Market Announcement

27 March 2017

do I to

Highlights

Cobalt Blue Holdings Ltd A Green Energy Exploration Company

COB

Commodity Exposurer Cobalt & Sulphur

Directors & Management:

Robert Biancardi	Non-Exec Chairman				
Hugh Keller	Non-Exec Director				
Trangie Johnston	Non-Exec Director				
Joe Kaderavek	CEO & Exec Director				
lan Morgan	Company Secretary				

Capital Structure

Ordinary Shares on Issue at 24/3/2017:	95m
Options (Unlisted – not vested):	28.25m
Market Cap (undiluted):	\$27m
Share Price:	
Share Price at 24/3/2017:	\$0.28

Cobalt Blue Holdings Limited

CN:	614 466 607
ddress:	Level 2, 66 Hunter St,
	Sydney NSW 2000
	+61 2 9966 5629
Vebsite:	

Assays Confirm Thackaringa as a Significant Cobalt-Pyrite Project

- Assays from our 2016 Diamond Drilling program confirm continuity and tenor of cobalt-pyrite mineralisation at Railway, Pyrite Hill and Big Hill prospects.
- The Diamond Drilling program provides material for planned metallurgical testwork.
- A significant Reverse Circulation (RC) and Diamond Drilling program (commenced in February 2017) designed to expand and upgrade existing Thackaringa Mineral Resources is underway.
- At Railway, assays confirm broad intersections of high-grade mineralisation with potential to add to the existing resource. Mineralised intercepts include:
 - Drillhole 16DM05 48m @ 1,045ppm Co from 30m
 - Drillhole 16DM06 42m @ 1,615ppm Co from 28m
 - Drillhole 16DM07 25m @ 1,232 ppm Co from 35m and 26m @ 1,456 ppm Co from 71m
 - Drillhole 16DM08 4m @ 1,301ppm Co from 57m and 19m @ 1,221ppm Co from 76m
- At Pyrite Hill mineralised intercepts include:
 - Drillhole 16DM01 52m @ 840ppm Co from 95m
 - Including 7m @ 1,111ppm Co from 96m
 - Drillhole 16DM02 23m @ 1,392ppm Co from 127m

2016 Drilling Program

Cobalt Blue Holdings Limited (ASX:COB) ("COB" or the "Company") is pleased to report significant and encouraging cobalt assays from the drilling program commenced in November 2016 at the Thackaringa project near Broken Hill, NSW. The results reinforce the substantial cobalt and pyrite development opportunity at Thackaringa. Drilling was commenced by Broken Hill Prospecting Limited (ASX:BPL) which retains a participating interest in the project.

The Thackaringa project is located within the Broken Hill Block of the Curnamona Province and is composed of Willyama Supergroup high grade regional metamorphic gneisses, schists and amphibolites. Within the project area the local geology is dominated by quartz-albite-biotite gneiss, quartz-albite gneiss, and amphibolite dykes. The extensive stratabound cobalt-pyrite mineralisation at each prospect (Pyrite Hill, Big Hill and Railway) is hosted by quartz-albite gneiss.

Mineralisation at the three prospects has a combined strike length of 4.5 kilometres with widths varying from 25 metres to 100 metres. The increased thickness is typically due to the extensive development of tight isoclinal folding within the pyritic horizon.

The 2016 drilling program comprised eight fully-cored diamond drill holes at three locations - Pyrite Hill, Big Hill and Railway (Figure 1).

The work was undertaken primarily to provide sufficient material to undertake meaningful metallurgical test work. By twinning previous RC holes the JV was able to confirm the tenor of mineralisation and compare the assays and sampling protocols for historical RC percussion drilling vs diamond drilling.

Two holes were drilled at each of Pyrite Hill and Big Hill prospects and four holes drilled along the much longer mineralised strike length at Railway Prospect, for a total of 1,484.8m. All 2016 holes were drilled at declinations between 50 and 60 degrees into the steeply-dipping host lithology.

A total Inferred Mineral Resource of 33.1Mt at 833ppm cobalt (at a 500ppm Co cut-off) has previously been estimated at the Thackaringa (released on 4 January 2017).

The current 2017 drilling program comprises approximately 5,500m of RC drilling plus a 1,500m of diamond drilling. The program is designed to extend the drilling coverage and improve drilling density in support of future Mineral Resource estimations, replace some of the historical drilling for QA/QC purposes and provide material for further metallurgical testwork.

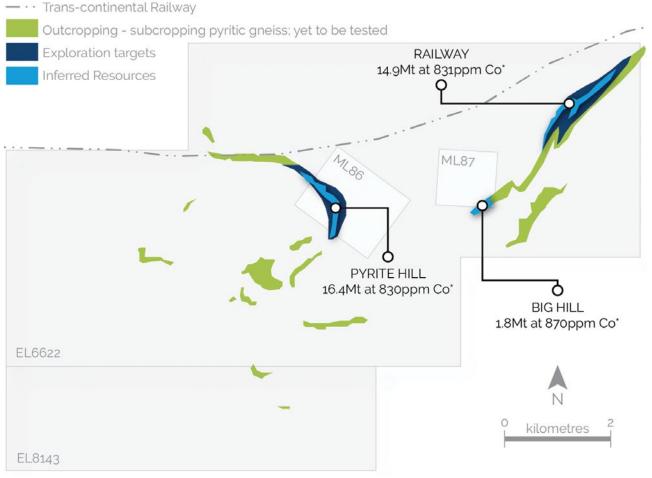


Figure 1: Pyrite Hill, Big Hill and Railway deposits

2016 Railway Results

16DM05 mineralised intercepts included:

- 48m at 1,045ppm Co, 11.3% Fe and 10.9% S from 30m drill depth, including the intervals:
 - 3m at 2,230ppm Co, 19.3% Fe and 23.2% S from 36m; and
 - 2m at 2,180ppm Co, 23% Fe and 20.3% S from 66m
- 2m at 1,458ppm Co, 38.8% Fe and 46% S from 199m

16DM06 mineralised intercepts included:

- 42m at 1,615ppm Co, 19.2% Fe & 20.5% S from 28m including:
 - 8m at 2,266ppm Co, 24.9% Fe & 27.7% S from 48m; and
 - 2m at 2,435ppm Co, 26.3% Fe & 28.7% S from 59m
- 2m at 1,196ppm Co, 17% Fe & 11.7% S from 82m

16DM07 mineralised intercepts included:

- 25m at 1,232 ppm Co, 11.1% Fe, and 11.2% S from 35m
- 26m at 1,456ppm Co, 14.9% Fe & 16.2% S from 71m including:
 - 4m at 2,276ppm Co, 19.6% Fe & 21.9% S from 76m; and
 - 2m at 2,350ppm Co, 23% Fe & 26% S from 90m

16DM08 mineralised intercepts included:

- 4m at 1,301ppm Co, 14% Fe & 13% S from 57m;
- 19m at 1,221ppm Co, 13.8% Fe & 13% S from 76m; and
- 2m at 1,206ppm Co, 9.1% Fe & 3.2% S from 123m

These results confirm the previous tenor and elevated grade of cobalt-pyrite mineralisation along the defined strike length. Mineralisation at Railway remains open along strike and the new drilling has confirmed it down-dip; boosting the potential for an open pittable resource.



