

17 June 2021

ASX Limited- Company Announcements Platform

Cobre Limited (ASX: **CBE**) A.C.N. 626 241 067 Level 7/151 Macquarie Street SYDNEY NSW 2000 Tel: + 61 2 9048 8856 www.cobre.com.au

Armada Metals Limited: Significant Geophysics Anomalies Outlined in Gabon

Cobre Limited (ASX: **CBE**, **Cobre** or **Company**) is pleased to provide an exploration update with regard to Armada Exploration Limited (**Armada**) which holds two exploration licences, covering a total area of 2,991 km², prospective for magmatic Ni-Cu sulphide, in Gabon. The licence holding is considered to present a frontier district-scale exploration opportunity. As previously announced (*ASX announcement on 22 March 2021*) Cobre together with the Company's largest shareholder, Metal Tiger plc (AIM: **MTR**), and also Resource Capital Fund (**RCF**), each holds a direct 18.5% interest in Armada.

Highlights:

- Armada has received the processed results from the NRG[™] Xcite[™] helicopter-borne timedomain electromagnetic (HTDEM) survey flown in March 2021;
- Modelling of the HTDEM survey data has identified 14 new prominent "late-time" conductive anomalies associated with the margins of interpreted mafic/ultramafic rock units;
- The 14 anomalies are distributed along the length of the 25km long Libonga-Matchiti Trend supporting the district-scale Ni-Cu potential of the target area;
- The Libonga North and Matchiti Central targets, which sit on the northern and southern ends of the Libonga-Matchiti Trend have been prioritised for planned drilling which is expected to commence later this year;
- Libonga North and Matchiti Central targets earmarked as priority for drilling, post the successful Initial Public Offering (IPO) of Armada on the Australian Securities Exchange (ASX); and
- Armada is well-funded with ~US\$2.25 million in pre-IPO capital, and is well advanced, and on track for a planned ASX listing.

Cobre's Managing Director and Executive Chairman, Martin Holland commented:

"The Company is excited to report the results of Armada's recent Airborne HTDEM survey that was flown across the Libonga-Matchiti Trend. These results, which identified 14 conductive bodies distributed along the entire length of the 25km long Libonga-Matchiti Trend, provide further validation of the Ni-Cu sulphide exploration potential of the survey area. This rapid appraisal has allowed Armada to prioritise drill-ready targets for its upcoming drilling program which is planned to commence post Armada's successful listing on the ASX, with further details expected in due course."

Airborne Geophysics Survey Results

Armada has received the results of the NRG[™] Xcite^{™ 1} HTDEM survey that was flown across the Libonga-Matchiti Trend and the Doumvou Target in March 2021. The survey was conducted by New Resolution Geophysics (Pty) Ltd (**NRG[™]**) South Africa, with 707-line kilometres completed over a total area of 203km².

The HTDEM survey data has been processed and interpreted by Xpotential (Pty) Ltd, South Africa, who have conducted Layered Earth Inversions (LEIs) using Geoscience Australia code, inversions of magnetic data using Fullagar's VPmg code and plate modelling using Maxwell software.

The HTDEM data processing has produced 28 conductive plate models and identified 14 prominent "late-time" bedrock conductors (designated Conductors A to N), see **Figure 1**, which correlate with the margins of interpreted mafic/ultramafic rock units, defined by previous magnetic, radiometric, gravity and geological mapping and sampling programs.

The LEI modelling results corroborate the HTDEM plate modelling results highlighting the priority Libonga North and Matchiti Central targets.

Where available, modelling and inversion of ground gravity and FALCONPlus[®] airborne gravity data correlates well with HTDEM results, with conductors typically occurring on the margins or within dense modelled sources.

The results provide further support for the district-scale Ni-Cu potential of the 25-kilometre long Libonga-Matchiti Trend.

Upcoming Drill Program

The results of the HTDEM survey are being incorporated into Armada's planned drill program, which is expected to commence after Armada's successful IPO on the ASX. Armada is well advanced in the IPO process, and preparation for the upcoming drill program is also underway with ranked HTDEM plates being used to prioritise the drilling.

Background on Armada

Armada was established to define new belt-scale discovery opportunities for key commodities (principally nickel and copper) in under-explored regions of Africa. With >US\$10m spent targeting an area of >16,000km², Armada is preparing to drill a multi-target project opportunity for magmatic Ni-Cu sulphides in the Nyanga area, southern Gabon. Armada is supported by a Board and Africa-based technical team, both with a track record of successful African projects. Key members of the Armada targeting team were part of the team awarded the 2015 PDAC Thayer Lindsley Award for an International Mineral Discovery (as members of the Kamoa/DRC discovery team with Ivanhoe Mines).

Further details are available under the Portfolio section of the Company's website at: https://www.cobre.com.au/armada-exploration-investment/

Figure 1: NRG[™] XciteTM HTDEM and magnetics survey data, Nyanga Project. Conductor descriptions can be found in Table 1. Background image GALEI 2D Conductivity Depth Slice Images (of flight lines 0-400m) + Libonga North FALCONPlus[™] gravity isoshells and Matchiti Central ground gravity 300m

depth slice draped. Datum WGS84 32S.

Competent Persons Statement

The information in this report that relates to mineral exploration results and exploration potential is based on work compiled under the supervision of Mr Todd Axford, a Competent Person and member of the AusIMM. Mr Axford is the Principal Geologist for GEKO-Co Pty Ltd and contracted to the Company as Exploration Manager and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Axford consents to the inclusion in this report of the information in the form and context in which it appears.

This ASX release was authorised on behalf of the Cobre Board by: Martin C Holland, Executive Chairman and Managing Director.

For more information about this announcement, please contact: Martin C Holland Executive Chairman and Managing Director <u>holland@cobre.com.au</u>

Appendix 1. Airborne Electromagnetic survey details and results

New Resolution Geophysics (NRG[™]) were contracted by Armada to fly a high resolution electromagnetic and magnetic survey across parts of the Nyanga Project in Gabon utilising NRG[™]'s Xcite[™] helicopter-borne time-domain electromagnetic system. The survey commenced in March 2021 and final data was delivered May 2021.

The survey was flown across two separate target areas (Labonga-Matchiti & Doumvou), on three separate orientations, as shown on **Figure 2** below; with flight line spacing varying from 200 to 400m (**Table 1** & **2**).

Table 3 details the survey system and data sampling specifications applied by NRG[™]. Quality control processes were applied as part of the data capture as the survey progressed and NRG[™] completed initial post survey data processing before presenting final data.

Upon receipt of final data and subsequent further processing Armada's consultants have modelled 28 late time conductors, described below in **Table 4**. These have been grouped, based on spatial relationship, into 14 'Modelled Conductors', shown on **Figure 1** and listed in **Table 4**.

NRG™ Xcite™ survey parameters			
Survey Block	Line spacing (m)	Line km	Flight Direction
Libonga A	Flight: 200 & 400	240	090°
	Tie line: 2000	240	180º
Libonga B	Flight: 200 & 400	249	053°
	Tie line: 2000	243	143º
Libonga C	Flight: 400	62	150º
	Tie line: 2000	02	240°
Πομπγομ	Flight: 400	156	090°
	Tie line: 4000		180º
		707	

Table 1: Survey parameters

Table 2: Survey boundary co-ordinates

	UTM Zone 32S. WGS84		
	,	UTM X	UTM Y
Doumvou Block	1	690725	9619977
	2	684798	9619977
	3	684756	9629248
	4	690767	9629290
Libonga-Matchiti Block	1	709671	9645730
	2	713512	9645730
	3	713512	9635348
	4	717840	9629926
	5	722085	9633189
	6	724466	9630395
	7	720154	9627076
	8	722180	9624489
	9	718783	9622044
	10	709671	9645730

Figure 2: Survey flight line plan

Table 3: Equipment and data sampling specifications

Electromagnetic System	
Туре	Xcite™
Sensor Configuration	Coincident Tx-Rx
Weight	~450kg
Structure	Fully inflatable frame
Aircraft Type	AS350B Series
Engine Type	Turbine
Fuel Type	JetA1
Transmitter	1.0000010000 000
Diameter	18.4m
Number of turns	4
Current	280A
Dipole Moment	300,000 NIA
Base Frequency	25Hz
Waveform	Nominal square wave -
	typically 5.4 mS ontime
Receiver	
Diameter	0.613m (effective) (X),
	1.0m (Z)
Number of turns	200 (X), 100 (Z)
Orientation	X & Z axis
Configuration	Concentric to Tx
Recording	Digitally at 625 kbps
Time gates	Extracted from streamed
Time gate windows	0.04ms to >11ms
Measurements	dB/dT
measurements	& integrated 8-field
	a magnetes a more
Acquisition System	M
Type	NRG RDA5 II
CPU	Dual Core ARM 1.5Ghz
Operation Temperature	-10 to 65 Degrees C
Standard Sampling Rate	20 Hz (capable of >1kHz)
GPS Positioning	
Туре	Novatel DL-V3L1L2
Differential Correction	Post Processed
Code Tracked	C/A
Number of Satellites	12
Recording Rate	20 Hz
the second second	

Magnetometer Counter	
Type	NRG RDAC II
Internal System Noise	<0.0001 nT
Adc Inputs	24
Magnetometer Inputs	4
Recording Rate	20 Hz (capable of >1kHz)
Magnetometer Sensor	
Туре	Single Sensor Scintrex CS3
Measurement Range	15 000 - 105 000 nT
Gradient Tolerance	40 000 nT/m
Operating Temperature	-40 to +50 Degrees C
Recording Rate	20 Hz (capable of >1kHz)
Laser Altimeter	107
Туре	SF11/C (Loop) and SF00(Helli)
Range	0 - 60 m and 0 - 250m
Resolution	1cm
Recording rate	20 Hz (capable of >1kHz)
Base Station Magnetometer	
Туре	NRG VER 2
Manufacturer	NRG Engineering
Range	15 000 to 105 000nT
Sensitivity Recording Rate	0.0006 nT VHz RMS 1Hz
Field Data Verification System	
Processing Software Platforms	Geosoft Oasis Montaj and Proprietary Software

Table 4: HTDEM late-time conductor descriptions based on modelled plates

	XCITE [™] HTDEM PLATE RESULTS							
PLATE ID	TECHNICAL RANK (2021)	CONDUCTANCE (S)	LENGTH (m)	DEPTH FROM SURFACE (m)	DEPTH EXTENT (m)	DIP	DIP DIRECTION	MODELLED CONDUCTOR
X-LBN05	1	100	400	80-110	200	50	95.00	В
X-LBN04	1	100	300	80-110	200	50	90.00	В
X-LBN06	1	100	300	80-130	250	40	90.00	С
X-LBN01	1	85	250	80-130	450	30	90.00	А
X-LBN02	1	80	300	80-130	350	35	95.00	А
X-LBN03	1	80	300	80-130	300	25	100.00	А
X-LBS12	1	50	400	25-100	300	60	290.00	E
X-LBS13	1	50	400	25-100	400	65	290.00	E
X-MTC21	1	40	600	80-90	200	40	230.00	l.
X-LBS14	1	35	400	25-100	250	70	260.00	E
X-LBS16	1	35	400	25-100	200	80	90.00	E
X-LBS15	1	30	400	25-100	200	65	90.00	E
X-LBN07	1	25	300	80-130	300	30	90.00	С
X-MTC20	2	35	800	40	350	60	212.50	Н
X-MTC23	2	30	400	30-60	200	75	270.00	J
X-MTC24	2	25	600	10-30	400	50	60.00	К
X-MTC26	2	25	600	20	250	80	52.50	L
X-MTC22	2	25	600	30-60	150	70	272.50	J
X-MTC25	2	20	600	10-30	500	80	60.00	К
X-LBS18	3	40	300	30-40	200	90	290.00	F
X-LBS17	3	30	400	30-40	200	80	110.00	F
X-LBN08	3	25	300	80-140	200	75	270.00	D
X-LBN11	3	25	300	80-140	400	50	265.00	D
X-MTS27	3	20	400	100	400	60	235.00	М
X-LBN09	3	20	300	80-140	300	60	260.00	D
X-MTN19	3	15	800	60-70	450	70	232.50	G
X-MTS28	3	15	500	40	500	80	233.00	N
X-LBN10	3	10	400	80-140	350	40	260.00	D

