

# CARDINAL GRADE CONTROL DRILL RESULTS RETURNED

**Cardinal Resources Limited** (ASX/TSX: CDV) ("**Cardinal**" or "**the Company**") reports the completion of a close spaced drilling programme in a targeted starter pit area for its flagship Namdini project. This work constitutes an important phase for the Company's forthcoming PEA, as it supports the grades and tonnages the Company expects for the proposed starter pit area.

# HIGHLIGHTS

- · Excellent gold grades were returned in the upper benches of the targeted starter pit area
- Correlation of grades, ounces and tonnes between the Mineral Resource Model (September 2017) and the trial grade control model, has been completed with a very accurate reconciliation (Table 1 and Figure 3)

Selected drill hole intersection results are as follows:

- o 42m @ 5.6 g/t Au *NMRC486*
- o 42m @ 4.85 g/t Au NMRC335
- o 42m @ 4.8 g/t Au *NMRC433*
- o 42m @ 4.5 g/t Au NMRC193
- o 42m @ 3.9 g/t Au NMRC314
- o 42m @ 3.7 g/t Au *NMRC383*
- o 42m @ 3.4 g/t Au *NMRC361*
- o 42m @ 3.0 g/t Au NMRC320

The selected intersections reported above are for the entire length of each drill hole (0 to 42m), at >0.5 g/t Au cut off with no more than 3m of consecutive internal dilution at <0.5 g/t Au.

### Cardinal's Chief Executive Officer / Managing Director, Archie Koimtsidis said:

"The close spaced drill testing in this initial study area where Namdini gold mineralisation is exposed at surface, is located within our targeted starter pit area (Figure 1).

"Today's results are consistent with the grades, ounces and tonnes of the Resource Model (Table 1 and Figure 3). While this confirms the modelling methods and estimation techniques applied in the Mineral Resource Model estimation, these results are also a key element underpinning the production of a robust engineering study which will provide more informed views of the "ramp up" phase for the expected production scenario which will also be integrated into our Preliminary Economic Assessment expected to be completed in Q1 2018.

"An added benefit of this study is that these results will assist Cardinal with financing options for the Namdini Project".

Detailed results of the drill programme are included below and in the attached schedules.

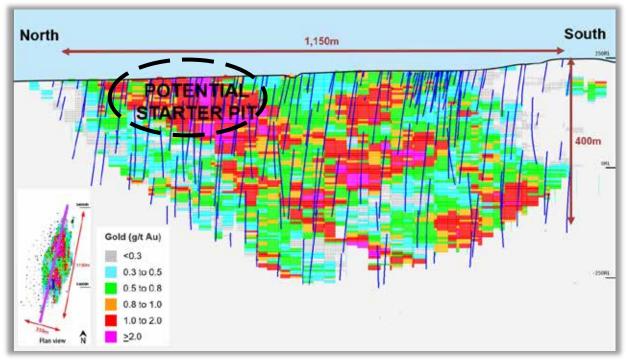






# STUDY RESULTS

Cardinal completed a 13,271m Reverse Circulation drilling programme at the northern end of the Namdini deposit for the purposes of a test grade control study which comprised 317 RC drill holes at a grid pattern of 10m (E) by 15m (N) and covering an area of 350m (E) by 200m (N) to approximately 40m vertical. They were drilled at -65<sup>o</sup> to the east in the Namdini local drilling grid, consistent with drilling undertaken for the resource models.


Grade control drilling targeted the near surface portion of the modelled mineralisation, as defined by the broad spaced resource definition drilling and subsequent Mineral Resource Model. The programme was designed to define the grade distribution of gold mineralisation at and near surface within the targeted starter pit area (Figures 1 and 2).

A test block model was constructed for the study area utilising Conditional Simulation technique. Figure 3 shows the grade control drilling relative to the Mineral Resource Model and Figure 4 shows the grade control model blocks for a typical level. A comparison between the Mineral Resource Model (Announced in September 2017) and the constructed grade control model is tabulated in Table 1.

| Resource Model (September 2017) |                |                   | Grade Control Model |                |                   | Delta             |                   |
|---------------------------------|----------------|-------------------|---------------------|----------------|-------------------|-------------------|-------------------|
| Cut off<br>(g/t Au)             | Tonnes<br>(Mt) | Grade<br>(g/t Au) | Metal<br>(Koz Au)   | Tonnes<br>(Mt) | Grade<br>(g/t Au) | Metal<br>(Koz Au) | Metal<br>(Koz) Au |
| 0.3                             | 4.05           | 1.4               | 183                 | 4.04           | 1.4               | 183               | 0                 |
| 0.5                             | 3.44           | 1.6               | 176                 | 3.43           | 1.6               | 175               | 1                 |
| 0.7                             | 3.00           | 1.7               | 168                 | 2.89           | 1.8               | 165               | 3                 |

Table 1: Comparison between Mineral Resource Model and Grade Control Model

This test area represents approximately 4% of the Indicated Resource ounces and the close spaced drill pattern demonstrates consistent mineralised zones at surface in this area. The results provide another layer of confidence that the spatial distribution and tenor of gold in this test area is in line with Namdini Mineral Resource expectations.









Page 3 of 26





Figure 2: Plan View of Namdini deposit showing drill hole locations and interpreted geology

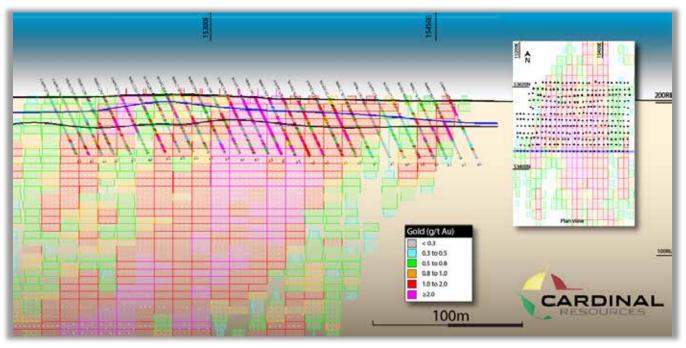



Figure 3: Cross Section showing down hole mineralised intersections of grade control holes (Blue line – Base of Oxide. Black line – Base of Transitional rock units)







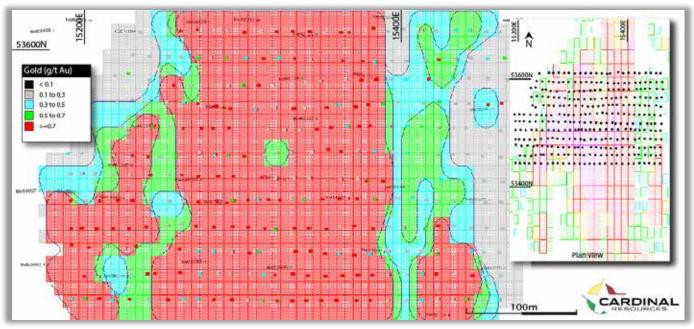



Figure 4: Plan view of Grade Control Model showing 3 typical mining cut-offs and dig lines generated for those cut-offs

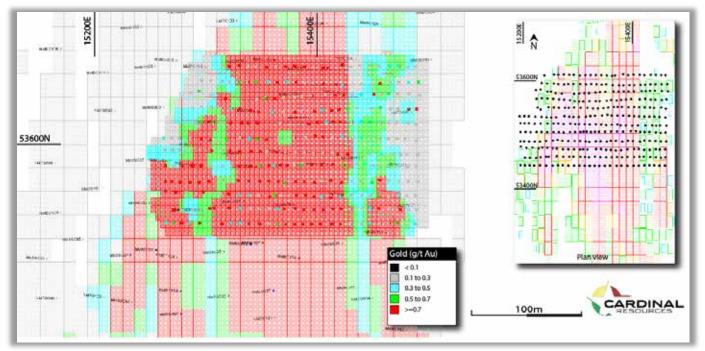



Figure 5: Plan view of the Grade Control Model on the Resource Model

Please refer to <u>www.sedar.com</u> for Cardinal's prospectus and NI43-101 reports.

Meta Data for the significant intercepts are tabulated below in Tables 2 and 3 in Schedule 1.







### ABOUT CARDINAL

Cardinal Resources Limited (ASX/TSX: CDV) is a West African gold-focused exploration and development Company which holds interests in tenements within Ghana, West Africa.

The Company's Namdini Project has a declared Indicated Mineral Resource of 120 Mt @ 1.1 g/t for **4.3 Moz Au** and an Inferred Mineral Resource of 84 Mt @ 1.2 g/t for **3.1 Moz** (refer to Cardinal "Technical Report on Namdini" dated 11 September 2017). The Company is focused on the development of the Namdini Project through a resource expansion drilling programme and continues to advance the PEA / Scoping Study which is now due for release in Q1 2018. In parallel, a pre-feasibility study is progressing and is supported by additional multi-disciplinary engineering activities. Exploration activity is also underway on its large portfolio of regional exploration Licenses.

For further information contact:

| Archie Koimtsidis          | Alec Rowlands              |  |
|----------------------------|----------------------------|--|
| CEO / MD                   | IR / Corp Dev              |  |
| Cardinal Resources Limited | Cardinal Resources Limited |  |
| P: +61 8 6558 0573         | P: +1 647 256 1922         |  |
| 1. 1010 0000 0070          | 1. 11 017 200 1722         |  |

This report contains information extracted from the following reports which are available for viewing on the Company's website <u>www.cardinalresources.com.au</u> and on <u>www.sedar.com</u>

- o 18 Sep 2017 Cardinal's Namdini Deposit Mineral Resource Update
- o 19 Oct 2017 Technical report (NI43-101) English

The Company confirms it is not aware of any new information or data that materially affects the information extracted from the above reports and included in this report relating to exploration activities and all material assumptions and technical parameters underpinning the exploration activities in those market announcements continue to apply and have not been changed. The Company confirms that the form and context in which the Competent Person's findings presented have not been materially modified from the original market reports listed above.

#### Competent Person's / Qualified Person's Statement

The information in this press release has been compiled and reviewed by Mr. Richard Bray, a Registered Professional Geologist with the Australian Institute of Geoscientists and Mr. Ekow Taylor, a Chartered Professional Geologist with the Australasian Institute of Mining and Metallurgy. Mr. Bray and Mr. Taylor have more than five years' experience relevant to the styles of mineralisation and type of deposits under consideration and to the activity which is being undertaken to qualify as a Competent Person, as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" and as a Qualified Person as defined by the NI43-101 instrument. Mr. Bray and Mr. Taylor are full-time employees of Cardinal and hold equity securities in the Company. Mr. Bray and Mr. Taylor have consented to the inclusion of the matters in this report based on the information in the form and context in which it appears.







#### Disclaimer

This ASX / TSX press release has been prepared by Cardinal Resources Limited (ABN: 56 147 325 620) ("Cardinal" or "the Company"). Neither the ASX or the TSX, nor their regulation service providers accept responsibility for the adequacy or accuracy of this press release.

This press release contains summary information about Cardinal, its subsidiaries and their activities, which is current as at the date of this press release. The information in this press release is of a general nature and does not purport to be complete nor does it contain all the information, which a prospective investor may require in evaluating a possible investment in Cardinal.

By its very nature exploration for minerals is a high-risk business and is not suitable for certain investors. Cardinal's securities are speculative. Potential investors should consult their stockbroker or financial advisor. There are a number of risks, both specific to Cardinal and of a general nature which may affect the future operating and financial performance of Cardinal and the value of an investment in Cardinal including but not limited to economic conditions, stock market fluctuations, gold price movements, regional infrastructure constraints, timing of approvals from relevant authorities, regulatory risks, operational risks and reliance on key personnel and foreign currency fluctuations.

Except for statutory liability which cannot be excluded and subject to applicable law, each of Cardinal's officers, employees and advisors expressly disclaim any responsibility for the accuracy or completeness of the material contained in this press release and excludes all liability whatsoever (including in negligence) for any loss or damage which may be suffered by any person as a consequence of any information in this Announcement or any error or omission here from. Except as required by applicable law, the Company is under no obligation to update any person regarding any inaccuracy, omission or change in information in this press release or any other information made available to a person nor any obligation to furnish the person with any further information. Recipients of this press release should make their own independent assessment and determination as to the Company's prospects, its business, assets and liabilities as well as the matters covered in this press release.

#### Forward-looking statements

Certain statements contained in this press release, including information as to the future financial or operating performance of Cardinal and its projects may also include statements which are 'forward-looking statements' that may include, amongst other things, statements regarding targets, estimates and assumptions in respect of mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions. These 'forward – looking statements' are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Cardinal, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies and involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Cardinal disclaims any intent or obligation to update publicly or release any revisions to any forward-looking statements, whether as a result of new information, future events, circumstances or results or otherwise after today's date or to reflect the occurrence of unanticipated events, other than required by the Corporations Act and ASX and TSX Listing Rules. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements.

All forward-looking statements made in this press release are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.







#### SCHEDULE 1 DRILL RESULTS

The listed intercepts within the tables in Schedule 1, have a detailed explanation within the notes, to describe how the intercepts were calculated, using 0.5 g/t cut-off, which approximates the cut-off of Reasonable Prospects of Eventual Economic Extraction ("RPEEE") as per The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code") 2012 and Canadian Institute of Mining ("CIM") 2010 guidelines and internal dilution of no more than 3m at <0.5g/t Au.

| Hole ID | Depth (m) | Dip   | Azimuth           | Grid_ID   | mEast      | mNorth      | mRL     |
|---------|-----------|-------|-------------------|-----------|------------|-------------|---------|
| NMRC163 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757716.029 | 1177172.721 | 201.773 |
| NMRC165 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757705.838 | 1177174.084 | 201.265 |
| NMRC167 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757696.276 | 1177175.785 | 201.415 |
| NMRC169 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757687.895 | 1177177.02  | 201.532 |
| NMRC171 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757678.546 | 1177178.117 | 201.643 |
| NMRC174 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757668.362 | 1177179.112 | 201.818 |
| NMRC176 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757658.638 | 1177180.263 | 202.158 |
| NMRC180 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757647.276 | 1177181.818 | 202.239 |
| NMRC181 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757636.821 | 1177183.423 | 202.549 |
| NMRC182 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757627.899 | 1177184.582 | 202.745 |
| NMRC184 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757615.596 | 1177186.631 | 202.684 |
| NMRC185 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757606.226 | 1177187.671 | 202.744 |
| NMRC187 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757596.522 | 1177188.808 | 203.369 |
| NMRC193 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757587.389 | 1177189.878 | 204.109 |
| NMRC194 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757578.607 | 1177191.094 | 204.536 |
| NMRC195 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757569.256 | 1177192.545 | 204.85  |
| NMRC196 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757559.886 | 1177194.389 | 205.06  |
| NMRC197 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757550.077 | 1177195.899 | 205.397 |
| NMRC198 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757539.365 | 1177197.587 | 205.46  |
| NMRC200 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757529.399 | 1177199.081 | 205.603 |
| NMRC201 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757520.534 | 1177200.406 | 205.692 |
| NMRC202 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757510.965 | 1177201.565 | 205.333 |
| NMRC203 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757499.318 | 1177203.046 | 204.847 |
| NMRC205 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757488.062 | 1177204.973 | 204.339 |
| NMRC206 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757476.977 | 1177206.098 | 204.09  |
| NMRC207 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757469.192 | 1177207.812 | 204.009 |
| NMRC208 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757460.645 | 1177209.181 | 203.958 |
| NMRC209 | 42        | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757452.544 | 1177210.59  | 203.973 |
| NMRC314 | 42.0      | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757599.927 | 1177204.271 | 203.017 |
| NMRC320 | 42.0      | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757632.806 | 1177230.537 | 202.664 |
| NMRC335 | 42.0      | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757535.056 | 1177244.192 | 203.978 |
| NMRC361 | 42.0      | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757604.451 | 1177251.275 | 202.777 |
| NMRC383 | 42.0      | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757541.343 | 1177274.615 | 202.351 |
| NMRC433 | 42.0      | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757652.633 | 1177274.770 | 201.241 |
| NMRC486 | 42.0      | 65.0° | 98.0 <sup>0</sup> | WGS84_30N | 757584.03  | 1177235.04  | 203.54  |

Table 2: Meta-Data listing drill holes







| NMRC163         0         22         22         4.9           NMRC163         34         37         3         0.9           NMRC165         0         29         29         3.2           NMRC167         0         7         7         0.9           NMRC167         18         22         4         5.5           NMRC167         26         36         10         2.9           NMRC169         0         3         3         1.0           NMRC169         27         41         14         1.7           NMRC171         0         12         12         0.9           NMRC174         21         29         8         0.5           NMRC180         36         36         0.9         9           NMRC180         4         4         0.9         9           NMRC181         0         4         4         0.9           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC181         5         39         34         2.3           NMRC182         0         2                                                          | Hole_ID | mFrom | mTo | mLength | Au_ppm |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|-----|---------|--------|
| NMRC163         34         37         3         0.9           NMRC165         0         29         29         3.2           NMRC167         0         7         7         0.9           NMRC167         18         22         4         5.5           NMRC167         26         36         10         2.9           NMRC169         0         3         3         1.0           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.7           NMRC171         0         12         12         0.9           NMRC174         21         29         8         0.5           NMRC180         0         36         36         0.9           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC182         0         42         42         1.5           NMRC182         0 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>    |         |       |     |         |        |
| NMRC165         0         29         29         3.2           NMRC167         0         7         7         0.9           NMRC167         18         22         4         5.5           NMRC167         26         36         10         2.9           NMRC169         0         3         3         1.0           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.4           NMRC171         0         12         12         0.9           NMRC174         21         29         8         0.5           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         0         4         4         0.9           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC183         0         42         42         2.5           NMRC193         0 <td< td=""><td></td><td>34</td><td></td><td></td><td></td></td<> |         | 34    |     |         |        |
| NMRC167         0         7         7         0.9           NMRC167         18         22         4         5.5           NMRC167         26         36         10         2.9           NMRC169         0         3         3         1.0           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.4           NMRC169         27         41         14         1.4           NMRC160         12         12         0.9         NMRC167           NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC183         0         42         42         1.5           NMRC184         1                                                        |         |       |     |         |        |
| NMRC167         18         22         4         5.5           NMRC167         26         36         10         2.9           NMRC169         0         3         3         1.0           NMRC169         8         17         9         1.3           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.4           NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC180         0         36         36         0.9           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC182         0         42         42         1.5           NMRC182         0         42         42         1.5           NMRC183         0                                                              |         | 0     |     |         |        |
| NMRC169         0         3         3         1.0           NMRC169         8         17         9         1.3           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.7           NMRC171         0         12         12         0.9           NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC182         0         42         42         1.5           NMRC182         0         42         42         1.5           NMRC182         0         42         42         2.5           NMRC183         0         42         42         2.5           NMRC194         0         <                                                      |         | 18    | 22  | 4       |        |
| NMRC169         0         3         3         1.0           NMRC169         8         17         9         1.3           NMRC169         27         41         14         1.7           NMRC169         27         41         14         1.7           NMRC171         0         12         12         0.9           NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC182         0         42         42         1.5           NMRC182         0         42         42         1.5           NMRC182         0         42         42         2.5           NMRC183         0         42         42         2.5           NMRC194         0         <                                                      |         |       |     | 10      |        |
| NMRC169         8         17         9         1.3           NMRC169         27         41         14         1.7           NMRC171         0         12         12         0.9           NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC181         42         41         2.4           NMRC182         0         42         42         1.5           NMRC183         0         42         42         2.5           NMRC184         1         42         41         2.4           NMRC185         0         42         42         2.5           NMRC193         0         42         <                                                      |         |       |     |         |        |
| NMRC169         27         41         14         1.7           NMRC171         0         12         12         0.9           NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         2.5           NMRC193         0         42         42         2.5           NMRC194         0         20         20         4.4           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC196         13                                                             |         |       |     |         |        |
| NMRC171         0         12         12         0.9           NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         0         20         20         3.2           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC193         0         42         42         2.5           NMRC194         0         20         20         4.4           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC196         13         41         28         1.4           NMRC197         6                                                               |         |       |     |         |        |
| NMRC171         28         42         14         1.4           NMRC174         21         29         8         0.5           NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC193         0         42         42         2.5           NMRC194         0         20         20         4.4           NMRC194         0         20         20         4.4           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         15                                                              |         |       |     |         |        |
| NMRC174         21         29         8         0.5           NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC193         0         42         42         2.5           NMRC194         0         20         20         4.4           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         15         27         12         1.3           NMRC198         35                                                             | NMRC171 | 28    | 42  | 14      |        |
| NMRC176         0         4         4         2.2           NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0                                                              |         |       | 29  | 8       |        |
| NMRC180         0         36         36         0.9           NMRC181         0         4         4         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC194         25         42         17         1.1           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         15         27         12         1.3           NMRC200         0                                                           |         |       |     |         |        |
| NMRC181         0         4         4         0.9           NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         15         27         12         1.3           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         24                                                         |         |       |     |         |        |
| NMRC181         5         39         34         2.3           NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         2.5           NMRC194         0         20         20         4.4           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         15         27         12         1.3           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         24         27         3         0.6           NMRC200         24                                                        |         |       |     |         |        |
| NMRC182         0         20         20         3.2           NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC198         35         38         3         0.9           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC201         0                                                            |         |       | -   | -       |        |
| NMRC182         24         42         18         1.3           NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         32         35         3         1.0           NMRC203         0                                                           |         |       |     |         |        |
| NMRC184         1         42         41         2.4           NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC194         25         42         17         1.1           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         15         27         12         1.3           NMRC198         15         27         12         1.3           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         32                                                       |         |       |     |         |        |
| NMRC185         0         42         42         1.5           NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC194         25         42         17         1.1           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC203         0                                                          |         |       |     |         |        |
| NMRC187         0         42         42         2.5           NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         6         11         5         1.2           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC201         0         19         19         1.5           NMRC201         0         19         19         1.5           NMRC203         0         27         27         5.2           NMRC203         0                                                            |         | 0     |     |         |        |
| NMRC193         0         42         42         4.5           NMRC194         0         20         20         4.4           NMRC194         25         42         17         1.1           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC203         0         27         27         5.2           NMRC203         0                                                          |         |       |     |         |        |
| NMRC194020204.4NMRC1942542171.1NMRC195042422.9NMRC1961341281.4NMRC197627211.0NMRC197354272.2NMRC19861151.2NMRC1981527121.3NMRC198353830.9NMRC2000171710.4NMRC200242730.6NMRC201019191.5NMRC201323531.0NMRC203027275.2NMRC203027275.2NMRC2050441.4NMRC205829213.1NMRC20603314.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |     |         |        |
| NMRC194         25         42         17         1.1           NMRC195         0         42         42         2.9           NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC197         35         42         7         2.2           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC205         8                                                           |         | 0     |     | 20      |        |
| NMRC195042422.9NMRC1961341281.4NMRC197627211.0NMRC197354272.2NMRC19861151.2NMRC1981527121.3NMRC198353830.9NMRC2000171710.4NMRC200242730.6NMRC200344060.6NMRC201019191.5NMRC203027275.2NMRC203027275.2NMRC2050441.4NMRC205829213.1NMRC205354050.9NMRC20603314.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |     |         |        |
| NMRC196         13         41         28         1.4           NMRC197         6         27         21         1.0           NMRC197         35         42         7         2.2           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC202         0         42         42         2.7           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC205         0         4         4         1.4           NMRC205         8                                                              |         |       |     |         |        |
| NMRC197         6         27         21         1.0           NMRC197         35         42         7         2.2           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35                                                              |         |       |     |         |        |
| NMRC197         35         42         7         2.2           NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0                                                               | NMRC197 | 6     | 27  |         | 1.0    |
| NMRC198         6         11         5         1.2           NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC201         32         35         3         1.0           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                            |         |       |     |         |        |
| NMRC198         15         27         12         1.3           NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC201         32         35         3         1.0           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                           |         |       |     |         |        |
| NMRC198         35         38         3         0.9           NMRC200         0         17         17         10.4           NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC201         32         35         3         1.0           NMRC201         32         35         3         1.0           NMRC203         0         27         27         5.2           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                        |         |       |     |         |        |
| NMRC2000171710.4NMRC200242730.6NMRC200344060.6NMRC201019191.5NMRC201323531.0NMRC202042422.7NMRC203027275.2NMRC203394230.5NMRC2050441.4NMRC205829213.1NMRC205354050.9NMRC20603314.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |       |     |         |        |
| NMRC200         24         27         3         0.6           NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC202         0         42         42         2.7           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                   |         |       |     |         |        |
| NMRC200         34         40         6         0.6           NMRC201         0         19         19         1.5           NMRC201         32         35         3         1.0           NMRC202         0         42         42         2.7           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |     |         |        |
| NMRC201019191.5NMRC201323531.0NMRC202042422.7NMRC203027275.2NMRC203394230.5NMRC2050441.4NMRC205829213.1NMRC205354050.9NMRC20603314.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |     |         |        |
| NMRC201         32         35         3         1.0           NMRC202         0         42         42         2.7           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |       |     |         |        |
| NMRC202         0         42         42         2.7           NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |       |     |         |        |
| NMRC203         0         27         27         5.2           NMRC203         39         42         3         0.5           NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |       |     |         |        |
| NMRC203394230.5NMRC2050441.4NMRC205829213.1NMRC205354050.9NMRC20603314.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |       |     |         |        |
| NMRC205         0         4         4         1.4           NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |       |     |         |        |
| NMRC205         8         29         21         3.1           NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |       |     |         |        |
| NMRC205         35         40         5         0.9           NMRC206         0         3         3         14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |       |     |         |        |
| NMRC206 0 3 3 14.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |       |     |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |       |     |         |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NMRC206 | 9     | 35  | 26      | 0.9    |







| Hole_ID | mFrom | mTo | mLength | Au_ppm |
|---------|-------|-----|---------|--------|
| NMRC207 | 0     | 3   | 3       | 2.4    |
| NMRC207 | 18    | 24  | 6       | 3.0    |
| NMRC207 | 28    | 39  | 11      | 1.3    |
| NMRC208 | 25    | 29  | 4       | 4.0    |
| NMRC208 | 35    | 42  | 7       | 1.2    |
| NMRC209 | 30    | 33  | 3       | 3.6    |
| NMRC209 | 37    | 42  | 5       | 0.7    |
| NMRC486 | 0     | 42  | 42      | 5.565  |
| NMRC335 | 0     | 42  | 42      | 4.854  |
| NMRC433 | 0     | 42  | 42      | 4.805  |
| NMRC193 | 0     | 42  | 42      | 4.5    |
| NMRC314 | 0     | 42  | 42      | 3.9    |
| NMRC383 | 0     | 42  | 42      | 3.714  |
| NMRC361 | 0     | 42  | 42      | 3.398  |
| NMRC320 | 0     | 42  | 42      | 3.0    |

Table 3: Summary of individual intercepts.

#### Notes:

- Cut-off grade for reporting of each individual intercept is  $\geq$  0.5 g/t Au with a maximum of 3m consecutive internal dilution included within the intercept; only intercepts  $\geq$  3m are reported.
- Intervals are Reverse Circulation drill cuttings which are sampled every 1m
- Samples are analyzed for Au (SGS Lab FAA505 method) which is a 50g fire assay fusion with AAS instrument finish.
- Grid coordinates are in WWGS84 Zone 30 North.







#### APPENDIX 1 JORC CODE 2012 EDITION – TABLE 1

# Section 1 – Sampling Technique and Data

| Criteria               | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sampling<br>techniques | Nature and quality of sampling (e.g.<br>cut channels, random chips, or<br>specific specialised industry<br>standard measurement tools<br>appropriate to the minerals under<br>investigation, such as down hole<br>gamma sondes, or handheld XRF<br>instruments, etc.). These examples<br>should not be taken as limiting the<br>broad meaning of sampling.<br>Include reference to measures<br>taken to ensure sample<br>representivity and the appropriate<br>calibration of any measurement<br>tools or systems used.                                                                                                     | Sampling is by a combination of diamond drill and<br>reverse circulation holes.<br>Nature and quality of sampling is carried out under QAQC<br>procedures as per industry standards.<br>Diamond sampling include both half-core and quarter-<br>core samples of HQ core size and RC samples are<br>collected by a three-tier riffle splitter using downhole<br>sampling hammers with nominal 127 to 140mm holes.<br>HQ core and RC sampling quality is ensured through<br>inserting CRM standards and blanks every 22 samples.<br>Sampling is guided by Cardinal Namdini protocols and<br>Quality Control procedures as per industry standard.<br>Sample representivity is ensured for:<br>RC samples by collecting 1m samples from a cyclone,<br>passing them through a 3-tier riffle splitter, and taking<br>duplicate samplers every 22nd sample.<br>HQ core through sampling the various lithological units<br>at 1m intervals. The original system used was to sample<br>each unit separately, but after statistical analyses of the<br>results found there was no material grade variation<br>between the units, the quarter core was sampled at 1m<br>intervals throughout the drill hole. Recent HQ core |
|                        | Aspects of the determination of<br>mineralisation that are Material to<br>the Public Report.<br>In cases where 'industry standard'<br>work has been done this would be<br>relatively simple (e.g. 'reverse<br>circulation drilling was used to<br>obtain 1 m samples from which 3 kg<br>was pulverised to produce a 30-g<br>charge for fire assay'). In other<br>cases, more explanation may be<br>required, such as where there is<br>coarse gold that has inherent<br>sampling problems. Unusual<br>commodities or mineralisation<br>types (e.g. submarine nodules) may<br>warrant disclosure of detailed<br>information. | <ul> <li>sampling has been conducted by half core.</li> <li>Diamond drill samples are firstly crushed using Jaw Crusher and thereafter crushed to -2mm using a RSD Boyd crusher. A less than 1kg split sample is then pulverised via LM2 to a nominal 85% passing -75µm.</li> <li>Reverse circulation drill samples are only crushed through a RSD Boyd crusher to -2mm and pulverised via LM2 to a nominal 85% passing-75µm.</li> <li>A 200g sub-sample is taken for analysis. A 50g charge weight is fused with litharge based flux, cupelled and the prill dissolved in aqua regia and Gold is determined by AAS.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Drilling<br>techniques | Drill type (e.g. core, reverse<br>circulation, open-hole hammer,<br>rotary air blast, auger, Bangka,<br>sonic, etc.) and details (e.g. core                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Diamond core drilling is completed with core size of HQ with a standard tube. Triple tube is used in saprolite at the tops of the hole. Core is orientated using digital Reflex ACT II RD orientation tool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |







| Criteria                 | JORC Code Explanation                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | diameter, triple or standard tube,<br>depth of diamond tails, face-<br>sampling bit or other type, whether<br>core is oriented and if so, by what<br>method, etc.).          | Reverse circulation drilling uses sampling hammer of<br>nominal 127 to 140mm holes.<br>All holes are inclined at varying angles for optimal zone<br>intersection.<br>All drill collars are surveyed using Trimble R8 RTK GPS<br>with downhole surveying every 30m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Drill sample<br>recovery | Method of recording and assessing<br>core and chip sample recoveries and<br>results assessed.                                                                                | Diamond core recovery is logged and captured into the database. Method of recording chip and core sample recoveries was to enter the relevant data on a handheld Motion F5te Tablet PC using a set of standard templates supplied by Maxwell Geoservices, Perth (Maxwell).<br>Reverse circulation sampling is good. Chips are logged and weighed and captured to the database.<br>RC sample recoveries are assessed by weighing 1m samples from the cyclone on a scale in the field and comparing with the theoretical volume contained in a 1m x 140mm diameter hole to calculate an estimated percentage sample recovery.<br>For RC drilling, average recoveries are in the order of 76% and considered acceptable.<br>Core recovered from each drill run is measured and compared with the drill run length drilled to calculate an estimated percentage core recovery.<br>For core drilling overall recoveries are excellent, weighted average recovery greater than 98%.                                                                              |
|                          | Measures taken to maximise<br>sample recovery and ensure<br>representative nature of the<br>samples.                                                                         | Measures taken include the use of bigger HQ core size<br>diamond drilling to maximise recovery, having a<br>geologist onsite to examine core and core metres<br>marked and orientated to check against the driller's<br>blocks and ensuring that all core loss is taken into<br>account.<br>At the reverse circulation rig, sampling systems are<br>routinely cleaned to minimise the opportunity for<br>contamination and drilling methods are focused on<br>sample quality. The measures taken to maximize RC<br>sample recovery are through a cyclone and a 3-tier riffle<br>splitter. Each 1m sample is passed twice through the<br>splitter before sampling to ensure maximum<br>homogenisation of each sample and to collect an<br>unbiased representative sample to be assayed.<br>The majority of the reverse circulation rigs have auxiliary<br>compressors and boosters to help maintain dry samples.<br>Where wet samples are encountered, the reverse<br>circulation drilling is discontinued and is progressed with<br>diamond core drilling. |
|                          | Whether a relationship exists<br>between sample recovery and<br>grade and whether sample bias may<br>have occurred due to preferential<br>loss/gain of fine/coarse material. | No relationship is seen to exist between sample recovery<br>and grade, and no sample bias due to preferential<br>loss/gain of any fine/coarse material due to the<br>acceptable sample recoveries obtained by both drilling<br>methods employed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |







| Criteria                                                | JORC Code Explanation                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Logging                                                 | Whether core and chip samples<br>have been geologically and<br>geotechnically logged to a level of<br>detail to support appropriate<br>Mineral Resource estimation,<br>mining studies and metallurgical<br>studies. | All drill holes are fully logged. The lithology, alteration<br>and geotechnical characteristics of core are logged<br>directly to a digital format on a Field Toughbook laptop<br>logging system following procedures and using Cardinal<br>geologic codes. Data is imported into Cardinal's central<br>database after validation in LogChief™.<br>All geological logging is to a level of detail to support<br>Mineral Resource estimation.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                         | Whether logging is qualitative or<br>quantitative in nature. Core (or<br>costean, channel, etc.)<br>photography.<br>The total length and percentage of<br>the relevant intersections logged.                        | Logging is both qualitative and quantitative depending<br>on field being logged.<br>Both RC chips in trays and HQ core are photographed<br>both in dry and wet form.<br>All holes are logged in full and to the total length of each<br>drill hole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                         |                                                                                                                                                                                                                     | 100% of each relevant intersection is logged in detail.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sub-sampling<br>techniques and<br>sample<br>preparation | If core, whether cut or sawn and<br>whether quarter, half or all core<br>taken.                                                                                                                                     | Core orientation is completed for all diamond holes and<br>all are marked prior to sampling. Longitudinally cut half<br>core samples are produced using a Core Saw. Samples<br>are weighed and recorded.<br>Some quarter core samples have been used and<br>statistical test-work has shown them to be as equally<br>representative as half core.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                         | If non-core, whether riffled, tube<br>sampled, rotary split, etc. and<br>whether sampled wet or dry.                                                                                                                | RC samples are split using a three-tier riffle splitter. The majority of RC samples are dry. On occasions that wet samples are encountered, they are dried prior to splitting with a riffle splitter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                         | For all sample types, the nature,<br>quality and appropriateness of the<br>sample preparation technique.                                                                                                            | Drill core samples are sorted, dried at 105°C for 4 hours<br>and weighed. Samples are firstly Jaw Crushed and a<br>second stage crushing is through RSD Jaques crusher to<br>a nominal -2mm and then split to <1.0kg. The reject<br>sample is retained in the original bag and stored. The<br>split is pulverised in a LM2 to a nominal 85% passing<br>75%µm and approximately 200g sub-sample of the<br>pulverised material is used for assay.<br>Chip samples are sorted and dried in an oven for 8 hours<br>and weighed. They are then crushed to -2mm using a<br>RSD Boyd crusher and a <1.0kg split is taken. The reject<br>sample is retained in the original bag and stored. The<br>split is pulverised in a LM2 to a nominal 85% passing<br>75µm and a 200g sub-sample is used for analysis.<br>All preparation equipment is flushed with barren<br>material prior to commencement of the job. |
|                                                         | Quality control procedures adopted<br>for all sub-sampling stages to<br>maximise representivity of samples.                                                                                                         | 1:50 sample is screened to confirm percentage passing 2mm (crushed) and 75µm (pulverised). Crusher and pulveriser are flushed with barren material at the start of every batch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                         | Measures taken to ensure that the sampling is representative of the in-                                                                                                                                             | Sampling is carried out in accordance with Cardinal protocols as per industry best practice. Quality control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (Della)                                                 | L                                                                                                                                                                                                                   | ABN 56 147 325 620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |







| Criteria                                         | JORC Code Explanation                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | situ material collected, including for<br>instance results for field<br>duplicate/second-half sampling.                                                                                                                                                | procedures adopted for all sub-sampling stages to<br>maximize representivity of samples is to insert<br>commercial certified reference material (CRM) for<br>standards and in-house blanks every 22 samples.<br>SGS Laboratory assays duplicate samples of each<br>sample batch (20%) so that representivity of the<br>samples can be checked<br>Field duplicates have been taken and analysis of results<br>have shown the sampling to be representative.                                                                                                                                                                                                                     |
|                                                  | Whether sample sizes are<br>appropriate to the grain size of the<br>material being sampled.                                                                                                                                                            | Measures taken to ensure that the RC sampling is<br>representative of the in-situ material collected are to<br>take field duplicate samples every 22nd sample.<br>Approximately 3kg samples from the splitter are<br>retained from each sample and stored on the<br>company's premises for possible re-assay.<br>Measures taken to ensure that the core sampling is<br>representative is to sample half core at 1m intervals<br>irrespective of lithologies due to the similarities in grade<br>of the main lithologies.<br>Results of field duplicates, standards and blanks are all<br>plotted graphically to ensure that the results of each<br>assay batch are acceptable. |
| Quality of Assay<br>data and<br>laboratory tests | The nature, quality and<br>appropriateness of the assaying and<br>laboratory procedures used and<br>whether the technique is<br>considered partial or total.                                                                                           | Samples are analysed for Au by lead collection fire assay<br>of a 50g charge with AAS finish; the assay charge is fused<br>with the litharge based flux, cupelled and prill dissolved<br>in aqua regia and gold determined by flame AAS.<br>The quality of the Fire Assaying and laboratory<br>procedures are considered to be entirely appropriate for<br>this deposit type.<br>The analytical method is considered appropriate for this<br>mineralisation style and of industry standards.                                                                                                                                                                                   |
|                                                  | For geophysical tools,<br>spectrometers, handheld XRF<br>instruments, etc., the parameters<br>used in determining the analysis<br>including instrument make and<br>model, reading times, calibrations<br>factors applied and their derivation,<br>etc. | No hand held geophysical tools are used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | Nature of quality control<br>procedures adopted (e.g.<br>standards, blanks, duplicates,<br>external laboratory checks) and<br>whether acceptable levels of<br>accuracy (i.e. lack of bias) and<br>precision have been established.                     | Sample preparation checks for pulp fineness are carried<br>out by the laboratory as part of their internal<br>procedures to ensure the grind size of 85% passing<br>75µm is being attained. Laboratory QAQC involves the<br>use of internal lab standards using certified reference<br>material and blanks.<br>Cardinal's QAQC protocol is considered industry<br>standard with standard reference material (SRM)<br>submitted on a regular basis with routine samples. The                                                                                                                                                                                                    |







| Criteria                                    | JORC Code Explanation                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                                                                                                                | SRMs having a range of values and blanks are inserted<br>in the ratio of 1:22. Duplicates are taken at the riffle<br>splitter at a ratio of 1:20 samples. No duplicate samples<br>are taken from core samples.<br>Pulps are submitted to a secondary laboratory for<br>checks on accuracy and precision of the primary<br>laboratory.                                                                                                                |
| Verification of<br>sampling and<br>assaying | The verification of significant intersections by either independent or alternative company personnel.                                                                                                                                          | Significant intersections have been verified by alternative company personnel.                                                                                                                                                                                                                                                                                                                                                                       |
|                                             | The use of twinned holes.                                                                                                                                                                                                                      | None of the drill holes in this report are twinned.                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                             | Documentation of primary data,<br>data entry procedures, data<br>verification, data storage (physical<br>and electronic) protocols.                                                                                                            | Primary data are captured on field tough book laptops<br>using LogChief <sup>™</sup> Software. The software has validation<br>routines and data is then imported onto a secure central<br>database.                                                                                                                                                                                                                                                  |
|                                             | Discuss any adjustment to assay data.                                                                                                                                                                                                          | The primary data is always kept and is never replaced by adjusted or interpreted data.                                                                                                                                                                                                                                                                                                                                                               |
| Location of data<br>points                  | Accuracy and quality of surveys<br>used to locate drill holes (collar and<br>down-hole surveys), trenches, mine<br>workings and other locations used<br>in Mineral Resource estimation.                                                        | Planned drill hole collar coordinates are surveyed using<br>handheld Garmin GPSmap 62s GPS within ±3m accuracy.<br>All drill collars are accurately surveyed using Trimble R8<br>RTK GPS system within ±10mm of accuracy (X, Y, Z).<br>Coordinates are based on 12 control stations established<br>on the Namdini site by Sahara Mining Services.<br>Downhole survey is completed by using Reflex Ez-Shot<br>survey instrument at regular intervals. |
|                                             | Specification of the grid system used.                                                                                                                                                                                                         | Coordinate and azimuth are reported in UTM WGS84<br>Zone 30 North.                                                                                                                                                                                                                                                                                                                                                                                   |
|                                             | Quality and adequacy of topographic control.                                                                                                                                                                                                   | Topographic control was established from aerial<br>photography using a series of 12 surveyed control points.<br>A 1m ground resolution DTM was produced by Sahara<br>Mining Services from the survey completed in 24 flights<br>using the DJI Inspire 1 UAV at an altitude of 100m with<br>an overlap of 70%.                                                                                                                                        |
| Data spacing<br>and distribution            | Data spacing for reporting of Exploration Results.                                                                                                                                                                                             | Drill spacing is at 50m x 100m line spacing with infill to 50m x 50m and 10m x 15m in areas to establish mineralisation continuity, grade control testing and upgrade the Mineral Resource.                                                                                                                                                                                                                                                          |
|                                             | Whether the data spacing and<br>distribution is sufficient to<br>establish the degree of geological<br>and grade continuity appropriate<br>for the Mineral Resource and Ore<br>Reserve estimation procedure(s)<br>and classifications applied. | Drill data spacing and distribution are sufficient to<br>establish the geological and grade continuity<br>appropriate for reporting Mineral Resource and Ore<br>Reserve and classifications applied.                                                                                                                                                                                                                                                 |
| Orientation of data in relation             | Whether sample compositing has been applied.                                                                                                                                                                                                   | No sample compositing has been applied.                                                                                                                                                                                                                                                                                                                                                                                                              |







| Criteria                   | JORC Code Explanation                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| to geological<br>structure | Whether the orientation of<br>sampling achieves unbiased<br>sampling of possible structures and<br>the extent to which this is known,<br>considering the deposit type.                    | The majority of the drill holes are orientated to achieve<br>intersection angles as close to perpendicular to the<br>mineralisation as practicable. This achieves unbiased<br>sampling of possible structures as drilling is orientated<br>normal to the dip and foliation of the deposit. Structural<br>measurements confirm that the foliation of the entire<br>deposit dips -60°W so that the sampling achieves<br>unbiased sampling of the lithologies<br>No significant orientation based sampling bias is known                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                            | drilling orientation and the<br>orientation of key mineralised<br>structures is considered to have<br>introduced a sampling bias, this<br>should be assessed and reported if<br>material. | at this time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample security            | The measures taken to ensure sample security.                                                                                                                                             | An independent Ghanaian security contractor is used to<br>ensure sample security.<br>The drilling contractor is accountable for drill core and<br>RC chips production at the drill site. Final delivery from<br>the drill site to the laydown within the core yard is<br>managed by Cardinal. The core yard technicians, field<br>technicians and Geologists ensure the core and chips<br>are logged, prepared and stored under security until<br>collected by SGS for delivery to the laboratories.<br>At the time of sample collection, a sign-off process<br>between Cardinal and the SGS delivery truck driver<br>ensures the samples and paper work corresponds. The<br>samples are then transported to the SGS Tarkwa<br>(Ghana) or SGS Ouagadougou (Burkina Faso) laboratory<br>where they are receipted against the dispatch<br>documents. The assay laboratories are responsible for<br>the samples from the time of collection from Namdini<br>Project site until final results are returned and checked<br>by Cardinal Geologists.<br>Sample pulps and coarse rejects are retained by the<br>laboratories and are shipped back to Namdini after final<br>results are returned where they are stored under<br>security. |
| Audits or<br>reviews       | The results of any audits or reviews of sampling techniques and data.                                                                                                                     | Sampling techniques are of industry standards. Data is audited by Maxwell Geoservices (Perth), who have not made any other recommendations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |







Section 2 – Reporting of Exploration Results (Criteria listed in section 1 will also apply to this section where relevant)

| Criteria                                           | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria<br>Mineral<br>Tenement and<br>Land Status | JORC Code Explanation<br>Type, name/reference number,<br>location and ownership including<br>agreements or material issues with<br>third parties including joint<br>ventures, partnerships, overriding<br>royalties, native title interests,<br>historical sites, wilderness or<br>national park and environmental<br>settings.                          | The Mining Licence covering Cardinal's Namdini<br>Project over an area of approximately 19.54 sq. Km is<br>located in the North-East region of Ghana.<br>The previous holder of the Mining Licence, Savannah<br>Mining Ghana Limited (Savanah) completed an initial<br>Environmental Impact Statement (EIS) and lodged the<br>EIS with the Environmental Protection Agency of<br>Ghana.<br>Cardinal and Savannah have both signed the necessary<br>documents to assign the Namdini Mining Licence to<br>Cardinal Namdini Mining Limited (Cardinal Namdini), a<br>wholly owned subsidiary of Cardinal Resources, for<br>US\$1.00 as per the Savannah agreement. After the<br>completion of the upcoming Preliminary Economic<br>Assessment, Cardinal Namdini will submit to the<br>Minerals Commission an updated EIS and an<br>application for an Operating Permit, bringing all<br>permitting for the Namdini Project on track for |
|                                                    | The security of the tenure held at<br>the time of reporting along with any<br>known impediments to obtaining a<br>license to operate in the area.                                                                                                                                                                                                        | development.<br>All tenements are current and in good standing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Exploration<br>Done by Other<br>Parties            | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                            | Aside from Cardinal there has been no recent systematic exploration undertaken on the Namdini Project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Geology                                            | Deposit type, geological setting and style of mineralisation                                                                                                                                                                                                                                                                                             | The deposit type comprises gold mineralisation within<br>sheared and highly altered rocks containing sulphides;<br>mainly pyrite with minor arsenopyrite.<br>The geological setting is a Paleoproterozoic<br>Greenstone Belt comprising Birimian metavolcanics,<br>volcaniclastics and metasediments located in close<br>proximity to a major 30 km ~N-S regional shear zone<br>with splays.<br>The style of mineralisation is hydrothermal alteration<br>containing disseminated gold-bearing sulphides.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Drill hole<br>information                          | <ul> <li>A summary of all information material to the understanding of the exploration results including tabulation of the following information for all Material drill holes:</li> <li>Easting and northing of the drill hole collar</li> <li>Elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar</li> </ul> | A summary of drill hole information is provided in this document.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |







| Criteria                                  | JORC Code Explanation                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | <ul> <li>Dip and azimuth of the hole</li> <li>Down hole length and<br/>interception depth</li> <li>Hole length</li> </ul>                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                              |
|                                           | If the exclusion of this information is<br>justified on the basis that the<br>information is not Material and this<br>exclusion does not detract from the<br>understanding of the report, the<br>Competent Person should clearly<br>explain why this is the case.                        | There has been no exclusion of information.                                                                                                                                                                                                                                                                                                                                  |
| Data aggregation<br>methods               | In reporting Exploration Results,<br>weighting averaging techniques,<br>maximum and/or minimum grade<br>truncations (e.g. cutting of high<br>grades) and cut-off grades are<br>usually Material and should be<br>stated.                                                                 | No weighting averaging techniques nor cutting of high grades have yet been undertaken.                                                                                                                                                                                                                                                                                       |
|                                           | Where aggregated intercepts<br>incorporate short lengths of high<br>grade results and longer lengths of<br>low grade results, the procedure<br>used for such aggregation should be<br>stated and some typical examples of<br>such aggregations should be shown<br>in detail.             | Aggregated intercepts incorporating short lengths of<br>high grade results within the lithological units are<br>calculated to include no more than intervals of 3m<br>below grades of <0.5 g/t Au when assay results are<br>reported.<br>No top cut of individual assays prior to length weighted<br>intersection calculation of the reported intercept has<br>been applied. |
|                                           | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                              | No metal equivalents are used in the intersection calculation.                                                                                                                                                                                                                                                                                                               |
| Relationship<br>between<br>mineralisation | These relationships are particularly important in the reporting of exploration results.                                                                                                                                                                                                  | The relationship between mineralisation widths and intercept length is not yet known.                                                                                                                                                                                                                                                                                        |
| widths and intercept lengths              | If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.                                                                                                                                                                      | The geometry of the mineralisation with respect to the drill hole angle is not yet known.                                                                                                                                                                                                                                                                                    |
|                                           | If it is not known and only the down<br>hole lengths are reported, there<br>should be a clear statement to this<br>effect (e.g. 'down hole length, true<br>width not known').                                                                                                            | The geometry of the mineralisation is unknown; only downhole length is reported (no true width of mineralisation is reported).                                                                                                                                                                                                                                               |
| Diagrams                                  | Appropriate maps and sections<br>(with scales) and tabulations of<br>intercepts should be included for<br>any significant discovery being<br>reported. These should include, but<br>not be limited to a plane view of drill<br>hole collar locations and<br>appropriate sectional views. | Appropriate maps and cross-sections with scale are<br>included within the body of the accompanying<br>document.                                                                                                                                                                                                                                                              |







| Criteria                                 | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced<br>Reporting                    | Where comprehensive reporting of<br>all Exploration Results is not<br>practical, representative reporting<br>of both low and high grades and/or<br>widths should be practiced to avoid<br>misleading reporting of Exploration<br>Results.                                                                                                                                                                                | The accompanying document is considered to represent a balanced report.                                                                                                                                                                                                                                                                             |
| Other<br>substantive<br>exploration data | Other exploration data, if<br>meaningful and material, should be<br>reported including (but not limited<br>to): geological observation;<br>geophysical survey results;<br>geochemical survey results; bulk<br>samples – size and method of<br>treatment; metallurgical test<br>results; bulk density, groundwater,<br>geotechnical and rock<br>characteristics; potential<br>deleterious or contaminating<br>substances. | Other exploration data collected is not considered<br>material to this document at this stage.<br>The interpretation of the geological observations<br>shown in the cross and long sections are subject to<br>possible change as new information is gathered.<br>Further data collection will be reviewed and reported<br>when considered material. |
| Further Work                             | The nature and scale of planned<br>further work (e.g. tests for lateral<br>extensions or depth extensions or<br>large – scale step – out drilling).<br>Diagrams clearly highlighting the<br>areas of possible extensions,<br>including the main geological<br>interpretations and future drilling<br>areas, provided this information is<br>not commercially sensitive.                                                  | Exploration drilling will continue to target projected<br>lateral and depth extensions of the mineralisation and<br>infill drilling to increase the confidence in the Mineral<br>Resource.                                                                                                                                                          |







# Section 3 – Estimation and Reporting of Mineral Resources

| Criteria              | JORC Code Explanation                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database<br>integrity | Measures taken to ensure that data<br>has not been corrupted by, for<br>example, transcription or keying<br>errors, between its initial collection<br>and its use for Mineral Resource<br>estimation purposes. | The Data is managed using DataShed© drill hole<br>management software (Maxwell Geoservices) using<br>SQL database techniques. Validation checks were<br>conducted using SQL and DataShed relational database<br>standards.<br>All geological and field data is entered using data-<br>loggers and software developed by Maxwell<br>GeoServices, that includes lookup tables and fixed<br>formatting (and protected from modification) thus only<br>allowing data to be entered using the Cardinal<br>geological code system and sample protocol. Data is<br>then loaded to the DataShed database, which was<br>managed by consultants Maxwell GeoServices.<br>Cardinal technical personnel validated the database<br>using Micromine software.<br>The DataShed database is then reviewed against the<br>original logging spreadsheets and the assay data<br>checked against the supplied assay certificates.<br>The Competent Person's independent checks of<br>database validity included checking for internal<br>consistency between, and within database tables and<br>comparing 97% of database assay entries with<br>laboratory source files supplied by Cardinal. These<br>checks showed no significant discrepancies in the<br>database used for grade control model estimation. |
| Site visits           | Data validation procedures used.                                                                                                                                                                               | Following importation, the data goes through a series<br>of digital checks for duplication and non-conformity,<br>followed by manual validation by the relevant project<br>geologist who manually checks the collar, survey, assay<br>and geology for errors against the original field data<br>and final paper copies of the assays. The process is<br>documented, including the recording of holes checked,<br>errors found, corrections made and the date of<br>database update.<br>Basic validation checks were carried out to confirm the<br>data is valid and acceptable to support resource<br>estimation work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Site visits           | Comment on any site visits<br>undertaken by the Competent<br>Person and the outcome of those<br>visits.                                                                                                        | Richard Bray and Ekow Taylor have both visited site on<br>numerous occasions and deemed data collection is of<br>industry standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       | If no site visits have been<br>undertaken indicate why this is the<br>case.                                                                                                                                    | Site visits have been undertaken by the Competent Persons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |







| Criteria       | JORC Code Explanation                    | Commentary                                                                                      |
|----------------|------------------------------------------|-------------------------------------------------------------------------------------------------|
| Geological     | Confidence in (or conversely, the        | Gold mineralisation above the cut-off of grade is                                               |
| interpretation | uncertainty of) the geological           | widespread within the meta-volcanic, granite and                                                |
|                | interpretation of the mineral            | diorite rocks which can be interpreted and modelled                                             |
|                | deposit.                                 | with a high degree of confidence. There is a sharp                                              |
|                |                                          | mineralisation boundary with the meta-sediments in                                              |
|                |                                          | the footwall while the hanging wall contact exhibits a                                          |
|                |                                          | more diffuse mineralisation boundary. Higher grade                                              |
|                |                                          | mineralisation (>0.5 g/t Au) can be traced along                                                |
|                |                                          | structural corridors related to a pervasive NW-SE                                               |
|                |                                          | foliation which has been warped around the more                                                 |
|                |                                          | competent granite. There is abundant structural                                                 |
|                |                                          | information from oriented core which confirms this                                              |
|                |                                          | assumption.                                                                                     |
|                |                                          | Based on these observations, and geological                                                     |
|                |                                          | interpretations, a broad (0.1gt Au) low grade                                                   |
|                |                                          | mineralisation package was developed. The mineralisation constraint was traceable at low grades |
|                |                                          | for overall 1300m and is up to 300m wide. The                                                   |
|                |                                          | mineralisation dips approximately 55° to 60° towards                                            |
|                |                                          | the west.                                                                                       |
|                | Nature of the data used and of any       | The drill hole database used for the grade control trial                                        |
|                | assumptions made.                        | test and estimation consists of RC samples. Numerous                                            |
|                |                                          | validation steps have been taken by Cardinal                                                    |
|                |                                          | Competent persons. Cardinal is of the opinion that the                                          |
|                |                                          | drill hole database is of sufficient quality to support a                                       |
|                |                                          | grade control estimate.                                                                         |
|                |                                          | The geological data used to construct the geological                                            |
|                |                                          | model includes regional and surface mapping and                                                 |
|                |                                          | logging of RC and diamond core drilling. A nominal                                              |
|                |                                          | 0.1g/t Au lower cut-off grade was applied to the                                                |
|                |                                          | mineralisation model.                                                                           |
|                |                                          | Oxidation codes and densities were assigned to model                                            |
|                |                                          | estimates from triangulated surfaces representing the                                           |
|                |                                          | base of oxidation, and base of transitional material (top                                       |
|                |                                          | of fresh rock) respectively which were interpreted from                                         |
|                |                                          | geological logging.                                                                             |
|                | The effect, if any, of alternative       | The geology of the deposit is relatively simple, and the                                        |
|                | interpretations on Mineral               | interpretation is considered robust. There is no                                                |
|                | Resource estimation.                     | apparent alternative to the interpretation in the                                               |
|                | The use of geology in suiding and        | company's opinion at this point.                                                                |
|                | The use of geology in guiding and        | The grade control trial estimate uses, lithological and                                         |
|                | controlling Mineral Resource estimation. | structural information collected to guide the                                                   |
|                |                                          | interpretation.<br>The mineralisation geometry has a strong relationship                        |
|                |                                          | with the interpreted alteration and structure. The                                              |
|                |                                          | lithology contacts and the weathering changes do not                                            |
|                |                                          | appear to materially control the mineralisation                                                 |
|                |                                          | although the metavolcanics and the tonalite (granite)                                           |
|                |                                          | mineralisation is on average higher grade than the                                              |
|                | I                                        | minoralisation is on avoi ago nighor grado than the                                             |







| Criteria                                  | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           |                                                                                                                                                                                                                                                                                                                                                                                       | diorite and metasediment mineralisation. Little grade<br>variation is noted between the different weathering<br>groupings.<br>The grade control estimate is based on all gold grades<br>and the mineralisation package defined by the close<br>spaced RC drilling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | The factors affecting continuity both of grade and geology.                                                                                                                                                                                                                                                                                                                           | The continuity of grade is associated with a pervasive<br>foliation, alteration, sulphides and the spatial<br>distribution of lithologies including the interaction<br>between structure and lithological competency<br>contrasts.<br>A broad zone of anomalous mineralisation is<br>interpreted. The grade continuity at lower cut-off<br>grades is good, however this grade continuity is<br>materially reduced at higher cut-off grades as expected<br>in a gold deposit.<br>Geological setting and mineralisation controls have<br>been established with sufficient confidence for the<br>current estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dimensions                                | The extent and variability of the<br>Mineral Resource expressed as<br>length (along strike or otherwise),<br>plan width, and depth below<br>surface to the upper and lower<br>limits of the Mineral Resource.                                                                                                                                                                         | The mineralisation is widespread extending over and<br>area 350 m wide (horizontal thickness), 1.2 km along<br>strike and to a depth of 600 m below surface.<br>Mineralisation generally dips at 55° towards the NW<br>with local changes in dip corresponding to lithological<br>contacts and foliation directions.<br>The grade control trial test only covers an area of 350m<br>(E) by 200m (N) in the northern part of the deposit<br>where the mineralisation is at surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Estimation and<br>modelling<br>techniques | The nature and appropriateness of<br>the estimation technique(s) applied<br>and key assumptions, including<br>treatment of extreme grade values,<br>domaining, interpolation<br>parameters and maximum distance<br>of extrapolation from data points.<br>If a computer assisted estimation<br>method was chosen include a<br>description of computer software<br>and parameters used. | The trial grade control model estimated gold resources<br>into blocks with dimensions of 5 m (east) by 8 m (north)<br>by 2.5m (elevation). Conditional Simulation techniques<br>were applied where variography and univariate<br>statistics based on the sample grades are utilised. The<br>method generates a number of detailed simulations<br>that honours all of the known sampling information, is<br>consistent with geological interpretation and univariate<br>and spatial statistics. Gold grade continuity was<br>characterised by variograms spanning the global range<br>of grades. Conditional simulation was used as the<br>preferred method for estimation of gold resources for<br>the trial grade control model at Namdini, as the<br>approach has been demonstrated to work well in a<br>large number of deposits. The grade control system<br>uses geostatistical methods to determine optimal<br>mining ore outlines at various cut-off grades. The gold<br>mineralisation seen at Namdini is typical of that seen in<br>most structurally controlled gold deposits where the<br>Conditional Simulation method has been found to be of<br>most benefit. |







| Criteria | JORC Code Explanation                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                         | In the trial grade control study, data viewing,<br>compositing and wire-framing have been performed<br>using Micromine software. Exploratory data analysis,<br>variogram calculation and modelling, have been<br>performed using FSSI Consultants (Australia) Pty Ltd<br>(FSSI) MP© software. MP is designed specifically for<br>optimising estimation of grade control estimates using<br>Conditional Simulation.<br>The sample data set contained all available assaying<br>intervals, each located by their mid-point co-ordinates.<br>A search radius of 15 mE by 22 mN by 4 mRL and a<br>minimum of 16 data points coming from a minimum of<br>4 octants. A maximum of 32 data points is applied. |
|          | The availability of check estimates,<br>previous estimates and/or mine<br>production records and whether<br>the Mineral Resource estimate<br>takes appropriate account of such<br>data. | Resulting estimates were compared with the previous<br>Mineral Resource estimate performed by MPR (Sept<br>2017). For the same area covered, the trial grade<br>control model estimates resulted within 1% for grade,<br>tonnes and ounces at the 0.5 g/t cut-off grade.                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | The assumptions made regarding recovery of by-products.                                                                                                                                 | There is no assumption made regarding the recovery of any by-product.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | Estimation of deleterious elements<br>or other non-grade variables of<br>economic significance (eg sulphur<br>for acid mine drainage<br>characterisation).                              | No block models for potentially deleterious or other non-grade variables have been built.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | In the case of block model<br>interpolation, the block size in<br>relation to the average sample<br>spacing and the search employed.                                                    | Block dimensions used were 5 mE by 8mN by 2.5 mRL<br>and chosen due to this dimension approximating the<br>variance adjustment SMU applied to the MIK Resource<br>Model. The block spacing is also consistent with the<br>north-northwest mineralized strike.<br>100 simulations are run and the average of those<br>resultant simulations is chosen as the value assigned to<br>the grade control model cells.                                                                                                                                                                                                                                                                                        |
|          | Any assumptions behind modelling of selective mining units.                                                                                                                             | The selective mining unit at Namdini is expected to be in the order of 5 mE by 8 mN by 2.5 mRL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | Any assumptions about correlation between variables.                                                                                                                                    | The modelling did not include any specific assumptions about correlation between attributes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | Description of how the geological<br>interpretation was used to control<br>the resource estimates.                                                                                      | The weathering profiles of Oxide, Transition and Fresh<br>were applied to the grade control estimate in the same<br>way as the Resource Model.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | Discussion of basis for using or not using grade cutting or capping.                                                                                                                    | Statistical analysis showed the gold population in the<br>mineralized domains to be highly skewed and generally<br>having moderate to high coefficient of variation.<br>A disproportionate amount of metal is located within<br>the upper tails of the gold distributions. Histograms,<br>log probability plots and decile analyses were used to                                                                                                                                                                                                                                                                                                                                                       |







