.</li> <li>The classification appropriately reflects the Competent Person's view of the deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Audits or reviews | <ul> <li>The results of any audits or<br/>reviews of Mineral Resource<br/>estimates</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>No formal audits or check estimates of the Mineral Resources<br/>have been completed.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



| Criteria                                             | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discussion<br>of relative<br>accuracy/<br>confidence | <ul> <li>Where appropriate a statement<br/>of the relative accuracy and<br/>confidence level in the Mineral<br/>Resource estimate using an<br/>approach or procedure deemed<br/>appropriate by the Competent<br/>Person. For example, the<br/>application of statistical or<br/>geostatistical procedures to<br/>quantify the relative accuracy<br/>of the resource within stated<br/>confidence limits, or, if such an<br/>approach is not deemed appro-<br/>priate, a qualitative discussion of<br/>the factors that could affect the<br/>relative accuracy and confidence<br/>of the estimate.</li> <li>The statement should specify<br/>whether it relates to global or<br/>local estimates, and, if local, state<br/>the relevant tonnages, which<br/>should be relevant to technical<br/>and economic evaluation.<br/>Documentation should include<br/>assumptions made and the<br/>procedures used.</li> </ul> | The relative accuracy and confidence level in the Indicated<br>and Inferred Mineral Resource estimates presented herein are<br>considered to be in line with the generally accepted accuracy and<br>confidence of Indicated and Inferred Mineral Resources of similar<br>types of deposits and data quality. This has been determined<br>on a qualitative, rather than quantitative, basis, and is based<br>on the Competent Person's experience with similar data and<br>mineralisation |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>The Mineral Resource estimates are considered to be accurate<br/>globally, but there is some uncertainty in the local estimates due<br/>to the current drillhole spacing</li> </ul>                                                                                                                                                                                                                                                                                             |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Work by H&amp;SC was confined to resource estimation with BPL<br/>taking responsibility for drilling, sampling, data quality, QAQC,<br/>density values and choice of cut-off grades</li> </ul>                                                                                                                                                                                                                                                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>The geological nature of the deposit, composite/block grade<br/>comparison and the low coefficients of variation lend themselves<br/>to reasonable lovel of coefficience in the resource estimates.</li> </ul>                                                                                                                                                                                                                                                                  |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The geological understanding has been substantially improved<br>with the detailed surface mapping and the lithogeochemical<br>interpretation                                                                                                                                                                                                                                                                                                                                             |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>No mining of the deposit has taken place so no production dat<br/>available for comparison.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                          |
|                                                      | <ul> <li>These statements of relative<br/>accuracy and confidence of the<br/>estimate should be compared<br/>with production data, where<br/>available.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |