Market Announcement

25 May 2017

Cobalt Blue Holdings Ltd A Green Energy Exploration Company

СОВ

Commodity Exposure: Cobalt & Sulphur

Directors & Management:

ASX Code:

Robert Biancardi	Robert Biancardi Non-Exec Chairman						
Hugh Keller	Hugh Keller Non-Exec Director						
Trangie Johnston	Non-Exec Dir	ector					
Joe Kaderavek	CEO & Exec Director						
lan Morgan	lan Morgan Company Secretary						
Capital Structure:	Capital Structure:						
Ordinary Shares at 24/05/2017: 95m							
Options (ASX Code: COBO): 21.2m							
Market Cap (undilut	ed):	622m					

Share Price

Share Price at 24/05/2017: **\$0.20**

Cobalt Blue Holdings Limited

ACN:	614 466 607
Address:	Level 2, 66 Hunter St,
	Sydney NSW 2000
Ph:	+61 2 9966 5629
Website:	www.cobaltblueholdings.com
	info@cobaltblueholdings.com
Social:	f Cobalt.Blue.Energy
	n cobalt-blue-holdings

Highlights

Stage One Drilling Program delivers robust results – resource upgrade to follow

- Cobalt Blue Limited (ASX:COB) is pleased to provide the final assays from its major 1H 2017 resource definition drilling program completed at Thackaringa, NSW.
- COB's Chairman, Rob Biancardi, observed "extremely pleasing results, better than our expectations".
- The current announcement summarises the last 7 diamond drill (DD) holes (for 785 metres total) and 14 reverse circulation (RC) holes (for 1,874 metres total) that were drilled into the Railway and Pyrite Hill deposits.
- Results support potential for significant enhancement of Mineral Resource and to enhance the average grade within the overall mineralised envelope.
- The 2016 & 2017 drill results are currently being compiled into an upgraded resource estimate, which is scheduled for release in June.
- At Railway Trend best mineralised intercepts include:
 - Drillhole 17THD08 84m @ 1,013ppm Co, 15.6% Fe &12.8% S from 19m;
 - Drillhole 17THD09 46m @ 1,234ppm Co, 13.8% Fe & 14.8% S from 19m; and
 - Drillhole 17THR034 56m @ 1,036ppm Co, 10.6% Fe & 10.2% S from 38m Including – 36m @ 1,217ppm Co, 11.5% Fe & 12.1% S from 38m.
- At Pyrite Hill best mineralised intercepts include:
 - Drillhole 17THR024 14m @ 1,436ppm Co, 12.3% Fe & 12.1% S from 68m;
 - Drillhole 17THR024 43m @ 1,082ppm Co, 9.2% Fe & 9% S from 96m Including – 29m @ 1,363ppm Co, 10.5% Fe & 10.5% S from 110m; and
 - Drillhole 17THD14 23m @ 929ppm Co, 11.9% Fe & 10.9% S from 54m Including – 11m @ 1,398ppm Co, 13.6% Fe & 13.7% S from 54m.
 - The Scoping Study is progressing to target to be delivered to the COB Board by 30 June.

COB's Chairman, Rob Biancardi, commented:

"These latest assay results are extremely pleasing and confirm the continuity and tenor of cobalt-pyrite mineralisation over a combined 4.5 km of strike at Thackaringa. Completion of the assay component of the 1H 2017 drilling program should allow a significant resource upgrade to be released early June. COB remains pleased with the results of the drilling program and with the positive early indications of the metallurgical and scoping studies underway."

The 1H 2017 drilling program comprised fifty-two (52) drill holes completed for a total of 6,472 metres. The drilling program was designed to provide representative samples for metallurgical studies and to support a Mineral Resource upgrade across the three deposits; Railway, Pyrite Hill and Big Hill.

This announcement summarises the last assays of this Stage One program; from twenty-one (21) drill holes – seven (7) DD holes and fourteen (14) RC holes - completed for a total of 2,659 metres.

Breakdown of drilling in this report:

	Reverse Circu	lation Drilling	Diamond	Drilling
Deposit	No. Drill holes	No. Metres	No. Drill holes	No. Metres
Pyrite Hill	3	378	1	99
Railway	11	1,496	6	686
Total	14	1,874	7	785

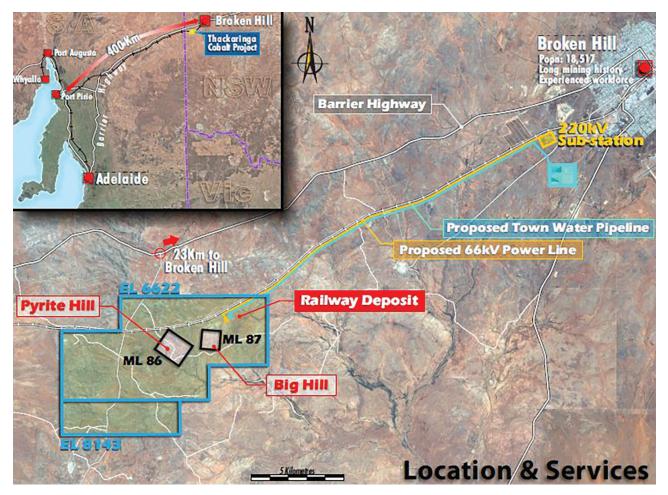


Figure 1: Cobalt Blue tenements, location and existing infrastructure

At Railway and Pyrite Hill, broad intersections of high grade mineralisation occur along the strike length, with structural thickening in fold hinges increasing the observed grade. Significant mineralised intercepts from the latest assays are shown in Table 1.

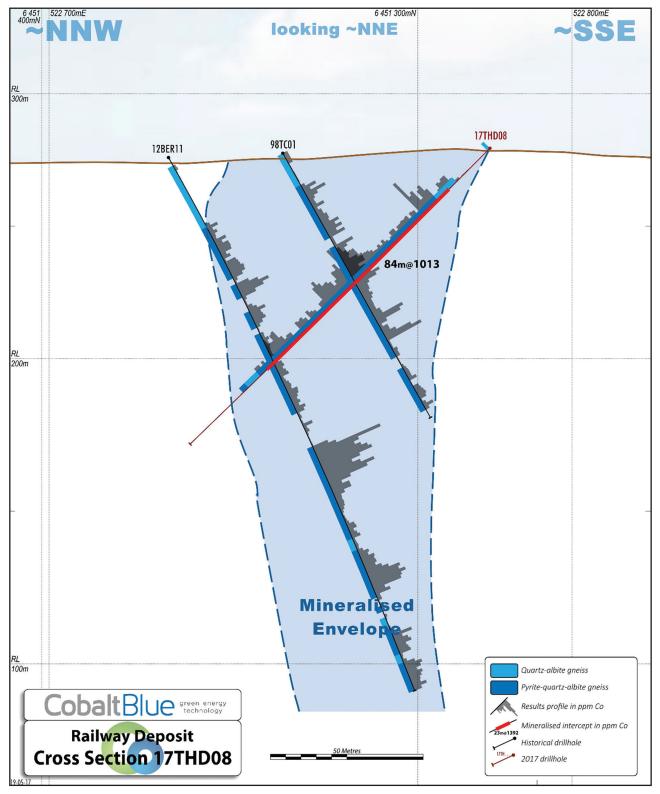


Figure 2: Railway Deposit X-section along plane of drillhole 17THD08

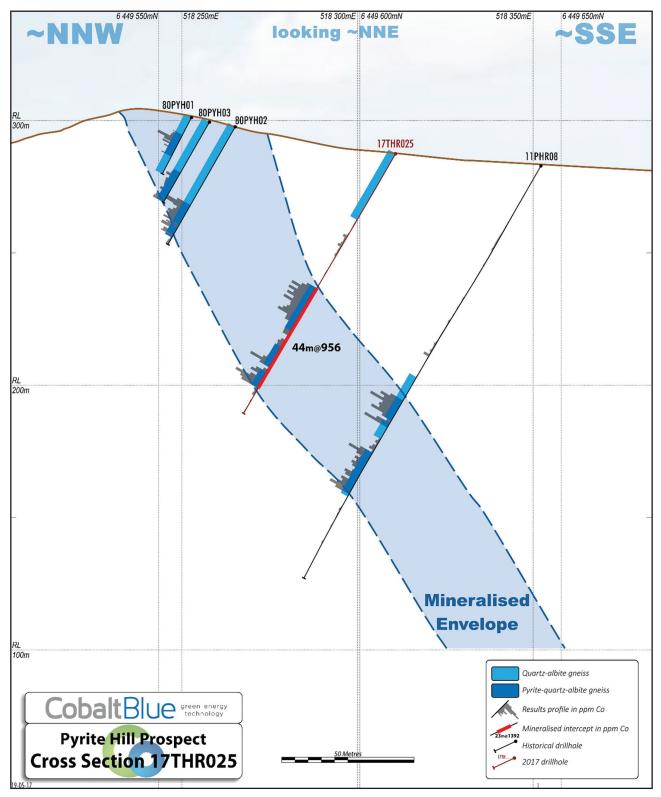


Figure 3: Pyrite Hill X-section along plane of 17THR025

Cobalt Blue Background

Cobalt Blue ("COB") is an exploration company focussed on green energy technology and strategic development to upgrade the existing mineral resource at the Thackaringa Cobalt Project in New South Wales. This strategic metal is in strong demand for new generation batteries, particularly lithium-ion batteries now being widely used in clean energy systems.