| Criteria                                   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | evaluate the proportions of metal at risk and to establish appropriate capping levels.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                            | The process of validation, the<br>checking process used, the<br>comparison of model data to drill<br>hole data, and use of reconciliation<br>data if available.                                                                                                                                                                                                                                                                                                                                                                                                                                    | Standard validation procedures were performed on the<br>grade control block model including: visual inspection<br>of downhole grades versus block grades on plan and<br>vertical sections.<br>Geological elements coded to the block model include<br>the weathering surfaces, geology model for the granite,<br>metavolcanics, diorite and the metasediments.                                                                                                                                                              |
| Moisture                                   | Whether the tonnages are<br>estimated on a dry basis or with<br>natural moisture, and the method<br>of determination of the moisture<br>content.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tonnages are estimated on a dry basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cut-off<br>parameters                      | The basis of the adopted cut-off<br>grade(s) or quality parameters<br>applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | The cut-off grades used for grade comparison reporting<br>reflect Cardinal's interpretation of the potential project<br>range of gold prices, and process plant recoveries and<br>operating costs for a potential operation. The<br>comparisons were reported using a 0.3, 0.5 and 0.7 g/t<br>Au cut-off grade.                                                                                                                                                                                                             |
| Mining factors<br>or assumptions           | Assumptions made regarding<br>possible mining methods, minimum<br>mining dimensions and internal (or,<br>if applicable, external) mining<br>dilution. It is always necessary as<br>part of the process of determining<br>reasonable prospects for eventual<br>economic extraction to consider<br>potential mining methods, but the<br>assumptions made regarding<br>mining methods and parameters<br>when estimating Mineral Resources<br>may not always be rigorous.<br>Where this is the case, this should<br>be reported with an explanation of<br>the basis of the mining<br>assumptions made. | Conventional open pit operation with drill, blast, load<br>and haul unit operations.<br>It is anticipated that large scale open pit mining<br>methods will be applied for the Namdini Project<br>resources, with grade control RC drilling and sampling<br>playing a key role in mining selectivity.<br>Grade control of ore blocking will be based on sampling<br>from high quality reverse circulation drilling spaced at<br>approximately 10mE by 15mN with samples taken at<br>1.0 metre intervals down-hole.           |
| Metallurgical<br>factors or<br>assumptions | The basis for assumptions or<br>predictions regarding metallurgical<br>amenability. It is always necessary<br>as part of the process of<br>determining reasonable prospects<br>for eventual economic extraction<br>to consider potential metallurgical<br>methods, but the assumptions<br>regarding metallurgical treatment<br>processes and parameters made<br>when reporting Mineral Resources                                                                                                                                                                                                   | Conventional milling of mineralized material, followed<br>by flotation, regrind and cyanide leaching of the<br>concentrate.<br>Utilizing standard gold recovery techniques has<br>demonstrated an overall gold recovery rate of 86%.<br>A conventional grind-flotation-regrind-CIL flowsheet<br>continues to be the preferred process option.<br>Recovery appears to be dependent upon the ratio of<br>the different lithologies, which change as the resource<br>model is updated and depending upon the cut-off<br>grade. |







| Criteria                                   | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | may not always be rigorous.<br>Where this is the case, this should<br>be reported with an explanation of<br>the basis of the metallurgical<br>assumptions made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Environmental<br>factors or<br>assumptions | Assumptions made regarding<br>possible waste and process residue<br>disposal options. It is always<br>necessary as part of the process of<br>determining reasonable prospects<br>for eventual economic extraction<br>to consider the potential<br>environmental impacts of the<br>mining and processing operation.<br>While at this stage the<br>determination of potential<br>environmental impacts, particularly<br>for a greenfields project, may not<br>always be well advanced, the status<br>of early consideration of these<br>potential environmental impacts<br>should be reported. Where these<br>aspects have not been considered<br>this should be reported with an<br>explanation of the environmental<br>assumptions made. | Cardinal's exploration activities are undertaken such<br>that any potential emissions and effects associated<br>exploration activities, which could include habitat<br>modification and associated visual effects, are kept to a<br>minimum.<br>NEMAS Consult Ltd (NEMAS), of Accra, Ghana, has been<br>contracted by Cardinal to undertake the Environmental<br>Impact Assessment study for the Project.<br>NEMAS has undertaken a site reconnaissance visit and<br>completed the Scoping stage of the process in<br>accordance with the Ghanaian Environmental<br>Protection Agency procedures for the EIA.<br>The scoping study has been submitted to commence<br>the process of Environmental Impact Statement (EIS) in<br>accordance with Regulations 15(1b) and (1c) of the<br>Environmental Assessment Regulations, 1999 (LI 1652)<br>and Ghana's Environmental Impact Assessment (EIA)<br>Procedures, the Environmental Protection Agency<br>(EPA).<br>Cardinal believes that there are unlikely to be any<br>specific environmental issues that would preclude<br>potential eventual economic extraction. |
| Bulk density                               | Whether assumed or determined.<br>If assumed, the basis for the<br>assumptions. If determined, the<br>method used, whether wet or dry,<br>the frequency of the<br>measurements, the nature, size<br>and representativeness of the<br>samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A substantial body of rock density (SG) measurements<br>for the Namdini deposits were collected.<br>Bulk density is determined using Archimedes principal<br>on DD core samples.<br>Ø Oxide – 2.06<br>Transition Meta Volcanics – 2.54<br>Transition Granite – 2.54<br>Transition Diorite – 2.58<br>Transition Meta Sediments – 2.58<br>Fresh Meta Volcanics – 2.81<br>Fresh Granite – 2.73<br>Fresh Granite – 2.73<br>Fresh Meta Sediments - 2.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | The bulk density for bulk material<br>must have been measured by<br>methods that adequately account<br>for void spaces (vugs, porosity, etc),<br>moisture and differences between<br>rock and alteration zones within<br>the deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weathered samples are wrapped in foil and dried out before being wax coated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |







| Criteria                                             | JORC Code Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | Discuss assumptions for bulk<br>density estimates used in the<br>evaluation process of the different<br>materials.                                                                                                                                                                                                                                                                                                                                                                                                                           | Assigned bulk density values were determined for<br>lithological and weathering domains. Density outliers<br>were removed using Rosner outlier detections applying<br>a 95% confidence interval. A density of 1.8 t/m <sup>3</sup> was<br>assigned to the strongly oxidised horizon since the<br>average measured density appears too high.                                                                                                                     |
| Classification                                       | The basis for the classification of the Mineral Resources into varying confidence categories.                                                                                                                                                                                                                                                                                                                                                                                                                                                | Resources estimates from the trial grade control area<br>are not classified into resource categories.<br>The estimates from the grade control trial are<br>compared with all the material categories within the<br>Resource Model. The Resource Model is classified as<br>Indicated Resource in this test area.                                                                                                                                                 |
|                                                      | Whether appropriate account has<br>been taken of all relevant factors<br>(ie relative confidence in<br>tonnage/grade estimations,<br>reliability of input data, confidence<br>in continuity of geology and metal<br>values, quality, quantity and<br>distribution of the data).                                                                                                                                                                                                                                                              | There is a relatively low risk for tonnes above the cut-<br>off grade due to the pervasive gold mineralisation<br>exceeding the cut-off grade. The average grade of the<br>deposit above the cut-off grade is sensitive to the<br>treatment and volumes applied to high grades.                                                                                                                                                                                 |
|                                                      | Whether the result appropriately reflects the Competent Person's view of the deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                        | The resulting classification reflects the Competent Person's view of the deposit and the trial GC model.                                                                                                                                                                                                                                                                                                                                                        |
| Audits or<br>reviews                                 | The results of any audits or reviews of Mineral Resource estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mineral Resource estimates have been previously<br>undertaken by independent external consultants.<br>However, this grade control study has been conducted<br>internally.                                                                                                                                                                                                                                                                                       |
| Discussion of<br>relative<br>accuracy/<br>confidence | Where appropriate a statement of<br>the relative accuracy and<br>confidence level in the Mineral<br>Resource estimate using an<br>approach or procedure deemed<br>appropriate by the Competent<br>Person. For example, the<br>application of statistical or<br>geostatistical procedures to<br>quantify the relative accuracy of<br>the resource within stated<br>confidence limits, or, if such an<br>appropriate, a qualitative<br>discussion of the factors that could<br>affect the relative accuracy and<br>confidence of the estimate. | The comparisons of the trial grade control model with<br>the trial grade control model show good correlation.<br>The results indicate that the gold tenor in this test area<br>is both quantitively and qualitatively in line with the<br>Namdini Mineral Resource expectations.<br>The methods applied for this trial grade control study are<br>deemed appropriate and give confidence in the accuracy<br>of the estimations of the Namdini Mineral Resource. |
|                                                      | The statement should specify<br>whether it relates to global or local<br>estimates, and, if local, state the<br>relevant tonnages, which should be<br>relevant to technical and economic                                                                                                                                                                                                                                                                                                                                                     | No new Mineral Resources have been classified with<br>the trail grade control model, nor in the text of this<br>announcement. The relative accuracy of the Mineral<br>Resource is reflected in the reporting of the                                                                                                                                                                                                                                             |







| Criteria | JORC Code Explanation                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                      |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | evaluation. Documentation should include assumptions made and the procedures used.                                                      | comparisons with the trial grade control model over<br>the same area.<br>The estimations' relative accuracy is based on data<br>quality, data quantity, geological confidence and the<br>estimation accuracy.                                                                                                                                                   |
|          | These statements of relative<br>accuracy and confidence of the<br>estimate should be compared with<br>production data, where available. | The precision of the estimation is globally acceptable<br>with the assumption that at a mining level more<br>detailed grade control drilling will be undertaken.<br>The geostatistical techniques applied to estimate the<br>Namdini deposit within this trial grade control area are<br>deemed appropriate for the anticipated bulk mining<br>method proposed. |