Figure 2: Plan view of Railway prospect

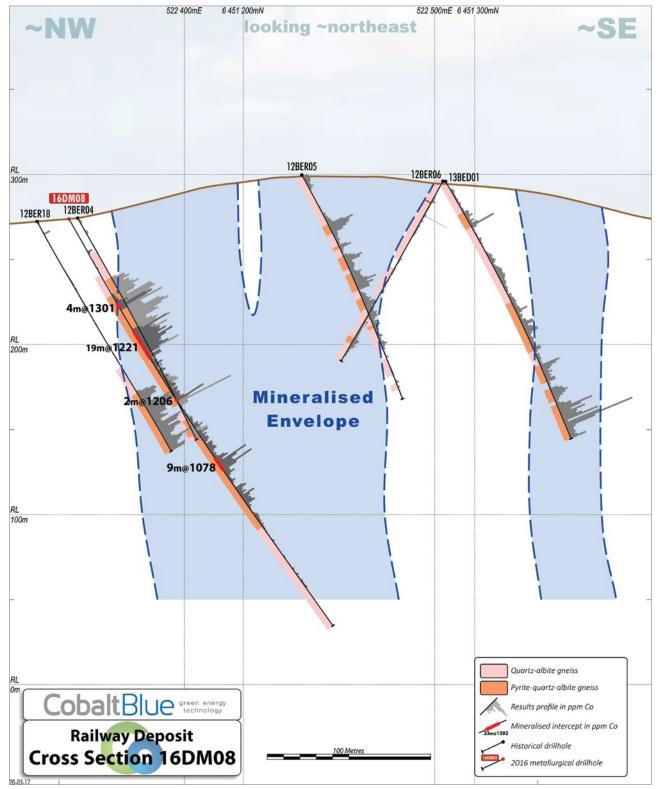


Figure 3: Cross-section along plane of drillhole 16DM08 – Railway

2016 Pyrite Hill Results



Figure 4: Plan view of Pyrite Hill prospect

16DM01 mineralised intercepts included:

- 7m at 1,111ppm Co, 10.6% Fe and 11.8% S from 96m drill depth
- 24m at 816ppm Co, 8.2% Fe and 8.8% S from 106m drill depth; and
- 13m at 1,038ppm Co, 10.1% Fe and 10.3% S from 134m drill depth

16DM02 mineralised intercepts included:

- 23m at 1,392ppm Co, 15.6% Fe and 16.9% S from 127m drill depth including the intervals:
 - Trm at 2,621ppm Co, 26.2% Fe and 30.7% S from 139m drill depth; and
 - 18m at 957ppm Co, 12.3% Fe and 12% S from 154m drill depth

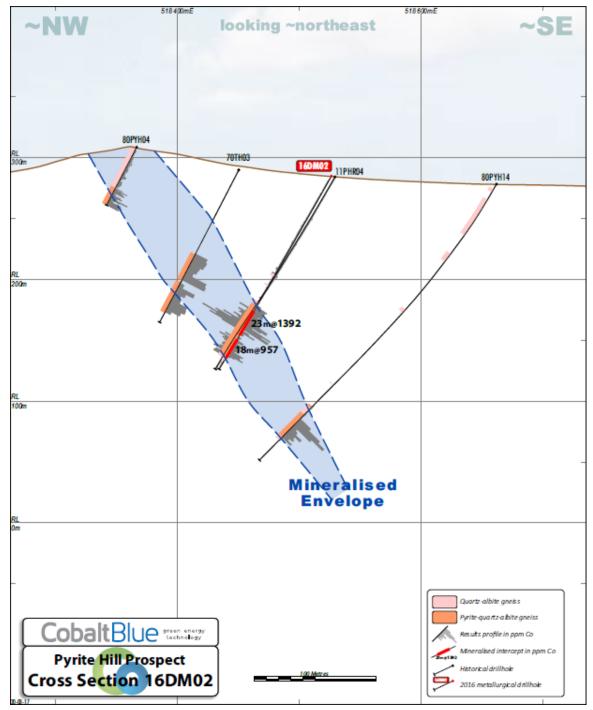


Figure 5: Cross-section along plane of drillhole16DM02 - Pyrite Hill

2016 Big Hill Results

The Big Hill deposit is an off-set southwestern extension of the high-grade metamorphic host at Railway. Two holes were drilled towards the south-western end to confirm the depth and strike extensions of known cobalt-pyrite mineralisation. The mineralisation appears to thin and become lower grade at the southern end of the Big Hill-Railway trend. Big Hill may be more distant to mineralising fluid pathways along faults or dilational structures, but this has yet to be determined. There remains a 1km strike length of undrilled and lightly drilled host lithology between Big Hill and Railway, much of which is close to interpreted faulting and needs to be investigated.