COB has entered into a farm-in joint venture agreement with Broken Hill Prospecting Limited ("BHPL") in which COB acquired an initial 51% interest in the Thackaringa Cobalt Project. COB will undertake exploration and development programs on the Thackaringa Cobalt Project and, subject to the achievement of milestones, will acquire 100% of the Thackaringa Cobalt Project.

The Thackaringa Project, 23 km west of Broken Hill and 400km by rail from Port Pirie consists of four granted tenements (EL6622, EL8143, ML86 and ML87) with total area of 63km². The main target for exploration is well known and documented largetonnage cobalt-bearing pyrite deposits. The project area is underexplored, with the vast majority of historical exploration directed at or around the outcropping pyritic cobalt deposits at Pyrite Hill and Big Hill.

Potential to extend the Mineral Resource at Pyrite Hill, Big Hill, Railway and the other prospects is high. A total Inferred Mineral Resource of 33.1Mt at 833ppm cobalt (500ppm Co cut-off) has previously been estimated at Thackaringa Cobalt Project (COB replacement prospectus of 31 January, 2017)

Numerous other prospects within COB's tenement package are early stage and under-explored.

Looking forward, we would like our shareholders to keep in touch with COB updates and related news items, which we will post on our website, the ASX announcements platform, as well as social media such as Facebook () and LinkedIn (). Please don't hesitate to join the 'COB friends' on social media and also to join our newsletter mailing list at our website.

Mula

Joe Kaderavek

Chief Executive Officer info@cobaltblueholdings.com P: (02) 9966 5629

Competent Person Statement

The information in this report that relates to exploration results, Mineral Resources and Targets is based on information compiled by Mr Anthony Johnston, BSc (Hons), who is a Member of the Australian Institute of Mining and Metallurgy and who is a non-executive director of Cobalt Blue Holdings Limited, the Chief Executive Officer of Broken Hill Prospecting Limited and the Technical Manager of the Joint Venture. Mr Johnston has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 & 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Johnston consents to the inclusion in the announcement of the matters based on his information in the form and context that the information appears.

Previously Released Information

This ASX announcement refers to information extracted from the following reports, which are available for viewing on COB's website www.cobaltblueholdings.com

- 4 May 2017: 2017 Update Strong Drilling Results Continue
- 27 March 2017: Assays confirm Thackaringa as a Significant Cobalt-Pyrite Project

• 31 January 2017: Replacement Prospectus dated 3 January 2017 (Replacement Prospectus) – supplemented by the supplementary prospectus dated 10 January 2017 (Supplementary Prospectus)

COB confirms it is not aware of any new information or data that materially affects the information included in the original market announcement, and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. COB confirms that the form and context in which the Competent Person's findings presented have not been materially modified from the original market announcement.

Appendix – JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

 Nature and quality of sampling (e.g. cut channels, random chips, or specific specifications) industry standard measurement tools apportiate to the initerature under investigation, such as down-hole garma sonke, or handheld XFF instruments, etc). These examples should not be taken as finiting the broad meening of sampling. Include reference to measures taken to ensure sample repre- sentivity and the apportiate to the Public Report. Include reference to measures taken to ensure sample repre- sentivity and the apportiate color systems used. Aspects of the determination of meenafistom hat are Material to the Public Report. In cause where 'industry' standard' work has been done this would be relatively simple (e.g. "urves ciculation failing was used to obtain 1m samples from which? B (was guiverised to produce a 30 g charge for meenafistom hat are project. Such as where there is coarse application may be required. Such as where there is coarse application my be required. Such as where
which regular (one-metre) intervals were sawn with:

- one quarter core dispatched for analysis using a mixed acid digestion and ICP-AES methodology
- the other three quarters was retained for future metallurgical test work and archival purposes

Criteria	JORC Code Explanation		Commentary			
Sampling techniques (continued)		 Th Th of 	C drilling Program irty-eight (38) RC drill holes (DDH) were drilled ackaringa project to infill historic holes and allo the existing Mineral Resources. There were 12 rite Hill, three at Big Hill and 23 at Railway: RC drilling was used to obtain a representati means of riffle splitting with samples submitt using the above-mentioned methodologies. The 2017 drill samples are all assayed by IC of 33 elements.	w re-estimation holes drilled at ive sample by red for analysis		
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	(48 (R(wit pe Infi HX dri sa	 (48) diamond drill holes and eighty-one (81) reverse circulatic (RC) drill holes. Diamond drilling was predominantly complet with standard diameter, conventional HQ and NQ utilising RC percussion pre-collars to an average 25 metres (see Drill hole Information for further details). Early (1960-1970) drill holes u HX – AX diameters dependent on drilling depth. Reverse circulatic drilling utilised standard hole diameters (4.8"-5.5") with a face sampling hammer. During 2013, a single diamond drill hole (13BED01) was completed at the Railway deposit using a triple tube system 			
		Year	Drilling	Metres		
		1967	1 diamond drill hole	304.2		
		1970	4 diamond drill holes	496.6		
		1980	18 diamond and 1 RC drill hole	1711.23		
		1993	2 diamond drill holes	250		
		1998	11 RC drill holes	1093.25		
		2011	11 RC drill holes	1811		
		2012	20 RC drill holes	2874.25		
		2013	1 diamond drill hole	349.2		
		2016	8 diamond drill holes	1484.8		
		2017	14 diamond drill holes and 38 RC drill holes	6472		
		Total	48 diamond and 81 RC drill holes	16,846.53		
		tuk be	ring 2016–2017, diamond drilling was comple be system with a HQ3 diameter.Holes were dril tween 40 and 60 degrees from horizontal and is oriented as part of the logging process.	led at angles		

Criteria	JORC Code Explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/ coarse material. 	 Diamond Drilling Historical core recoveries were accurately quantified through measurement of actual core recovered versus drilled intervals. Historical diamond drilling employed conventional drilling techniques while diamond drilling completed by Broken Hill Prospecting utilised a triple-tube system to maximise sample recovery. Core recovery of 99.7% was achieved during completion of drill hole 13BED01. Core recovery of 98% was achieved during the 2016 diamond drilling program. Core recovery of 93.3% was achieved during the 2017 diamond drilling program. No relationship between sample recovery and grade has been observed. Reverse Circulation Drilling Reverse circulation sample recoveries were visually estimated during drilling programs. Where the estimated sample recovery was below 100% this was recorded in field logs by means of qualitative observation. Reverse circulation drilling employed adequate air (using a compressor and booster) to maximise sample recovery. No relationship between sample recovery and grade has been observed.