Table 2: JORC Code Reporting Criteria

Section 1 Sampling Techniques and Data – Airborne Electromagnetic Survey

Criteria	JORC Code explanation	Commentary
Sampling techniques		Not relevant for reporting AEM geophysical survey
Drilling techniques		Not relevant for reporting AEM geophysical survey
Drill sample recovery		Not relevant for reporting AEM geophysical survey
Logging		Not relevant for reporting AEM geophysical survey
Sub-sampling techniques and sample preparation		Not relevant for reporting AEM geophysical survey
Quality of assay data and laboratory tests		Not relevant for reporting AEM geophysical survey
Verification of sampling and assaying		Not relevant for reporting AEM geophysical survey
Location of data points	Accuracy & quality of surveys used to locate survey data	AEM survey conducted with a Novatel DL-V3L1L2 positioning system tracking flight position and a laser altimeter type SF11/C (on the loop) and SF00 (on the helicopter platform)
	Specification of the grid system used.	WGS84 – Zone 32S
	Quality and adequacy of topographic control.	A high-resolution digital terrain model of the survey area was used to gauge the required climb-decent rates in areas with steeper topography.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Surveys were flown on 200m and 400m spaced lines with data recorded on 0.04ms to >11ms time gate windows.
Orientation of data in relation to geological structure		The AEM survey was designed so that lines were orientated perpendicular relative to the target intrusive rocks
Sample security		Not relevant for reporting AEM geophysical survey

COBRE 💥

Criteria	JORC Code explanation	Commentary
Audits or reviews		Contractors AEM data and report reviewed by consultant from Xpotential Pty Ltd

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land	Type, reference name/number,	Armada Exploration Gabon Sarl
tenure status	location and ownership including	('Armada') hold two (2) exploration
	agreements or material issues with	licences G5-150 and G5-555 (100%
	third parties such as joint ventures,	ownership for both licences).
	partnerships, overriding royalties,	Cobre I to holds an 18 5% interest in the
	native title interests, historical sites,	Company that holds the tenements
	wilderness or national park and	
	environmental settings.	
	The security of the tenure held at the	The tenements are in good standing.
	time of reporting along with any	
	known impediments to obtaining a	
	license to operate in the area.	
Exploration done by other	Acknowledgment and appraisal of	No results are relied on from other
parties	exploration by other parties.	parties in this report.
Geology	Deposit type, geological setting and	Targeting massive Ni-Cu sulphide
	style of mineralisation.	mineralisation associated with mafic-
		ultramatic ('M-UM') intrusions.
Drill hole Information		Not relevant for reporting AEM
Data aggregation mothodo		Net relevent for reporting AEM
Relationshin between		Not relevant for reporting AFM
mineralisation widths and		reonhysical survey
intercent lengths		
Diagrams	Appropriate maps and sections (with	Included within the report and appendix
Diagramo	scales) and tabulations of intercepts	1
	should be included for any significant	
	discovery being reported These should	
	include, but not be limited to a plan	
	view of drill hole collar locations and	
	appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all	All significant results are included on the
	Exploration Results is not practicable.	plans and/or cross-sections. Full survey
	representative reporting of both low	details and conductor descriptions are
	and high grades and/or widths should	included in appendix 1.
	be practiced to avoid misleading	