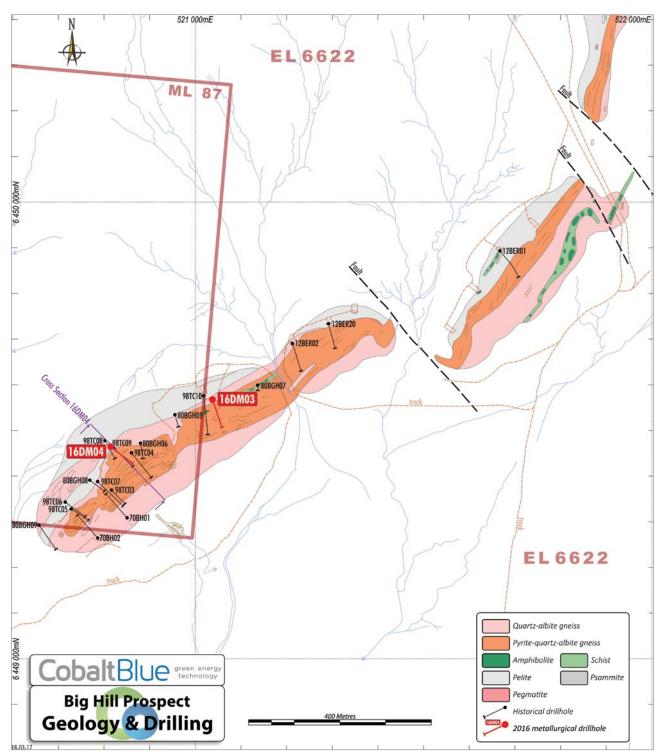


Figure 6: Plan view of Big Hill prospect

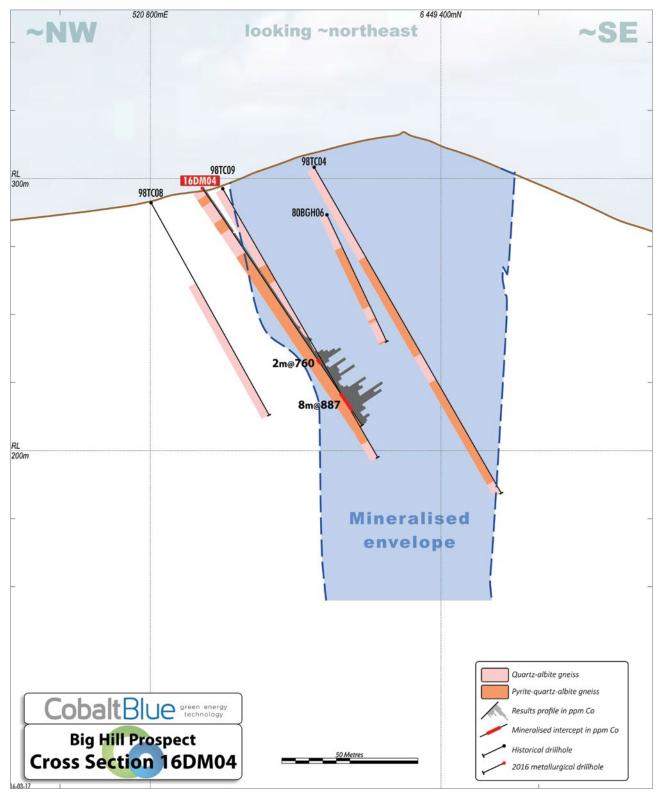


Figure 7: Cross-section of Big Hill through plane of 16DM04

A recent (2017) diamond drill core sample is examined by Chair (Rob Biancardi), JV Manager (Trangie Johnston) and CEO (Joe Kaderavek) for the Thackaringa Cobalt Project. Photo taken 20 Mar 2017.

Figure 8: Core samples from upcoming 2017 program continue to look encouraging

Cobalt Blue Background

Cobalt Blue ("COB") is an exploration company focussed on green energy technology and a strategy of fast-tracking development of the Thackaringa Cobalt Project in New South Wales to achieve commercial production of cobalt. This strategic metal is in strong demand for new generation batteries, particularly lithium-ion batteries now being widely used in clean energy systems.

COB has entered into a farm-in joint venture agreement with Broken Hill Prospecting Limited ("BHPL") in which COB acquired an initial 51% interest in the Thackaringa Cobalt Project. COB will undertake exploration and development programs on the Thackaringa Cobalt Project and, subject to the achievement of milestones, will acquire 100% of the Thackaringa Cobalt Project.

The Thackaringa Project, 23 km west of Broken Hill and 400km by rail from Port Pirie consists of four granted tenements (EL6622, EL8143, ML86 and ML87) with total area of 63km². The main target for exploration is well known and documented large-tonnage cobalt-bearing pyrite deposits. The project area is under-explored, with the vast majority of historical exploration directed at or around the outcropping pyritic cobalt deposits at Pyrite Hill and Big Hill.

Potential to extend the Mineral Resource at Pyrite Hill, Big Hill, Railway and the other prospects is high. Numerous other prospects within COB's tenement package are early stage and under-explored, but show good potential for stratabound Cu, Co, W, Au and stratiform Broken Hill Type (BHT) deposits. For further information on the Company please refer to the website at: www.cobaltblueholdings.com

Joe Kaderavek Chief Executive Officer info@cobaltblueholdings.com

Competent person statement

The information in this report that relates to exploration results, Mineral Resources and Exploration Targets is based on information compiled by Mr Anthony Johnston, BSc (Hons), who is a Member of the Australian Institute of Mining and Metallurgy and who is a non-executive director of Cobalt Blue Holdings Limited, the Chief Executive Officer of Broken Hill Prospecting Limited and the Technical Manager of the Joint Venture. Mr Johnston has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 & 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Johnston consents to the inclusion in the announcement of the matters based on his information in the form and context that the information appears.

Appendix – JORC Code, 2012 Edition – Table 1

Section 1 - Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample repre- sentivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Diamond Drilling (DDH) Pre-1990 Diamond drilling was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were hand-split or sawn. Samples were submitted for analysis using a mixed acid digestion and AAS methodology. Post-1990 Diamond drilling (one drill hole) was used to obtain core from which irregular intervals, reflecting visual mineralisation and geological logging were sawn (quarter core for HQ). Samples were submitted for analysis using a mixed acid digestion and ICP-OES methodology. 2016 Metallurgical Drilling This statement covers eight HQ diameter diamond drill holes (DDH) that were drilled at the Thackaringa project in late 2016. They will be used as metallurgical reference holes and to twin some of the previous reverse circulation percussion (RC) holes for QA/QC and assay comparison between DDH and RC. There were two holes drilled at Pyrite Hill, two at Big Hill and four at Railway: Diamond drilling was used to obtain core from which regular (one-metre) intervals were sawn with: one half core dispatched for analysis using a mixed acid digestion and ICP-AES methodology. He other half was further sawn such that one quartercore was sent for metallurgical test work and the other quarter-core retained for archival purposes. METOTICAL Reverse Circulation Drilling RC drilling was used to obtain a representative sample by means of riffle splitting with samples submitted for analysis using the above-mentioned methodologies. Pre-2000 drill samples were assayed for a small and variable suite of elements (sometimes only cobalt). The post-2000 drill samples (5,095 samples) are all assayed by ICP-MS for a suite of 33 elements.