Criteria		JORC Code Explanation	Commentary								
 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 A qualified geoscientist has logged all reported drill holes in their entirety. This logging has been completed to a level of detail considered to accurately support Mineral Resource estimation and metallurgical studies. The parameters logged include litholog alteration, mineralisation and oxidation. These parameters are be qualitative and quantitative in nature. Diamond drilling completed in 2017 by BPL has been subject to geotechnical logging with parameters recorded including rock-quality designation (RQD), fracture frequency and hardnes During 2013, a considerable amount of historical drilling was re-logged through review of available core stored at Broken Hil as well the re-interpretation of historical reports where core or percussion samples no longer exist. A total of eight (8) diamond drill holes and sixteen (16) diamond drill holes with pre-collars were re-logged as detailed below: 										
				Denesit	May Dauth	Hele Trees	Pre-Colla				
			Hole ID	Deposit	Max Depth	Hole Type	Depth (m				
	67TH01	Pyrite Hill	304.2	DDH ¹	_						
	70TH02	Pyrite Hill	148.6	DDH ¹	_						
	70TH03	Pyrite Hill	141.4	DDH ¹	_						
	70BH01	Big Hill	102.7	DDH ¹	_						
	70BH02	Big Hill	103.9	DDH ¹	_						
			80PYH13	Pyrite Hill	77	DDH ¹	_				
			80PYH14	Pyrite Hill	300.3	DDH ¹	_				
			80BGH09	Big Hill	100.5	DDH ¹	_				
			80PYH01	Pyrite Hill	24.53	PDDH ²	6				
			80PYH02	Pyrite Hill	51.3	PDDH ²	33.58				
			80PYH04	Pyrite Hill	55	PDDH ²	38.7				
			80PYH05	Pyrite Hill	93.6	PDDH ²	18				
			80PYH06	Pyrite Hill	85.5	PDDH ²	18				
			80PYH07	Pyrite Hill	94.5	PDDH ²	12				
			80PYH08	Pyrite Hill	110	PDDH ²	8				
			80PYH09	Pyrite Hill	100.5	PDDH ²	8				
			80PYH10	Pyrite Hill	145.3	PDDH ²	25.5				
			80PYH11	Pyrite Hill	103.1	PDDH ²	18				
			80PYH12	Pyrite Hill	109.5	PDDH ²	4.2				
		80BGH05	Big Hill	54.86	RCDDH ³	45.5					
			80BGH06	Big Hill	68.04	RCDDH ³	58				
		80BGH08	Big Hill	79.7	RCDDH ³	69.9					
	93MGM01	Pyrite Hill	70	RDDH ⁴	24						
			93MGM02	Pyrite Hill	180	RDDH ⁴	48				
		3 Diamond	drill hole with per drill hole with reve	cussion pre-collar erse circulation pre- ry air blast pre-colla							
			0	vailable for dril	is been used to ling completed k	, 0 0	00 0				
					neo trave of ching	o from rovoroo	oiroulatio				

 Representative reference trays of chips from reverse circulation drilling completed post 2010 have been retained by Broken Hill Prospecting.

Criteria	JORC Code Explanation	Commentary
Sub-sampling techniques	 If core, whether cut or sawn and whether quarter, half or all core 	Diamond Drilling (DDH) Pre-1990
and sample preparation	 taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. 	 Core samples were hand-split or sawn with re-logging of available historical core (see Logging) indicating a 70:30 (retained:assayed) split was typical. The variation of sample ratios noted are consid- ered consistent with the sub-sampling technique (hand-splitting)
	• For all sample types, the nature,	 No second half samples were submitted for analysis
	quality and appropriateness of the sample preparation	 It is considered water used for core cutting is unprocessed and unlikely to have introduced sample contamination
	<i>Quality control procedures</i>	 Procedures relating to the definition of the line of cutting or splitting are not available. It is expected that 'standard industry practice' for the partial was explicitly a second representing the second representing the second representation.
	adopted for all sub-sampling stages to maximise representivity	the period was applied to maximize sample representivity
	of samples.	Post-1990
	 Measures taken to ensure that 	 NQ drilling core was sawn with half core submitted for assay
	the sampling is representative	 HQ drilling core was sawn with quarter core submitted for assay
	of the in situ material collected,	 No second half samples were submitted for analysis It is appridered water used for acre outting is uppresented and
	including for instance results for field duplicate/second-half	 It is considered water used for core cutting is unprocessed and unlikely to have introduced sample contamination
	 sampling. Whether sample sizes are appropriate to the grain size of 	 Procedures relating to the definition of the line of cutting or splitting are not available. It is expected that 'standard industry practice' for the period was applied to maximise sample representivity
	the material being sampled.	2016 Metallurgical Drilling
		 All HQ drill core was sawn into halves, with each half then re-sawn to provide 4 lengths of quarter core for each interval.
		 One half core was submitted for assay
		 One quarter core was submitted for metallurgical test work
		 One quarter core was retained for archive
		 It is considered that the water used for core cutting is most unlikely to have introduced sample contamination
		 Sample sawing and processing for test work were undertaken according to 'standard industry practice' to maximise sample representivity
		2017 Diamond Drilling
		 All HQ drill core was sawn into halves, with each half then re-sawn to provide 4 lengths of quarter core for each interval.
		 One quarter – one half core was submitted for assay.
		 One quarter – three quarter core was retained for archive.
		 One quarter – three quarter core was retained for archive. It is considered that the water used for core cutting is most unlikely
		to have introduced sample contamination.
		 Sample sawing and processing for test work were undertaken according to 'standard industry practice' to maximise sample representivity.

Criteria	JORC Code Explanation	Commentary
Sub-sampling		Historical Reverse Circulation Drilling
techniques and sample		 Sub-sampling of reverse circulation/percussion chips was achieved using a cyclone with cone or riffle splitter
preparation (continued)		 During drilling operations, the sample cyclone and splitter were regularly cleaned to prevent down hole sample contamination
(Dry sampling was achieved with the use of adequate air, using compressor and booster, where groundwater was encountered
		During reverse circulation drilling completed by Broken Hill Prospecting, duplicate samples were collected at the time of dril These were obtained by spearing the bulk material held in the PVG sacks using a spear made of 40mm diameter PVC pipe; three samples were speared through the full depth of the bulk material a these were combined to form one sample
		The Thackaringa drilling database includes a total of 139 field duplicates collected during reverse circulation drilling. This reflec a ratio of approximately one field duplicate in every 32 samples (3.1%) for drill holes where duplicates were collected (31 drill hol for 4469 metres) and an overall ratio of one field duplicate in eve 42 samples (2.4%) for all reverse circulation drill holes (43 drill hol for 5801.5 metres).
		 Statistical analysis of field duplicates collected during drilling completed by Broken Hill Prospecting (119 duplicates representir 86% of all field duplicates) considered 18 elements of which only chromium, lanthanum and titanium show some bias in the duplic samples. For cobalt, the confidence limits were evenly placed eith side of zero and the duplicates are deemed to be representative the original samples.
		2017 Reverse Circulation Drilling
		 Sub-sampling of reverse circulation/percussion chips was achiev using a riffle splitter.
		 During drilling operations, the splitter was regularly cleaned to prevent down hole sample contamination.
		 Dry sampling was achieved with the use of adequate air, using a compressor and booster, where groundwater was encountered.
		 During reverse circulation drilling completed by Broken Hill Prospecting, duplicate samples were collected at the time of drilli These were obtained by riffle splitting the remnant bulk sample following collection of the primary split.
		 Field duplicate samples were collected regularly during drilling (fo every 18th sample on average).
		 Assay results received to date include analysis of 201 field duplic pairs from 38 RC drill holes.
		 A measure of the average precision of the sampling, sample preparation and assaying methods, given by the mean per cent difference (MPD) assay values of the duplicate pairs is summarise below.
		RC Field Duplicate Pairs
		Co Cut-Off Count Co MPD S MPD Fe MPD
		All 201 10% 8% 9%

Criteria	JORC Code Explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control proce- dures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The nature and quality of all assaying and laboratory procedures employed for samples obtained through drilling (diamond and reverse circulation) are considered 'industry standard' for the respective periods The assay techniques employed for drilling (diamond and reverse circulation) include mixed acid digestion with ICP-OES and AAS finishes. These methods are considered appropriate for the targeted mineralisation and regarded as a 'near total' digestion technique with resistive phases not expected to affect cobalt analyses All samples have been processed at independent commercial laboratories including AMDEL, Australian Laboratory Services (ALS), Analabs and Genalysis All samples from drilling completed by Broken Hill Prospecting during 2011-2012 were assayed at ALS in Orange, New South Wales. All samples from drilling completed by Broken Hill Prospecting during 2016-2017 were assayed at ALS Adelaide, South Australia. ALS is a NATA Accredited Laboratory and qualifies for JAS/ANZ ISO9001:2008 quality systems. ALS maintains robust internal QAQC procedures (including analysis of standards, repeats and blanks). To monitor the accuracy of assay results from the 2017 Thackaringa drilling, CRM standards were included in the assay sample stream every 24 samples (on average) for RC chips and every 30 samples for diamond core. The CRM samples were purchased from Ore Research & Exploration Pty Ltd and the results are summarised below:

				Col	oalt			Sulp	ohur			Ire	on	
OREAS	Standard	Count	1SD	2SD	3SD	+SD3	1SD	2SD	3SD	+SD3	1SD	2SD	3SD	+SD3
160	Low S Blank (2.8ppm Co)	32	29	1	-	2	24	_	_	8	12	6	10	4
162	Med Grade (631ppm Co)	70	50	16	4	-	45	22	3	-	16	17	16	21
163	Low Grade (230ppm Co), mod S (10.4%)	57	44	11	2	1	11	35	10	2	3	4	4	47
165	High Grade (2445ppm Co)	37	30	7	_	_	21	13	3	_	5	9	10	13
166	High Grade (1970ppm Co)	60	48	11	_	1	50	8	_	2	11	5	8	36
		256	201	46	6	4	151	78	16	12	47	41	48	121
		PCT	79%	18%	2%	2%	59%	30%	6%	5%	18%	16%	19%	47%

Cobalt CRM Standards

Internal COB assay QA/QC protocols, cobalt performed well with 96% standard analyses falling within two standard deviations of the certified value; and 79% within one SD. No systematic out-of-specification trends were identified, and there was no discernible tendency for a particular Co standard to preferentially assay either higher or lower than the certified Co concentration.

Cobalt Blanks

A number of blanks were also submitted with the RC chip and diamond core samples — the OREAS160 CRM is essentially a low-sulfide blank with respect to cobalt (2.8ppm) and the results of assay of this standard are summarised above.

Based on the assay of standards and blanks with 96% of the Co results falling within two standard deviations of the certified value, it is concluded that the assay results for Co are likely to be representative for the material submitted with no additional source of inaccuracy or bias identified.

Sulfur CRM Standards

Sulfur was reasonably well-performed with 89% of the total 256 standard analyses falling within two standard deviations of the certified value and 96% within 3SD.

Iron CRM Standards

Iron analysis of standards showed poor accuracy with a tendency to assay low -47% of the assays fall outside of 3 SD, typically, but not exclusively, lower than the certified value.

Criteria	JORC Code Explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Historical drilling intersections were internally verified by personnel employed by previous explorers including CRAE Pty Limited, Central Austin Pty Limited and Hunter Resources. Broken Hill Prospecting has completed a systematic review of the related data. The Thackaringa drilling database exists in electronic form as a
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) 	Microsoft Access database. Information related to individual drill holes is stored in digital files as extracted from historical reports (typically including location plan, section, logs, photos, surveys, assays and petrology).
	protocols.Discuss any adjustment to	 Historical drilling data available in electronic form has been re-formatted and imported into the drilling database.
	assay data.	 Quantitative historical drilling data, including assays, have been captured electronically during systematic data compilation and validation completed by Broken Hill Prospecting.
		 Samples returning assays below detection limits are assigned half detection limit values in the database.
		 All significant intersections are verified by the Company's Exploration Manager and independent geological consultant
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and 	 Historical drill collars have been relocated and surveyed using a differential GPS (DGPS). In the instances where no collar could be located the position has been derived from georeferenced historical plans.
	 other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 During systematic data validation completed in 2016, three drill holes at Big Hill were found to be incorrectly located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plans (reported to the nearest metre) as the collars had been destroyed. These corrections were captured in the Big Hill Mineral Resource estimate.
		 Down hole surveys using digital cameras were completed on all post 2000 drilling. Down hole surveys for some earlier drilling were estimated from hole trace and section data where raw survey data was not reported.
		 All 2017 Thackaringa drill hole collars were located and surveyed with DGPS by an independent surveyor with reported accuracy of ±0.05m in horizontal and vertical measurement.
		 Downhole surveys using digital cameras were completed on all 2017 drill-holes.
		• All data is recorded in the GDA94 datum; UTM Zone 54 (MGA54).
		 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine™ software.
		 The quality of topographic control is deemed adequate in consideration of the results presented in this release.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and 	 The data density of existing drill holes at Thackaringa has been materially increased by the 2017 drilling program which was undertaken primarily to undertake infill drilling.
	distribution is sufficient to estab- lish the degree of geological and grade continuity appropriate for	 Detailed geological mapping supported by drill-hole data of sufficient spacing and distribution to establish a 3D geological model.
	 the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The level of geological and grade continuity is appropriate for the Mineral Resource estimation methodologies used and the classifications applied (being wholly Inferred Mineral Resources). Note that a recalculation of the Mineral Resource using 2017 drilling and assay data will commence in May 2017.
		 No sample compositing has been applied to reported intersections.

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The 2017 drill holes at the Thackaringa project were typically angled at -40° or -60° to the horizontal and drilled perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences. Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width. The drilling orientation is not considered to have introduced a sampling bias on assessment of the current geological interpretation.
Sample security	 The measures taken to ensure sample security. 	 Sample security procedures are considered to be 'industry standard' for the respective periods. Following recent drilling completed by BPL, samples were trucked by an independent courier directly from Broken Hill to ALS, Adelaide. BPL consider that risks associated with sample security are limited given the nature of the targeted mineralisation.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 In late 2016 an independent validation of the Thackaringa drilling database was completed: The data validation process consisted of systematic review of drilling data (collars, assays and surveys) for identification of transcription errors Following review, historical drill hole locations were also validated against georeferenced historical maps to confirm their location Three (3) drill holes at Big Hill were found to be incorrectly located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plans (reported to the nearest metre) as the collars had been destroyed. These corrections were captured in the Big Hill Mineral Resource estimate Total depths for all holes were checked against original reports Final 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine™ software Audits and reviews of QAQC results and procedures are further described in preceding sections of this table including Quality of assay data and laboratory tests, Sub-sampling techniques and sample preparation and Logging.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary														
Mineral tenement and land	 Type, reference name/number, location and ownership including agreements or material issues with third parties such 	25 ki	Thackaringa (lometres wes tenements wi	st-southwe	est of Broker	n Hill and con										
tenure status	as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and	Tenement	Registered & Beneficial Holder	Minerals	Grant Date	Expiry Date	Annual Expenditure Commit- ment									
	environmental settings.The security of the tenure held	environmental settings.The security of the tenure held	environmental settings.The security of the tenure held	environmental settings.The security of the tenure held	environmental settings.The security of the tenure held	environmental settings.The security of the tenure held	The security of the tenure held	The security of the tenure held	The security of the tenure held	-	EL6622	Broken Hill Prospecting Limited (BPL)	Group 1	30/08/2006	29/08/2017	\$47,000
	with any known impediments to	EL 8143	BPL	Group 1	26/07/2013	26/07/2017	\$14,000									
	obtaining a licence to operate in the area.	ML86	BPL	Cobalt, iron, nickel, platinum, sulphur	05/11/1975	04/11/2017	\$75,000									
		ML87	BPL	Cobalt, iron, nickel, platinum, sulphur	05/11/1975	04/11/2017	\$75,000									
		 The project tenure is subject to a Farm-In agreement between Cobalt Blue Holdings Limited (COB) and Broken Hill Prospecting Limited (BPL). The nature of this agreement is detailed in the COE Replacement Prospectus (as released 4 January 2017). The nearest residence (Thackaringa Station) is located approxi- mately three kilometres west of EL6622. 														
			 EL6622 is transected by the Transcontinental Railway; the Barrier Highway is located the north of the licence boundaries. 													
		 The majority of the project tenure is covered by Western Lan Lease which is considered to extinguish native title interest. However, Native Title Determination NC97/32 (Barkandji Traditional Owners 8) is current over the area and may be rel to Crown Land parcels (e.g. public roads) within the project a 					terest. ndji ly be relevant									
		Nationand a	oroject tenure onal Park and approximately oly Reserve (L	or Wilder 20 kilom	ness Area (K etres south (inchega Nati	onal Park)									
			Company is r ence to opera			diments to ob	otaining									
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	unde the J		o the BPL which for	. 2016 drilling ms part of th	g program is ne Cobalt Blu	vities appended to e Prospectus									