COBRE 💥

	reporting of Exploration Results.	
Other substantive	Other exploration data, if meaningful	Armada Exploration Gabon Sarl
exploration data	and material, should be reported	geophysical data acquisition:
	including (but not limited to):	
	geological observations; geophysical	BHP FALCON [®] Gravity Gradiometer
	survey results; geochemical survey	('AGG') data acquisition (2008)
	results; bulk samples – size and	
	method of treatment; metallurgical test	Airborne Surveys, W. Australia.
	results; bulk density, groundwater,	Average terrain clearance of 122m
	geotechnical and rock characteristics;	
	potential deleterious or contaminating	Report Rej: FAS Job# 2396_(4,5,6)
	substances.	Survey Parameters – fixed wing platform
		Parameter Unit
		Flight Line Direction 0º
		Flight Line Spacing (m) 250
		Tie Line Direction 90º
		Tie Line Spacing (m) 5000
		Altitude (m) 132
		Area (km²) -
		Actual Line Kilometres (km) 6,316
		Results: full magnetic and Falcon (AGG) data coverage of sedimentary basin edge and partial coverage of the basement. Unconstrained inversion of the Falcon data was completed using Fullagar's VPmg and GoCad software. Density depth sections and isoshells of dense bodies have been extracted from the inverted density volume. A significant causative source (dense body) is apparent in the Libonga North target area. <u>Versatile Time Domain Electromagnetic ('VTEM^{plus}') & Magnetic Survey (2015) The contractor used was Geotech (Pty) Ltd, South Africa. Helicopter platform. All blocks were flown at a mean altitude of 96m – for an average</u>

COBREX

Report Ref: AB140396

QAQC was completed daily during the survey by Steve McMullan, *PGeo* – an independent geophysical consultant contracted by Armada.

VTEM survey paramete	ers
Survey Block	Line spacing (m)
Block 1	Flight: 200
	Tie line: 2000
Malaunga Sanga	Flight: 200
Malounga-Sanga	Tie line: 2000
Block 4	Flight: 200
	Tie line: 2000
EM Regional Lines	Flight: 200
	Tie line: 2000

Results: full magnetic and VTEM coverage of sedimentary basin edge and partial coverage of the basement. Data to be used for detailed geological interpretation and targeting by Douglas Haynes Discovery (Pty) Ltd ('DHD').

A significant late-time (conductive) anomaly is apparent in the Libonga North target.

Ground Gravity Gradient ('GGG') (2017)

The contractor used was Remote Exploration Services (Pty) Ltd ('RES'), South Africa.

Report Ref: RES17_032R

Data was reduced to Bouguer Anomaly using standard Geosoft gravity processing flow. Terrain effects were corrected, filtered and processed.

Gravity survey parameters		
Survey Block	Station spacing	St
Libonga	25 x 25m	
(cross survey)		
Matchiti	50 x 50m	

COBRE 💥

	(grid survey)		
	Doumvou	50 x 50m	1
	(cross survey)		1
	Results: Data was used for drill hole Xpotential (Pty) Lt	modelled and targeting by d.	
	Libonga North Ta	rget	
	Results from the G compare favourat Falcon AGG survey there is a strong s with the VTEM ^{plus}	GGG survey oly with the y. In addition patial correlation data.	
	Matchiti Central 1	arget	
	Image processing: filtering produced results mapping la associated with M components.	regional-residua satisfactory irger anomalies I-UM	I
	3D unconstrained performed on the software. Depth s from resultant dep highlight a deeper zone in the north the Matchiti intrus	inversions were data using VPmg lices extracted nsity voxels denser 'root' east margin of sive complex.	, •
	Forward modelling on selected lines a integrated with av geological, geoche geophysical data. ultramafic compo- mapped intrusion with the copper an detected from the sampling program	g was completed and results vailable emical and other More dense nents of the broadly correlate nomalies e detailed soil s.	5
	Doumvou Target		
	Forward modelling completed as the not cover the ano data confirmed th dense causative b with a magnetic a apparent M-UM s	g could not be gravity survey did maly extents. The e presence of a ody associated nomaly – an ource.	Ę
	1		1

COBRE 💢

Further work	The nature and scale of planned	Further work is discussed in the
	further work (e.g. tests for lateral	document.
	extensions or depth extensions or	
	large-scale step-out drilling).	
	Diagrams clearly highlighting the	
	areas of possible extensions,	
	including the main geological	
	interpretations and future drilling	
	areas, provided this information is not	
	commercially sensitive.	