Criteria	JORC Code Explanation	Explanation Commentary			
techniques circula rotary sonic, diame tube, face-s wheth	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The Thackaringa drilling database comprises a total of thir (34) diamond drill holes and forty-three (43) reverse circula (RC) drill holes. Diamond drilling was predominantly comp with standard diameter, conventional HQ and NQ utilising and percussion pre-collars to an average 25 metres (see I hole Information for further details). Early (1960-1970) drill utilised HX – AX diameters dependent on drilling depth. R circulation drilling utilised standard hole diameters (4.8"-5. a face sampling hammer. During 2013, a single diamond drill hole (13BED01) was completed at the Railway deposit using a triple tube system HQ3 diameter 			
		Year	Drilling	Metres	
		1967	1 diamond drill hole	304.2	
		1970	4 diamond drill holes	496.6	
		1980	18 diamond and 1 RC drill hole	1711.23	
		1993	2 diamond drill holes	250	
		1998	11 RC drill holes	1093.25	
		2011	11 RC drill holes	1811	
		2012	20 RC drill holes	2874.25	
		2013	1 diamond drill hole	349.2	
		2016	8 diamond drill holes	1484.8	
		Total	34 diamond and 43 RC drill holes	10374.53	
			pecting Limited (BPL): Diamond drilling was completed using a	triple tube system	
		0		and ting core	
Drill sample	Method of recording and		Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the resul was oriented as part of the logging proce	and ting core	
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Diamono Histo	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the resul was oriented as part of the logging proce	and ting core ess.	
	 assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. 	Diamono Histo Histo tech Pros reco	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the result was oriented as part of the logging proce I Drilling prical core recoveries were accurately qua surement of actual core recovered versus prical diamond drilling employed conventi niques while diamond drilling completed b pecting utilised a triple-tube system to m very	and ting core ess. antified through s drilled intervals onal drilling by Broken Hill aximise sample	
	 assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and 	Diamono Histo Histo Histo Histo Fros reco Core hole	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the resul was oriented as part of the logging proce I Drilling prical core recoveries were accurately qua surement of actual core recovered versus prical diamond drilling employed conventi hiques while diamond drilling completed is pecting utilised a triple-tube system to m very recovery of 99.7% was achieved during 13BED01	and ting core ess. antified through s drilled intervals ional drilling by Broken Hill aximise sample completion of dril	
	 assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists 	Diamono Histo mea: Histo tech Pros reco Core hole Core drillir	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the resul was oriented as part of the logging proce I Drilling prical core recoveries were accurately qua surement of actual core recovered versus prical diamond drilling employed conventi- niques while diamond drilling completed in pecting utilised a triple-tube system to m very recovery of 99.7% was achieved during 13BED01 recovery of 98% was achieved during the program	and ting core ess. antified through s drilled intervals tonal drilling by Broken Hill aximise sample completion of dril ne 2016 diamond	
	 assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due 	Diamono Histo mea: Histo tech Pros reco Core hole Core drillir	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the resul was oriented as part of the logging proce I Drilling prical core recoveries were accurately qua surement of actual core recovered versus prical diamond drilling employed conventi hiques while diamond drilling completed in pecting utilised a triple-tube system to m very recovery of 99.7% was achieved during 13BED01 recovery of 98% was achieved during the g program elationship between sample recovery and	and ting core ess. antified through s drilled intervals tonal drilling by Broken Hill aximise sample completion of dril ne 2016 diamond	
	 assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/ 	 Diamono Histo meas Histo tech Pros reco Core hole Core drillir No re obset 	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the resul was oriented as part of the logging proce I Drilling prical core recoveries were accurately qua surement of actual core recovered versus prical diamond drilling employed conventi hiques while diamond drilling completed in pecting utilised a triple-tube system to m very recovery of 99.7% was achieved during 13BED01 recovery of 98% was achieved during the g program elationship between sample recovery and	and ting core ess. antified through s drilled intervals tonal drilling by Broken Hill aximise sample completion of drill ne 2016 diamond	
	 assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/ 	 Diamono Histo mea: Histo techi Pros reco Core hole Core drillir No re obse Historica Reve durir was 	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the result was oriented as part of the logging proce I Drilling prical core recoveries were accurately quasurement of actual core recovered versus prical diamond drilling employed convention iniques while diamond drilling completed b pecting utilised a triple-tube system to me very recovery of 99.7% was achieved during 13BED01 recovery of 98% was achieved during the g program elationship between sample recovery and reved	and ting core ess. antified through s drilled intervals onal drilling by Broken Hill aximise sample completion of dril he 2016 diamond d grade has been isually estimated d sample recovery	
	 assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/ 	 Diamono Histo mea: Histo techi Pros recore hole Core drillir No re obse Historica Reve durir was quali Reve 	Diamond drilling was completed using a with a HQ3 diameter Holes were drilled at angles between 55 60 degrees from horizontal and the result was oriented as part of the logging proce I Drilling prical core recoveries were accurately qua surement of actual core recovered versus prical diamond drilling employed conventi- niques while diamond drilling completed if pecting utilised a triple-tube system to m very recovery of 99.7% was achieved during 13BED01 recovery of 98% was achieved during the g program elationship between sample recovery and erved I Reverse Circulation Drilling erse circulation sample recoveries were vi- ng drilling programs. Where the estimated below 100% this was recorded in field lo	and ting core ess. antified through s drilled intervals ional drilling by Broken Hill aximise sample completion of dril ne 2016 diamond d grade has been isually estimated d sample recovery gs by means of re air (using	