Criteria	JORC Code Explanation	Commentary					
Geology	 Deposit type, geological setting 	Regional Geological Setting					
	and style of mineralisation.	 The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal succession named the Willyama Supergroup, which crops out as several inliers in western New South Wales, including the Broken Hill Block (Willis, et al., 1982). Exploration by BPL Limited has been focused on the discovery of cobaltiferous pyrite deposits and Broken Hill type base-metal mineralisation both of which are known from historical exploratior in the district. 					
		The project area covers portions of the Broken Hill and Thackaring group successions which host the majority of mineralisation in the region, including the Broken Hill base-metal deposit. The Sundown Group suite is also present. The extensive sequence of quartz-albite-plagioclase rock that hosts the cobaltiferous pyrite mineralisation is interpreted as belonging to the Himalaya Formatic which is stratigraphically at the top of the Thackaringa Group.					
		Local Geological Setting					
		• The oldest rocks in the region belong to the Curnamona Craton which outcrops on the Broken Hill and Euriowie blocks.					
		 The overlying Proterozoic rocks have been broadly subdivided into three major groupings, of which the oldest groups are the highly deformed metasediments and igneous derived rocks of the Thackaringa and Broken Hill groups. They comprise a major part of the Willyama Supergroup and host the giant Broken Hill massis Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill blo of the Curnamona Craton. 					
		Mineralisation Style					
		 The Thackaringa Mineral deposits (Pyrite Hill, Big Hill and Railway are characterised by large tonnage cobaltiferous-pyrite minerali- sation hosted within siliceous albitic gneisses and schists of the Himalaya Formation. 					
		 Cobalt mineralisation exists within stratabound pyritic horizons where cobalt is present within the pyrite lattice. Mineralogical studies have indicated the majority of cobalt (~85%) is found in solid solution with primary pyrite (Henley 1998). 					
		 A strong correlation between pyrite content and cobalt grade is observed. 					
		 The regional geological setting indicates additional mineralisation targets including: 					
		 Stratiform Broken Hill Type (BHT) Copper-Lead-Zinc-Silver deposits 					
		 Copper-rich BHT deposits 					
		 Stratiform to stratabound Copper-Cobalt-Gold deposits 					
		 Epigenetic Gold and Base metal deposits 					
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 See drill holle summaries below: 					
	easting and northing of the drill hole collar						
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 						
	 dip and azimuth of the hole down hole length and interception depth 						

Drill hole summaries

		Max Depth								Pre-Collar
Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
17THD01	Pyrite Hill	124.2	MGA54	518382	6449551	289.06	-40	222	DDH ¹	
17THD02	Pyrite Hill	149.7	MGA54	518475	6449445	290.54	-40	258	DDH ¹	
17THD03	Pyrite Hill	78.5	MGA54	518370	6449190	303.28	-40	285.1	DDH ¹	
17THD04	Big Hill	119.8	MGA54	521078	6449589	278.41	-45	155.1	DDH ¹	
17THD05	Big Hill	99.5	MGA54	521669	6449889	278.5	-40	131	DDH ¹	
17THD06	Railway	165.5	MGA54	521970	6450705	287.2	-45	128	DDH ¹	
17THD07	Railway	274.6	MGA54	522569	6451282	270.67	-45	156.5	DDH ¹	
17THD08	Railway	132.5	MGA54	522784	6451280	268.881	-45	326	DDH ¹	
17THD09	Railway	120.5	MGA54	522905	6451511	278.471	-40	152.5	DDH ¹	
17THD10	Railway	84.2	MGA54	522992	6451569	279.779	-45	130	DDH ¹	
17THD11	Railway	111.5	MGA54	523109	6451682	280.847	-40	160.5	DDH ¹	
17THD12	Railway	126.5	MGA54	522796	6451419	272.936	-40	140.75	DDH ¹	
17THD13	Railway	105.5	MGA54	522836	6451456	276.747	-40	138.5	DDH ¹	
17THD14	Pyrite Hill	99	MGA54	518375	6449089	294.25	-60	285	DDH ¹	
17THR001	Railway	156	MGA54	522615	6451277	267.561	-60	120	RC⁵	
17THR002	Railway	160	MGA54	522573	6451299	268.511	-60	120	RC⁵	
17THR003	Railway	96	MGA54	522124	6450868	277.39	-60	130	RC⁵	
17THR004	Railway	150	MGA54	522387	6451319	271.453	-60	120	RC⁵	
17THR005	Railway	72	MGA54	522024	6450783	282.154	-60	120	RC⁵	
17THR006	Railway	114	MGA54	522049	6450780	284.01	-58	125	RC⁵	
17THR007	Railway	180	MGA54	521965	6450699	286.585	-59	125	RC⁵	
17THR008	Railway	132	MGA54	521917	6450562	291.682	-56	105	RC⁵	
17THR009	Railway	120	MGA54	521906	6450496	292.751	-58	105	RC⁵	
17THR010	Railway	72	MGA54	521959	6450398	286.445	-56	285	RC⁵	
17THR011	Railway	126	MGA54	522302	6451169	276.812	-56	120	RC⁵	
17THR012	Railway	180	MGA54	522440	6451304	274.931	-58	173	RC⁵	
17THR013	Big Hill	102	MGA54	521750	6449942	284.89	-60	130.5	RC⁵	
17THR013	Big Hill	102	MGA54	521628	6449796	277.545	-53	130	RC⁵	
17THR015	Big Hill	104	MGA54	521793	6449918	284.847	-58	310	RC⁵	
17THR016	Pyrite Hill	138	MGA54	518446	6449209	290.391	-57	283	RC⁵	
17THR017	Pyrite Hill	120	MGA54	518449	6449263	293.147	-56	281.5	RC⁵	
17THR018	Pyrite Hill	78	MGA54	518027	6449806	289.567	-60	201.5	RC⁵	
17THR019	Pyrite Hill	70	MGA54	518105	6449754	287.701	-55	222	RC⁵	
17THR020	Pyrite Hill	66	MGA54	518166	6449695	288.685	-60	222	RC⁵	
17THR021	Pyrite Hill	78	MGA54	518183	6449717	286.007	-60	222	RC⁵	
17THR021	Pyrite Hill	156	MGA54	518510	6449306	286.82	-55	281	RC⁵	
17THR022	Pyrite Hill	150	MGA54	518506	6449377	289.481	-57	264.5	RC⁵	
17THR023	Pyrite Hill	150	MGA54	518457	6449498	288.137	-59.5	228.5	RC⁵	
17THR024	Pyrite Hill	114	MGA54	518311	6449609	287.463	-60	222	RC⁵	
17THR025	Pyrite Hill	114	MGA54	518268	6449681	284.164	-60	222	RC⁵	
17THR027	Pyrite Hill	72	MGA54	518243	6449646	287.176	-60	222	RC⁵	
17THR027	Railway	150	MGA54	522457	6451167	300.659	-60	350	RC⁵	
17THR028	Railway	162	MGA54	522437	6451084	295.964	-60	175	RC⁵	
17THR029	Railway	138	MGA54	522783	6451423	270.814	-55	140	RC⁵	
17THR030	Railway	120	MGA54 MGA54	522945	6451566	276.19	-55	140	RC⁵	
17THR031 17THR032	Railway	132	MGA54	522945	6451473	270.19	-53	145	RC⁵	
17THR032		120	MGA54	522501		269.63	-60	175	RC⁵	
	Railway			522301	6451315				RC⁵	
17THR034	Railway	132	MGA54		6451214	275.947	-55	127	RC⁵	
17THR035	Railway	156	MGA54	522259	6451120	275.749	-55.2	130		
17THR036	Railway	92	MGA54	522186	6450998	275.339	-61.2	130	RC ⁵	
17THR037	Railway	126	MGA54	522148	6450941	274.202	-55	126	RC⁵	
17THR038	Railway	168	MGA54	521927	6450619	289.555	-55	108	RC⁵	