Criteria		JORC Code Explanation			Commentary		
Logging	ľ	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 		This logging have ered to accurate tallurgical studie on, mineralisatio ive and quantita		ed to a level of al Resource es ers logged incl These parame	f detail stimation ude lithology eters are both
 studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	been su includin hardnes During 3 re-logge as well percuss drill hole	ubject to geote ng rock-quality of ss 2013, a consid ed through revi the re-interpret sion samples no	leted in 2013 ar chnical logging v designation (RQI erable amount c ew of available c ation of historica o longer exist. A (16) diamond dri ailed below:	vith paramete D), fracture fre f historical dri core stored at il reports whe total of eight	rs recorded equency and lling was Broken Hill re core or (8) diamond		
		Hole ID	Deposit	Max Depth	Hole Type	Pre-Collar Depth (m)	
		67TH01	Pyrite Hill	304.2	DDH1	Dehtii (iii)	
			70TH02	Pyrite Hill	148.6	DDH1	
	70TH03	Pyrite Hill	140.0	DDH1			
		70BH01	Big Hill	102.7	DDH1	_	
		70BH02	Big Hill	103.9	DDH1	_	
		80PYH13	Pyrite Hill	77	DDH1	_	
			80PYH14	Pyrite Hill	300.3	DDH1	_
			80BGH09	Big Hill	100.5	DDH1	_
			80PYH01	Pyrite Hill	24.53	PDDH2	6
			80PYH02	Pyrite Hill	51.3	PDDH2	33.58
			80PYH04	Pyrite Hill	55	PDDH2	38.7
			80PYH05	Pyrite Hill	93.6	PDDH2	18
			80PYH06	Pyrite Hill	85.5	PDDH2	18
			80PYH07	Pyrite Hill	94.5	PDDH2	12
			80PYH08	Pyrite Hill	110	PDDH2	8
			80PYH09	Pyrite Hill	100.5	PDDH2	8
			80PYH10	Pyrite Hill	145.3	PDDH2	25.5
			80PYH11	Pyrite Hill	103.1	PDDH2	18
			80PYH12	Pyrite Hill	109.5	PDDH2	4.2
			80BGH05	Big Hill	54.86	RCDDH3	45.5
			80BGH06	Big Hill	68.04	RCDDH3	58
			80BGH08	Big Hill	79.7	RCDDH3	69.9
			93MGM01	Pyrite Hill	70	RDDH4	24
			93MGM02	Pyrite Hill	180	RDDH4	48
	1 Diamond 2 Diamond 3 Diamond 4 Diamond • Litho-ge where a	I drill hole I drill hole with perc I drill hole with reve I drill hole with rota eochemistry ha available for dril	cussion pre-collar orse circulation pre- ry air blast pre-colla s been used to ling completed b	collar r verify geologic			
			post 20		as trava of chips	<i>f</i>	

 Representative reference trays of chips from reverse circulation drilling completed post 2010 have been retained by Broken Hill Prospecting.

Criteria	JORC Code Explanation	Commentary
Criteria Sub-sampling techniques and sample preparation	 JORC Code Explanation If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Diamond Drilling (DDH) Pre-1990 Core samples were hand-split or sawn with re-logging of availath historical core (see Logging) indicating a 70:30 (retained:assayer split was typical. The variation of sample ratios noted are considered wast used for core cutting is unprocessed and unlikely to have introduced sample contamination Procedures relating to the definition of the line of cutting or splitti are not available. It is expected that 'standard industry practice' the period was applied to maximize sample representivity Post-1990 NQ drilling core was sawn with half core submitted for assay HQ drilling core was sawn with quarter core submitted for assay No second half samples were submitted for analysis It is considered water used for core cutting is unprocessed and unlikely to have introduced sample contamination Procedures relating to the definition of the line of cutting or splitti are not available. It is expected that 'standard industry practice' the period was applied to maximize sample representivity Post-1990 NQ second half samples were submitted for analysis It is considered water used for core cutting is unprocessed and unlikely to have introduced sample contamination Procedures relating to the definition of the line of cutting or splitti are not available. It is expected that 'standard industry practice' the period was applied to maximise sample representivity 2016 Metallurgical Drilling All HQ drill core was submitted for assay One quarter core was submitted for assay One quarter core was submitted for acrive It is considered that the water used for core cutting is most unlikely to have introduced sample contamination Sample sawing and processing for test work were undertaken according to 'standard industry practice' to maximise sample representivity Historical Reverse Circulation Drilling <
		5
		 It is considered that the water used for core cutting is most
		according to 'standard industry practice' to maximise sample
		 Sub-sampling of reverse circulation/percussion chips was
		, , , , , , , , , , , , , , , , , , , ,
		Prospecting, duplicate samples were collected at the time of drill These were obtained by spearing the bulk material held in the PVC sacks using a spear made of 40mm diameter PVC pipe; three samples were speared through the full depth of the bulk material a
		•
		duplicates collected during reverse circulation drilling. This reflect
		Statistical analysis of field duplicates collected during drilling completed by Broken Hill Prospecting (119 duplicates representir 86% of all field duplicates) considered 18 elements of which only chromium, lanthanum and titanium show some bias in the duplic samples. For cobalt, the confidence limits were evenly placed eith side of zero and the duplicates are deemed to be representative of the original samples.

Criteria	JORC Code Explanation	Commentary
Quality of assay data and	 The nature, quality and appropriateness of the assaying and laboratory procedures used 	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.
aboratory tests	 and whether the technique is considered partial or total. For geophysical tools, appartmentation bandhold XDE 	 For geophysical tools, spectrometers, handheld XRF instrument etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
	spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and	 applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision habeen established.
	their derivation, etc.Nature of quality control proce- dures adopted (e.g. standards,	 The nature and quality of all assaying and laboratory procedures employed for samples obtained through drilling (diamond and reverse circulation) are considered 'industry standard' for the respective periods
	blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	The assay techniques employed for drilling (diamond and revers circulation) include mixed acid digestion with ICP-OES and AAS finishes. These methods are considered appropriate for the targeted mineralisation and regarded as a 'near total' digestion technique with resistive phases not expected to affect cobalt analyses
		 All samples have been processed at independent commercial laboratories including AMDEL, Australian Laboratory Services (ALS), Analabs and Genalysis
		All samples from drilling completed by Broken Hill Prospecting during 2011-2012 were assayed at ALS in Orange, New South Wales. All samples from drilling completed by Broken Hill Prospecting during 2016 were assayed at ALS Adelaide, South Australia. ALS is a NATA Accredited Laboratory and qualifies for JAS/ANZ ISO9001:2008 quality systems. ALS maintains robust internal QAQC procedures (including analysis of standards, repea and blanks).
		 The 2016 program included a total of 47 standards and blanks inserted into the sample stream during drilling completed by BPL. This reflects a ratio of approximately one standard in every 31 samples (3.2%) for the 2016 program (8 drill holes for 1484.8metres)
	 Five differing sample standards (160, 162, 163, 165, 166) were sourced from Ore Research & Exploration Pty Ltd (OREAS). The standards are characterised for Cu, Fe, S, CaO, MgO, Al2O3, SiO2, Ag, Pb, Zn and Co using sodium peroxide fusion ICP-MS and 4-acid ICP-MS methods. It is noted all certified values for cobalt were derived using a four-acid digestion considered equivalent to the method of analysis used by BPL (ME-ICP61). These standards comprised certified cobalt values ranging from 2.8ppm to 2445ppm. 	
		Statistical analysis of standard performance indicated that:
		 95.7% returned assays within the two standard-deviations the certified cobalt value
		 83% returned assays within the two standard-deviations of the certified sulphur value. Of the 17% standards reporting outside of two standard deviations for the certified sulphur value, 75% were low
		38.3% returned assays within the two standard-deviations of the certified iron value. 97.9% returned assays lower tha the certified iron value including 100% of returned assays outside of two standard-deviations of the certified iron valu suggesting the iron values are conservative.

Criteria	JORC Code Explanation	Commentary
 of sampling and assaying intersections by e pendent or alterna personnel. The use of twinnet Documentation o data, data entry p data verification, o (physical and elector) 	 intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to 	 Historical drilling intersections were internally verified by personnel employed by previous explorers including CRAE Pty Limited, Central Austin Pty Limited and Hunter Resources. Broken Hill Prospecting has completed a systematic review of the related data. The Thackaringa drilling database exists in electronic form as a Microsoft Access database. Information related to individual drill holes is stored in digital files as extracted from historical reports (typically including location plan, section, logs, photos, surveys, assays and petrology). Historical drilling data available in electronic form has been re-formatted and imported into the drilling database. Quantitative historical drilling data, including assays, have been captured electronically during systematic data compilation and validation completed by Broken Hill Prospecting. Samples returning assays below detection limits are assigned half
		detection limit values in the database.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Historical drill collars have been relocated and surveyed using a differential GPS (DGPS). In the instances where no collar could be located the position has been derived from georeferenced historical plans. During systematic data validation completed in 2016, three drill
		holes at Big Hill were found to be incorrectly located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical plans (reported to the nearest metre) as the collars had been destroyed. These corrections were captured in the Big Hill Mineral Resource estimate.
		 Down hole surveys using digital cameras were completed on all post 2000 drilling. Down hole surveys for some earlier drilling were estimated from hole trace and section data where raw survey data was not reported.
		 All 2016 Thackaringa drill hole collars were located and surveyed with DGPS by an independent surveyor with reported accuracy of ±0.05m in horizontal and vertical measurement.
		 Downhole surveys using digital cameras were completed on all 2016 drill-holes.
		• All data is recorded in the GDA94 datum; UTM Zone 54 (MGA54).
		 3D validation of drilling data has been completed by independent geological consultants to support detailed geological modelling in Micromine[™] software.
		 The quality of topographic control is deemed adequate in consideration of the results presented in this release.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to estab- 	 The data density of existing drill holes at Thackaringa has not been materially increased by the 2016 drilling program which was undertaken primarily to twin existing holes for assay and metallur- gical purposes. The intention was not to undertake infill drilling.
	lish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore	 Detailed geological mapping supported by drill-hole data of sufficient spacing and distribution to establish a 3D geological model.
	Reserve estimation procedure(s) and classifications applied.Whether sample compositing	 The level of geological and grade continuity is appropriate for the Mineral resource estimation methodologies used and the classifications applied (being wholly Inferred Mineral Resources)
	has been applied.	 No sample compositing has been applied to reported intersections

Criteria	JORC Code Explanation	Commentary		
Orientation of data in relation to geological • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit		 The 2016 drill holes at the Thackaringa project were typically angled between 50 and 60 degrees to the horizontal and drille perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences. 		
structure	 type. If the relationship between the drilling orientation and the orientation of key mineralised 	 Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be gre than true width. At Pyrite Hill mineralisation is gently dipping an mineralised intersections will be close to true width. 		
	structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 The drilling orientation is not considered to have introduced a sampling bias on assessment of the current geological interpretation. 		
Sample security	 The measures taken to ensure sample security. 	 Sample security procedures are considered to be 'industry standard' for the respective periods. 		
security	 Following recent drilling completed by BPL, samples were true by an independent courier directly from Broken Hill to ALS, Or 			
		 BPL consider that risks associated with sample security are limited given the nature of the targeted mineralisation. 	-	
Audits or reviews	 The results of any audits or reviews of sampling techniques 	 In late 2016 an independent validation of the Thackaringa dri database was completed: 	illing	
	and data.	 The data validation process consisted of systematic revi drilling data (collars, assays and surveys) for identification transcription errors 		
		 Following review, historical drill hole locations were also validated against georeferenced historical maps to confil their location 	rm	
		Three (3) drill holes at Big Hill were found to be incorrect located. One collar was located and surveyed by GPS and two were digitised from georeferenced historical pla (reported to the nearest metre) as the collars had been destroyed. These corrections were captured in the Big H Mineral Resource estimate	ins	
		 Total depths for all holes were checked against original reports 		
		 Final 3D validation of drilling data has been completed b independent geological consultants to support detailed geological modelling in Micromine™ software 	у	
		 Audits and reviews of QAQC results and procedures are furth described in preceding sections of this table including Quality assay data and laboratory tests, Sub-sampling techniques ar sample preparation and Logging. 	y of	

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation			Cor	nmentary		
Mineral tenement and land	 Type, reference name/number, location and ownership including agreements or material locuse with third partice such 	 The Thackaringa Cobalt project is located approximately 25 kilometres west-southwest of Broken Hill and comprises four tenements with a total area of 63 km²: 					
tenure status	issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and	Tenement	Registered & Beneficial Holder	Minerals	Grant Date	Expiry Date	Annual Expenditure Commit- ment
	 Wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along 	EL6622	Broken Hill Prospecting Limited (BPL)	Group 1	30/08/2006	29/08/2017	\$47,000
	with any known impediments to	EL 8143	BPL	Group 1	26/07/2013	26/07/2017	\$14,000
obtaining a licence to operate in the area.	ML86	BPL	Cobalt, iron, nickel, platinum, sulphur	05/11/1975	04/11/2017	\$75,000	
	ML87	BPL	Cobalt, iron, nickel, platinum, sulphur	05/11/1975	04/11/2017	\$75,000	
		Cob Limit	project tenure alt Blue Holdii ed (BPL). The acement Pros	ngs Limite e nature of	d (COB) and f this agreem	Broken Hill I nent is detaile	Prospecting d in the COB
		 The nearest residence (Thackaringa Station) is located approxi- mately three kilometres west of EL6622. 					d approxi-
		 EL6622 is transected by the Transcontinental Railway; the Barrier Highway is located to the north of the licence boundaries. 					
		Leas How Trad	majority of the se which is co rever, Native T itional Owners rown Land pa	nsidered t Title Deterr s 8) is curr	o extinguish mination NCS rent over the	native title in 97/32 (Barka area and ma	terest. ndji iy be relevant
		Natio and	project tenure onal Park and approximately oly Reserve (L	l or Wilder y 20 kilom	ness Area (K etres south o	(inchega Nati of the neares	onal Park)
		• The	Company is r ce to operate	not aware	of any imped		
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	unde the J		the BPL which for	. 2016 drilling ms part of th	g program is ne Cobalt Blu	vities appended to e Prospectus