Diamond drill hole 1

2 Diamond drill hole with percussion pre-collar

Diamond drill hole with rotary air blast pre-collar 4

3 Diamond drill hole with reverse circulation pre-collar 5 Reverse Circulation drill hole

Historic down-hole information

	.	Max Depth					Б.			Pre-Collar
Hole ID	Deposit	(m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Depth
67TH01	Pyrite Hill	304.2	MGA94_54	518564.805	6449460.03	280.643	-55	260.6	DDH ¹	
'0TH02	Pyrite Hill	148.6	MGA94_54	518272.42	6449680.54	284.08	-61	218.6	DDH ¹	
70TH03	Pyrite Hill	141.4	MGA94_54	518449.85	6449211.88	289.81	-62	283.6	DDH ¹	
70BH01	Big Hill	102.7	MGA94_54	520850.56	6449308.5	284.56	-47	318.6	DDH ¹	
70BH02	Big Hill	103.9	MGA94_54	520786.12	6449264.4	280.1	-50	318.6	DDH ¹	
30PYH13	Pyrite Hill	77	MGA94_54	518358.2	6449037.7	290.35	-50	280.7	DDH ¹	
30PYH14	Pyrite Hill	300.3	MGA94_54	518661.18	6449287.62	277.96	-60	280.7	DDH ¹	
30PYH03	Pyrite Hill	35	MGA94_54	518251.5	6449569.9	299.4	-60	220.7	PDDH ²	22
BOBGH09	Big Hill	100.5	MGA94_54	520657.43	6449292.52	272.80	-50	144.7	DDH ¹	
30PYH01	Pyrite Hill	24.53	MGA94_54	518246.2	6449565.7	301.1	-60	202.7	PDDH ²	6
30PYH02	Pyrite Hill	51.3		518260.7	6449574.2	297.6	-60	220.7	PDDH ²	33.58
30PYH04	Pyrite Hill	55	MGA94_54	518366.55	6449231.74	308.34	-60	295.7	PDDH ²	38.7
30PYH05	Pyrite Hill	93.6	MGA94_54	518226.97	6449678.19	285.18	-49	222.7	PDDH ²	18
30PYH06	Pyrite Hill	85.5	MGA94_54	518163.48	6449757.3	283.73	-54.4	222.7	PDDH ²	18
30PYH07	Pyrite Hill	94.5	MGA94_54	518084.06	6449818.36	285.16	-55	222.7	PDDH ²	12
30PYH08	Pyrite Hill	110	MGA94_54	518009.54	6449885.43	286.14	-60	222.7	PDDH ²	8
30PYH09	Pyrite Hill	100.5	MGA94_54	517917.4	6449931.76	286.55	-48.5	222.7	PDDH ²	8
30PYH10	Pyrite Hill	145.3	MGA94_54	518392.96	6449565.96	285.53	-50	222.7	PDDH ²	25.5
30PYH11	Pyrite Hill	145.5	MGA94_54	518440.96	6449329.52	297.25	-50	280.7	PDDH ²	18
30PYH12	Pyrite Hill	109.5	MGA94_54	518440.90	6449137.31	297.23	-50	280.7	PDDH ²	4.2
30BGH05	,	54.86					-60	163.7	RCDDH ³	4.2
	Big Hill		MGA94_54	520955.35	6449534.41	288.93				40.0
98TC01	Railway	100	MGA94_54	522750.06	6451339.73	267.27	-60	158.9	RC⁵	
98TC02	Railway	100	MGA94_54	522392.41	6451386.83	266.78	-60	140.9	RC⁵	
98TC03	Big Hill	84	MGA94_54	520816.45	6449369.39	313.05	-60	135.9	RC⁵	
98TC04	Big Hill	138.25	MGA94_54	520860.05	6449450.85	304.09	-60	140.9	RC⁵	
98TC05	Big Hill	70	MGA94_54	520728	6449328.07	288.63	-50	122.9	RC⁵	
98TC06	Big Hill	108	MGA94_54	520715	6449343	285.13	-60	125.9	RC⁵	
98TC07	Big Hill	120	MGA94_54	520785.97	6449388.21	299.22	-50	133.9	RC⁵	
98TC08	Big Hill	90	MGA94_54	520801.95	6449477.81	291.01	-60	150.9	RC⁵	
98TC09	Big Hill	114	MGA94_54	520822.21	6449460.79	296.25	-60	133.9	RC⁵	
98TC10	Big Hill	134	MGA94_54	521018	6449576	281.5	-50	172.9	RC⁵	
98TC11	Railway	35	MGA94_54	522411.2	6451373.96	267.01	-60	132.9	RC⁵	
30BGH06	Big Hill	68.04	MGA94_54	520880	6449472	299	-60	170.7	RCDDH ³	58
30BGH08	Big Hill	79.7	MGA94_54	520768.79	6449390.93	296.29	-60	126.7	RCDDH ³	69.9
30BGH07	Big Hill	23	MGA94_54	521136.56	6449599	274.11	-60	177.7	RC ⁵	
93MGM01	Pyrite Hill	70	MGA94_54	518185.44	6449713.77	286.28	-60	222.8	RDDH ⁴	24
93MGM02	Pyrite Hill	180	MGA94_54	518515.45	6449454.67	284.79	-60	258.8	RDDH ⁴	48
11PHR01	Pyrite Hill	150	MGA94_54	518435.47	6449072.76	285.34	-60	279.06	RC⁵	
11PHR02	Pyrite Hill	198	MGA94_54	518499.92	6449159.31	283.79	-60	279.06	RC⁵	
1PHR03	Pyrite Hill	240	MGA94_54	518560.3	6449189.61	280.26	-60	279.06	RC⁵	
11PHR04	Pyrite Hill	186	MGA94_54	518528.63	6449257	284.03	-60	279.06	RC⁵	
1PHR05	Pyrite Hill	234	MGA94_54	518584.25	6449397.62	280.22	-60	259.06	RC⁵	
1PHR06	Pyrite Hill	180	MGA94_54	518490.9	6449522.59	284.02	-60	234.06	RC⁵	
1PHR07	Pyrite Hill	174	MGA94_54	518413.47	6449592.9	282.86	-60	219.06	RC⁵	
11PHR08	Pyrite Hill	180	MGA94_54	518342.74	6449655.85	282.88	-60	218.06	RC⁵	
11PSR01	Pyrite Hill	59	MGA94_54	518742.73	6448864	268.38	-60	258.06	RC⁵	
11PSR02	Pyrite Hill	132	MGA94_54	518719.38	6448960.01	270.41	-60	255.06	RC⁵	
11PSR03	Pyrite Hill	78	MGA94_54	518686.99	6449055.35	272.79	-60	255.06	RC⁵	
2BER01	Railway	157	MGA94_54	521667.31	6449893.23	277.69	-60	141	RC⁵	
12BER01		132	MGA94_54	521007.31		273.53		162	RC⁵	
	Railway				6449690.67		-60		RC⁵	
12BER03	Railway	151	MGA94_54	521879.01	6450435.47	288.59	-60	102	RU	

Diamond drill hole 1

2

Diamond drill hole with rotary air blast pre-collar 4

5 Reverse Circulation drill hole

Diamond drill hole with percussion pre-collar З Diamond drill hole with reverse circulation pre-collar

Historic down-hole information (continued)