Criteria	JORC Code Explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 Regional Geological Setting The Thackaringa project is located in a deformed and metamorphosed Proterozoic supracrustal succession named the Willyama Supergroup, which crops out as several inliers in western New South Wales, including the Broken Hill Block (Willis, et al., 1982). Exploration by BPL Limited has been focused on the discovery of cobaltiferous pyrite deposits and Broken Hill type base-metal mineralisation both of which are known from historical exploration in the district. The project area covers portions of the Broken Hill and Thackaringar group successions which host the majority of mineralisation in the region, including the Broken Hill base-metal deposit. The Sundown Group suite is also present. The extensive sequence of quartz-albite-plagioclase rock that hosts the cobaltiferous pyrite
		mineralisation is interpreted as belonging to the Himalaya Formation which is stratigraphically at the top of the Thackaringa Group.
		Local Geological Setting
		 The oldest rocks in the region belong to the Curnamona Craton which outcrops on the Broken Hill and Euriowie blocks.
		The overlying Proterozoic rocks have been broadly subdivided into three major groupings, of which the oldest groups are the highly deformed metasediments and igneous derived rocks of the Thackaringa and Broken Hill groups. They comprise a major part of the Willyama Supergroup and host the giant Broken Hill massiv Pb-Zn-Ag sulphide ore body. EL6622 is within the Broken Hill blov of the Curnamona Craton.
	Mineralisation Style	
		 The Thackaringa Mineral deposits (Pyrite Hill, Big Hill and Railway) are characterised by large tonnage cobaltiferous-pyrite minerali- sation hosted within siliceous albitic gneisses and schists of the Himalaya Formation.
		 Cobalt mineralisation exists within stratabound pyritic horizons where cobalt is present within the pyrite lattice. Mineralogical studies have indicated the majority of cobalt (~85%) is found in solid solution with primary pyrite (Henley 1998).
		 A strong correlation between pyrite content and cobalt grade is observed.
		 The regional geological setting indicates additional mineralisation targets including:
		 Stratiform Broken Hill Type (BHT) Copper-Lead-Zinc-Silver deposits
		 Copper-rich BHT deposits
		Stratiform to stratabound Copper-Cobalt-Gold depositsEpigenetic Gold and Base metal deposits
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: 	 See drill holle summaries below:
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar 	
	 dip and azimuth of the hole down hole length and interception depth 	

Drill hole summaries

Hole ID	Deposit	Max Depth (m)	NAT Grid ID	Easting	Northing	RL	Dip	Azimuth	Hole Type	Pre-Collar Depth
16DM01	Pyrite Hill	161.6	MGA94_54	518411.38	6449593.89	282.69	-60	215.5	DDH ³	
16DM02	Pyrite Hill	183.4	MGA94_54	518526.62	6449261.58	284.18	-60	285.0	DDH ³	
16DM03	Big Hill	126.5	MGA94_54	521037.1	6449567.49	283.01	-60	158.5	DDH ³	
16DM04	Big Hill	105.4	MGA94_54	520814.74	6449464.4	296.18	-55	128.5	DDH ³	
16DM05	Railway	246.5	MGA94_54	522103.7	6450881.87	276.62	-60	128.5	DDH ³	
16DM06	Railway	160.4	MGA94_54	522911.57	6451519.13	278.5	-60	152.5	DDH ³	
16DM07	Railway	242.5	MGA94_54	522995.26	6451598.26	276.36	-60	156.1	DDH ³	
16DM08	Railway	258.5	MGA94_54	522351.45	6451273.07	273.85	-60	130.9	DDH ³	
80PYH10	Pyrite Hill	145.3	MGA94_54	518392.96	6449565.96	285.53	-50	222.7	PDDH ¹	25.5
98TC04	Big Hill	138.25	MGA94_54	520860.05	6449450.85	304.09	-60	140.9	RC ²	
98TC08	Big Hill	90	MGA94_54	520801.95	6449477.81	291.01	-60	150.9	RC ²	
98TC09	Big Hill	114	MGA94_54	520822.21	6449460.79	296.25	-60	133.9	RC ²	
98TC10	Big Hill	134	MGA94_54	521018	6449576	281.5	-50	172.9	RC^2	
11PHR04	Pyrite Hill	186	MGA94_54	518528.63	6449257	284.03	-60	279.06	RC ²	
11PHR07	Pyrite Hill	174	MGA94_54	518413.47	6449592.9	282.86	-60	219.06	RC ²	
12BER04	Railway	148	MGA94_54	522353.92	6451268.35	274.35	-60	131	RC ²	
12BER05	Railway	145	MGA94_54	522439.47	6451167.84	299.73	-60	124	RC ²	
12BER07	Railway	115	MGA94_54	522323.72	6450748.75	277.91	-60	144	RC ²	
12BER08	Railway	193	MGA94_54	522220.79	6450811.8	273.16	-60	129	RC ²	
12BER09	Railway	139.75	MGA94_54	522101.25	6450881.44	275.91	-60	129	RC ²	
12BER12	Railway	111	MGA94_54	522909.73	6451516.76	277.36	-60	153	RC ²	
12BER13	Railway	205	MGA94_54	522883.81	6451557.54	271.03	-60	156	RC ²	
12BER16	Railway	115	MGA94_54	522994.08	6451591.99	275.95	-60	156	RC ²	
12BER18	Railway	157	MGA94_54	522332.75	6451281.31	272.29	-60	129	RC ²	

1 Diamond drill hole with percussion pre-collar

2 Reverse Circulation drill hole

3 Diamond drill hole

Down hole length and interception depth – 2016 holes

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	Fe (%)	S (%)
16DM01	96	103	7	1111	10.6	11.8
	106	130	24	816	8.2	8.8
	134	147	13	1038	10.1	10.3
16DM02	127	150	23	1392	15.6	16.9
including	139	146	7	2621	26.2	30.7
	154	172	18	957	12.3	12
16DM03	97	100	3	522	5.2	5.2
	104	115	11	699	8.3	9.1
16DM04	76	78	2	760	5.3	5.8
	91	99	8	887	8.4	9.1
16DM05	30	78	48	1045	11.3	10.9
including	36	39	3	2230	19.3	23.2
and	66	68	2	2180	23	20.3
	97	99	2	574	5.2	5.9
	199	201	2	1458	38.8	46
	205	211	6	999	27.4	32.4
16DM06	28	70	42	1615	19.2	20.5
including	48	56	8	2266	24.9	27.7
and	59	61	2	2435	26.3	28.7
	82	84	2	1196	17	11.7
	138	146	8	722	11.2	7.8
16DM07	35	60	25	1232	11.1	11.2
	71	97	26	1456	14.9	16.2
including	76	80	4	2276	19.6	21.9
and	90	92	2	2350	23	26
16DM08	57	61	4	1301	14	13
	76	95	19	1221	13.8	13
	123	125	2	1206	9.1	3.2

Down hole length and interception depth - historic holes

Hole ID	From (m)	To (m)	Interval (m)	Co (ppm)	Fe (%)	S (%)
1PHR04	124	149	25	1301	14.8	15.7
	156	172	16	957	11.5	11.2
11PHR07	96	116	20	924	9.8	9.4
11 11107	123	128	5	1517	13.4	14.1
	132	147	15	1216	12.4	12.1
2BER04	41	79	38	1296	12.6	12.4
	81	90	9	936	14.8	8.7
	109	111	2	648	10.1	6.3
	121	126	5	1241	11.2	9.0
	141	144	3	691	5.0	5.1
2BER05	33	39	6	1109	9.2	7.9
	55	58	3	866	6.2	6.5
	65	76	11	721	6.6	6.3
	84	87	3	668	6.9	5.9
2BER07	34	43	9	624	8.2	8.0
2BER08	140	142	2	1029	25.0	28.1
2BER09	33	47	14	1096	11.4	10.9
	57	81	24	922	14.1	10.6
	83	92	9	991	10.9	8.9
	103	107	4	901	9.0	9.0
2BER12	27	74	47	1587	19.8	20.0
	79	81	2	763	14.3	9.2
2BER13	21	30	9	910	9.5	8.9
	34	39	5	1178	11.9	11.4
2BER13	65	75	10	1882	21.6	20.4
2BER16	30	56	26	1282	11.7	12.7
	58	88	30	1133	13.1	12.4
	97	100	3	878	9.7	9.5
2BER18	117	137	20	1111	12.3	11.5
	139	157	18	979	10.9	11.3
30PYH10	48	90	42	1081	0.0	10.9
	98	102	4	695	0.0	7.6
	106	130	24	630	0.0	7.1
	132	137	6	1244	0.0	10.3
98TC04	38	41	3	1237	6.7	7.3
01004	57	61	4	560	5.3	4.8
	64	66	2	590	5.8	4.0 5.2
	69	73	4	580	6.5	5.6
	76	79	3	593	5.2	4.1
	84	94	10	966	4.0	3.9
	98	100	2	580	4.3	4.0
	107	111	4	655	5.7	5.7
	114	119	5	1268	14.8	15.6
	123	133	10	909	8.5	7.6
8TC09	32	34	2	1050	9.9	7.0
01003	32	34 42	5	766	9.9 9.5	7.0 5.6
	82	42 90	8	688	6.1	4.3
	95	90 107	12	998	8.9	4.3 9.2
08TC10	38	40	2	660	5.8	6.1
	48	52	4	845	6.6	6.6
	81	84	3	1280	13.0	13.5
	93	98	5	568	5.3	4.5
	101	110	9	862	7.9	8.2
	119	125	6	1135	13.7	14.2

Criteria	JORC Code Explanation	Commentary			
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drilling Drill hole intercept grades are typically reported as down-hole length-weighted averages with any non-recovered sample within the reported intervals treated as no grade. The cut-off used for selecting significant intersections is selected to reflect the overall tenor of mineralisation, in most cases 500ppm cobalt. No top cuts have been applied when calculating average grades for reported significant intersections. No metal equivalent values are reported . 			
Relationship between mineralis- ation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Drill holes at the Thackaringa project are typically angled between 50 and 60 degrees and drilled perpendicular to the mineralised trend with drilling orientations adjusted along strike to accommodate folded geological sequences. Mineralisation at the Big Hill and Railway prospects is steeply dipping and consequently mineralised intersections will be greater than true width. At Pyrite Hill mineralisation is gently dipping and mineralised intersections will be close to true width. There is insufficient geological knowledge to accurately estimate true widths and as such all drill intersections are reported as down hole lengths. 			
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views 	 Appropriate maps and sections are presented in the accompanying ASX release. 			
Balanced reporting	 Where comprehensive reporting of all exploration results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Only mineralised drill hole intersections regarded as highly anomalous and of economic interest are reported. The proportion of each hole represented by the reported intervals can be ascertained from the sum of the reported intervals divided by the total drill hole depth. All assay results for drill holes included in the various Mineral Resource estimates have been considered and comprise results not necessarily regarded as anomalous 			

Criteria	JORC Code Explanation	Commentary			
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological obser- vations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, ground- water, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 No further exploration data is deemed material to the results presented in this release. 			
Further work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Diamond Drilling The approved 2017 DDH campaign is 11 drill holes. Drilling is designed to twin existing RC drill holes to provide both a comprehensive set of metallurgical samples for future test work and as a QA/QC check on the RC drilling. Holes twinned will include 11PHR04, 11PHR07, 98TC09, 12BER04, 12BER09, 12BER12 and 12BER16. Reverse Circulation Drilling The 2017 RC drilling will comprise 40 RC drill holes that are designed to infill and expand the currently defined mineralised envelope. This includes 13 RC holes to infill drilling at Pyrite Hill, 7 RC holes at Big Hill to increase drilling density on 100m sections and 20 RC holes at Railway to bring drill section spacing down to 100m and to increase the number of sections with multiple drill holes. 			