Hole ID	Deposit	Max Depth (m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Pre-Collar Depth
12BER04	Railway	148	MGA94_54	522353.92	6451268.35	274.35	-60	131	RC⁵	
12BER05	Railway	145	MGA94_54	522439.47	6451167.84	299.73	-60	124	RC⁵	
12BER06	Railway	169	MGA94_54	522481.37	6451091.35	295.95	-60	118	RC⁵	
12BER07	Railway	115	MGA94_54	522323.72	6450748.75	277.91	-60	144	RC⁵	
12BER08	Railway	193	MGA94_54	522220.79	6450811.8	273.16	-60	129	RC⁵	
12BER09	Railway	139.75	MGA94_54	522101.25	6450881.44	275.91	-60	129	RC⁵	
12BER10	Railway	151	MGA94_54	521953.45	6450716.18	284.49	-60	129	RC⁵	
12BER11	Railway	193	MGA94_54	522737.22	6451376.61	265.83	-60	153	RC⁵	
12BER12	Railway	111	MGA94_54	522909.73	6451516.76	277.36	-60	153	RC⁵	
12BER13	Railway	205	MGA94_54	522883.81	6451557.54	271.03	-60	156	RC⁵	
12BER14	Railway	151	MGA94_54	523124.83	6451637.07	288.36	-60	152	RC⁵	
12BER15	Railway	109	MGA94_54	523311.3	6451841.7	283.95	-60	154	RC⁵	
12BER16	Railway	115	MGA94_54	522994.08	6451591.99	275.95	-60	156	RC⁵	
12BER17	Railway	115.5	MGA94_54	522516.5	6451314.94	269.1	-60	153	RC⁵	
12BER18	Railway	157	MGA94_54	522332.75	6451281.31	272.29	-60	129	RC⁵	
12BER19	Railway	97	MGA94_54	522240.55	6451067.15	276.16	-60	135	RC⁵	
12BER20	Railway	120	MGA94_54	521291.69	6449733.63	276.95	-60	165	RC⁵	
13BED01	Railway	349.2	MGA94_54	522480.21	6451092.43	296.01	-60	300.7	DDH ¹	
16DM01	Pyrite Hill	161.6	MGA94_54	518411.38	6449593.89	282.69	-60	215.5	DDH ¹	
16DM02	Pyrite Hill	183.4	MGA94_54	518526.62	6449261.58	284.18	-60	285.0	DDH ¹	
16DM03	Big Hill	126.5	MGA94_54	521037.1	6449567.49	283.01	-60	158.5	DDH ¹	
16DM04	Big Hill	105.4	MGA94_54	520814.74	6449464.4	296.18	-55	128.5	DDH ¹	
16DM05	Railway	246.5	MGA94_54	522103.7	6450881.87	276.62	-60	128.5	DDH ¹	
16DM06	Railway	160.4	MGA94_54	522911.57	6451519.13	278.5	-60	152.5	DDH ¹	
16DM07	Railway	242.5	MGA94_54	522995.26	6451598.26	276.36	-60	156.1	DDH ¹	
16DM08	Railway	258.5	MGA94_54	522351.45	6451273.07	273.85	-60	130.9	DDH ¹	

1 Diamond drill hole

2 Diamond drill hole with percussion pre-collar

3 Diamond drill hole with reverse circulation pre-collar

4 Diamond drill hole with rotary air blast pre-collar

5 Reverse Circulation drill hole

Down hole length and interception depth - 2017 holes

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	S (%)	Fe (%)
7THD01	34	123	89	982	9.4	8.7
ncluding	35	41	6	1143	11.9	10.6
nd	50	55	5	1311	13.1	11.5
nd	81	122	41	1366	11.8	11
7THD02	47	134	87	911	8.8	9.2
ncluding	48	77	29	1238	11.1	11.4
and	116	134	18	1199	11.0	11.1
7THD03	40	63.5	23.5	894	11.6	10.8
ncluding	49	63	14	1076	14.3	12.4
7THD04	20	29	9	1033	8.6	8
1111201	72	96	24	703	8.8	8.1
7THD05	44	60	16	993	9.8	8.5
ncluding	44	56	12	1094	10.9	9.4
iciuuliig	71	76	5	840	6.4	<i>5.4</i> 6.3
ZTHDOG	39					
7THD06		85	46	1136	11.4	10.1
ncluding	40	70	30	1227	12.2	10.4
nd	76	85	9	1148	10.7	10.0
7THD07	15	128	113	879	8.1	8.8
ncluding	47	55	8	1048	11.7	10.3
nd	61	102	41	1452	12.5	12.3
	142	152	10	704	6	10.2
	199	204	5	706	4.9	6.5
7THR001	27	63	36	1075	10.6	10.4
ncluding	37	63	26	1280	11.9	11.5
	75	84	9	755	9.1	13.9
7THR002	37	43	6	711	6.9	8.2
	91	136	45	983	9.8	10.5
ncluding	102	136	34	1190	11.7	11.8
7THR003		59	55	937	9.3	9.4
	4 10	59 46	36			
ncluding				1212	11.6	11.0
7THR004	49	146	97	888	10.2	10.2
ncluding	51	113	62	1051	11.4	11.3
7THR005	52	72	20	1053	12.8	12.6
ncluding	53	63	10	1145	12.5	13.0
7THR006	14	74	60	754	8.6	8.7
ncluding	17	44	27	1176	12.5	12.1
7THR007	5	22	17	837	0	12.5
ncluding	12	19	7	1049	0	10.5
	128	154	26	1034	11.4	11.5
ncluding	128	146	18	1321	14.4	14.3
7THR008	37	78	41	1319	12.2	11.2
7THR009	29	65	36	957	9.4	9.2
ncluding	34	60	26	1150	11.1	10.2
	100	105	5	833	12.9	12.7
7THR010	51	57	6	729	4.9	5.3
7THR011	30	83	53	1116	12	10.9
ncluding	31	62	31	1423	15.5	13.5
7THR012	50	117	67	748	7.5	8.6
ncluding	59	67	8	1084	10.3	12.6
nd	75	102	27	1120	11.0	11.3
	172	177	5	725	6.4	6.4

Down hole length and interception depth – 2017 holes (continued)

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	S (%)	Fe (%)
17THR013	19	73	54	888	5.4	5
including	19	29	10	2576	8.8	7.7
7THR014	12	45	33	749	8.1	7.4
ncluding	25	33	8	1148	11.3	9.4
7THR015	40	48	8	995	8.9	8.1
7THR016	66	115	49	1096	12.9	13.4
ncluding	66	81	15	1184	14.2	13.9
and	89	114	25	1183	13.4	14.1
7THR017	54	112	58	1383	13.2	12.8
ncluding	56	85	29	2042	18.3	15.8
7THR018	47	63	16	1124	15.1	14.1
7THR019	42	59	17	1032	10.7	11.4
7THR020	29	49	20	1067	11.6	11.5
ncluding	29	36	7	1352	13.5	12.6
7THR021	44	64				
7THR021 7THR022	101	138	20 37	1204 1152	13.1 10.7	12.7 12
	91	138	46	1271	13.9	12
7THR023						
ncluding	91 114	97 125	6	1953 2707	18.7 21.1	16.6 26.5
nd 7THR027	114		11		31.1	26.5
	29	54	25	1176	12.6	11.8
ncluding 7THD08	<i>30</i> 19	47 103	17 84	1382 1013	14.1 12.8	12.5 15.6
7THD09	19	65	46	1234	14.8	13.8
7THD10	24	58.8	34.8	1269	14.2	12.5
ncluding	32.1	43.5	11.4	1454	15.5	13.4
and .	49.5	58.8	9.3	1777	20.9	16.7
7THD11	69.1	85	15.9	911	12.9	13.2
ncluding	75	85	10	1116	15.5	14.8
7THD12	19	63	44	956	10.7	10.9
ncluding	36	42	6	1064	13.6	12.9
and	43	63	20	1228	13.4	13.7
7THD13	35.2	63.16	27.96	943	11.1	10.1
ncluding	35.2	55	19.8	1040	11.8	10.7
7THD14	54	76.65	22.65	929	10.9	11.9
ncluding	54	65	11	1398	13.7	13.6
7THR024	68	82	14	1436	12.1	12.3
	96	139	43	1082	9.0	9.2
ncluding	110	139	29	1363	10.5	10.5
7THR025	59	103	44	956	10.8	12.4
ncluding	60	73	13	1493	15.4	14.0
and	92	103	11	1147	12.5	15.0
7THR026	66	89	23	1122	11.5	11.6
7THR028	19	39	20	1163	8.1	7.5
ncluding	20	30	10	1578	11.1	9.9
	78	138	60	831	8.2	7.8
ncluding	98	138	40	1012	9.6	8.7
ind	98	113	15	1979	19.3	16.5
7THR029	18	90	72	766	7.4	9.5
ncluding	43	75	32	1043	9.2	12.3
17THR030	24	81	57	1097	11.9	12.6
17THR032	26	31	5	1323	9.0	8.0
	44	97	53	1218	15.9	16.3

Down hole length and interception depth – 2017 holes (continued)

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	S (%)	Fe (%)
17THR033	31	48	17	842	7.2	6.9
including	39	48	9	1223	10.1	9.2
	97	115	18	685	6.1	5.9
17THR034	38	94	56	1036	10.2	10.6
including	38	74	36	1217	12.1	11.5
17THR035	54	78	24	812	8.6	8.0
Including	58	69	11	1008	10.3	9.6
	125	131	6	771	6.3	6.6
17THR036	26	87	61	921	8.9	9.1
including	26	72	46	1115	10.6	10.2
17THR037	18	67	49	1094	11.0	10.5
17THR038	69	96	27	1237	12.3	11.4

Down hole length and interception depth - historic holes

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	S (%)	Fe (%)
11PHR02	74	114	40	875	10.8	11.6
11PHR03	150	162	12	750	8.3	9.6
11PHR03	163	190	27	732	10.6	11.9
11PHR03	206	227	21	988	11.7	13
11PHR04	124	172	48	1049	12.8	12.9
11PHR05	197	219	22	1138	10.7	13.3
11PHR06	104	135	31	854	8.3	11.5
11PHR06	155	171	16	1315	12	12.2
11PHR07	96	147	51	941	9.5	9.9
11PHR08	103	115	12	1417	13.9	14.8
11PHR08	126	144	18	1048	12.6	14.2
12BER01	115	139	24	768	7.2	7.4
12BER02	18	25	7	1062	10.3	9.3
12BER02	113	123	10	907	8.5	8.6
12BER04	41	90	49	1191	11.4	12.7
12BER04	121	126	5	1241	9	11.2
12BER05	33	39	6	1109	7.9	9.2
12BER05	65	76	11	721	6.3	6.6
12BER06	131	169	38	844	8.3	12.8
12BER07	38	43	5	704	10	10.1
12BER09	33	92	59	841	9	11.6
12BER11	31	62	31	738	8.4	12.6
12BER11	92	159	67	1061	10	13.1
12BER11	173	193	20	737	6.7	8.3
12BER12	27	81	54	1430	18.1	18.9
12BER13	21	42	21	761	7.4	9.1
12BER13	65	75	10	1882	20.4	21.6
12BER14	28	55	27	1013	12.5	12.9
12BER16	25	100	75	1008	10.6	10.7
12BER17	92	99	7	739	6	6.3
12BER18	117	157	40	1017	11.2	11.4
12BER19	34	56	22	1151	10.4	10.8
12BER19	68	75	7	780	6.1	6
12BER20	21	46	25	731	6.9	7.5
13BED01	266	291.5	25.5	872	8.5	7.8

Down hole length and interception depth - historic holes (continued)

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	S (%)	Fe (%)
16DM01	96	147	51	851	9.1	8.6
16DM02	127	172	45	1118	13.8	13.6
16DM03	104	111	7	838	10.3	9
16DM04	91	99	8	887	9.1	8.4
16DM05	30	103	73	793	8.2	9
16DM05	199	211	12	830	25.1	22.1
16DM06	28	84	56	1280	16.2	16.7
16DM06	138	146	8	722	7.8	11.2
16DM07	35	60	25	1232	11.1	11.1
16DM07	71	104	33	1224	13.3	13.4
16DM08	76	100	24	1026	11	12
16DM08	165	177	12	921	12.2	12.6
17THD01	34	123	89	982	9.4	8.7
17THD01	47	134	87	911	8.8	9.2
17THD02	40	63.5	23.5	894		
					11.6	10.8
17THD04	20	29	9	1033	8.6	8
17THD04	72	96	24	703	8.8	8.1
17THD05	44	60	16	993	9.8	8.5
17THD05	71	76	5	840	6.4	6.3
17THD06	39	85	46	1136	11.4	10.1
17THD07	15	128	113	879	8.1	8.8
17THD07	142	152	10	704	6	10.2
17THD07	199	204	5	706	4.9	6.5
17THR001	27	63	36	1075	10.6	10.4
17THR001	75	84	9	755	9.1	13.9
17THR002	37	43	6	711	6.9	8.2
17THR002	91	136	45	983	9.8	10.5
17THR003	4	59	55	937	9.3	9.4
17THR004	49	146	97	888	10.2	10.2
17THR005	52	72	20	1053	12.8	12.6
17THR006	14	74	60	754	8.6	8.7
17THR007	5	22	17	837	0	12.5
17THR007	128	154	26	1034	11.4	11.5
17THR008	37	78	41	1319	12.2	11.2
17THR009	29	65	36	957	9.4	9.2
17THR009	100	105	5	833	12.9	12.7
17THR010	51	57	6	729	4.9	5.3
17THR011	30	83	53	1116	12	10.9
17THR012	50	117	67	748	7.5	8.6
17THR012	172	177	5	725	6.4	6.4
17THR013	19	73	54	888	5.4	5
17THR014	12	45	33	749	8.1	7.4
17THR015	40	43	8	995	8.9	8.1
17THR016	66	115	49	1096	12.9	13.4
17THR017	54	112	58	1383	13.2	12.8
17THR018	47	63	16	1124	15.1	14.1
	47	59	17	1032	3.2	
17THR019						11.4
17THR020	29	49	20	1067	11.6	11.5
17THR021	44	64	20	1204	13.1	12.7
17THR022	101	138	37	1152	10.7	12
17THR023	91	137	46	1271	13.9	13.3
17THR027	29	54	25	1176	12.6	11.8

Down hole length and interception depth - historic holes (continued)

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	S (%)	Fe (%)
67TH01	123.44	200.01	76.57	979	0	0
70BH01	39.62	53.34	13.72	3323	3.1	0
70BH01	64.31	84.43	20.12	1203	9.5	0
70BH02	74.06	86.86	12.8	704	7.5	0
70TH02	78	84.1	6.1	1666	17.5	15.4
70TH02	87.1	102.1	15	1661	8	7.2
70TH03	77.7	129.5	51.8	1016	12.9	13.2
80BGH05	39	49	10	752	0	0
80BGH06	18	68.04	50.04	969	0	0
80BGH08	44	78.15	34.15	939	0	0
80PYH01	7.5	17	9.5	725	0	0
80PYH02	34.1	48.25	14.15	1121	0	0
80PYH03	23	35	12	711	0	0
80PYH04	39.75	55	15.25	735	0	0
80PYH05	36.7	65	28.3	1160	11.8	0
80PYH06	54	62	8	905	0	0
80PYH07	67	79.4	12.4	1113	12.5	0
80PYH10	48.45	137.4	88.95	831	8.6	0
80PYH11	34.6	46.5	11.9	916	8	0
80PYH11	57.2	91.05	33.85	1239	10.6	0
80PYH12	30.2	36.5	6.3	791	10.2	0
80PYH12	85.15	90.8	5.65	857	14.6	0
80PYH14	251.8	273.4	21.6	1252	13.1	0
93MGM02	85	160	75	941	8.5	0
98TC01	20	47	27	744	9.1	12.6
98TC01	48	71	23	917	11.9	16.4
98TC03	34	45	11	1480	5.5	6
98TC03	68	79	11	1095	4.3	4.2
98TC04	84	94	10	966	3.9	4
98TC04	107	133	26	771	7.7	8.2
98TC05	24	62	38	754	6.4	7
98TC06	66	72	6	727	10.4	11.1
98TC06	76	101	25	767	10.1	10.6
98TC07	35	46	11	1546	16.5	17.1
98TC07	61	82	21	728	9.1	9.4
98TC09	32	39	7	716	4.9	17.4
98TC09	82	107	25	732	6	6.7
98TC10	101	125	24	732	7.9	8

Criteria	JORC Code Explanation	Commentary
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drilling Drill hole intercept grades are typically reported as down-hole length-weighted averages with any non-recovered sample within the reported intervals treated as no grade. The cut-off used for selecting significant intersections is selected to reflect the overall tenor of mineralisation, in most cases 500ppm cobalt. No top cuts have been applied when calculating average grades for reported significant intersections. No metal equivalent values are reported .
Relationship between mineralis- ation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drill holes at the Thackaringa project are typically angled at 50° or 60° and drilled perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences. Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width. There is insufficient geological knowledge to accurately estimate true widths and as such all drill intersections are reported as down hole lengths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views 	 Appropriate maps and sections are presented in the accompanying ASX release.
Balanced reporting	 Where comprehensive reporting of all exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Only mineralised drill hole intersections regarded as highly anomalous and of economic interest are reported. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the total drill hole depth. All assay results for drill holes included in the various Mineral Resource estimates have been considered and comprise results not necessarily regarded as anomalous

Criteria	JORC Code Explanation	Commentary
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological obser- vations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, ground- water, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No further exploration data is deemed material to the results presented in this release.
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The nature and scale of planned further work will be determined following the completion of revised Mineral Resource estimation for the Thackaringa deposits scheduled for May 2017.