

HIGH GRADE COPPER HIT 126m @ 1.36% CuEq* IN HOLE 12, DRILLING NORTH AT RIGHT ANGLES TO PREVIOUS HITS IN HOLES 9 & 11.

Drilling of a thick down hole intersection of high-grade copper with gold and silver credits. Hole 12 pushes to the north-east the known extent of the copper rich breccia deeper and further than any previous drilling. Chalcopyrite rich section of hydrothermal infill breccia. 102m-228m:

- 126m @ 1.01% Cu, 0.31g/t Au, 19.8g/t Ag (1.36% CuEq): Includes diorite & hornfels infill breccia zone: 158-225m:
- 67m @ 1.34% Cu, 0.36g/t Au, 26.6g/t Ag (1.77% CuEq): Includes Sheeted quartz sulphide veins 223m-225m
- 2m @ 1.53% Cu, 2.73g/t Au,86.9 g/t Ag.4.95% S, 2315 ppm As, 635 ppm Pb, 1159 ppm Sb, 5272 ppm Zn.

Overall aggregate intersection of mineralised breccia 48-228m.

• 180m @ 1.03% CuEq 0.77% Cu, 0.23g/t Au, 14.9g/t Ag

Chalcopyrite – pyrite-quartz – calcite infill between angular clasts of sericite altered diorite. CAE hole # 12, 166.3m. Interval 166m-167m grading 3.05% Cu, 0.56 g/t Au,55.2 g/t Ag.9.62% S,

Contact between chalcopyrite- pyrite-quartz calcite vein infill and sericitecalcite altered diorite breccia. CAE hole # 12, 175.7m. Interval 175m-176m grading 2.45% Cu, 0.54 g/t Au,50.6 g/t Ag.7.86% S,

Chalcopyrite – pyrite-quartz – calcite infill between angular clasts of sericite altered diorite. CAE hole # 12, 194.3. Interval 194m-195m grading 4.52% Cu, 0.94 g/t Au,57.3 g/t Ag.8.04% S,

*Copper Equivalent calculation is based on metal prices using 30-day average prices in USD for Q4 2021. Further details are provided in the calculation table at page 20 of the text and in the JORC Table 1 at p46.

ASX Announcement

DATE: 29 August 2022

Fast Facts

Shares on Issue: 544,974,138 Market Cap (@\$0.25): \$136.24M (As at 26/8/2022)

Board and Management

Tom Pickett - Executive Chairman

Dr Simon Beams - Non Executive Director

Geoff Missen - Non Executive Director

Michael Hansel - Non Executive Director

Garry Gill - Company Secretary

Company Highlights

- Exceptional exploration management
- Located within existing mining lease
- 100km from Gladstone Port
- Significant copper intercepts at flagship Mt Cannindah project over hundreds of metres
- New Gold discovery within current drill program at Mt Cannindah
- Expansion of current
 5.5MT resource is the focus of the current program
- Large Gold portfolio with Piccadilly project 100km west of Townsville with existing mining lease and EPMs with large target areas yet to be drilled

No debt

ASX RELEASE 29 August 2022 ASX Code: CAE

EXECUTIVE CHAIRMAN COMMENTS

"Once again Mt Cannindah has delivered a huge copper result, which pushes the high-grade copper breccia further to the north east and deeper in that area than any previous drilling. Having high grade copper hits such as 4.52%Cu and 3.10%Cu included in this excellent 126m intercept is fantastic especially when you can include 4.44g/t Au over a metre amongst that. We set out to significantly increase the size of the project with the current program, and we have been successfully achieving this as we progress each hole. CAE has recently mapped out a number of further hole locations to continue our strategy to expand the Mt Cannindah project area. We will be busily completing these drill holes in the coming months with a focus on delivering more significant copper and gold outcomes for our shareholders."

Fig 1. Location of Mt Cannindah Project in Central Queensland.

29 August 2022

ASX Code: CAE

TECHNICAL DETAILS & RESULTS OF CAE HOLE 12 AT MT CANNINDAH

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to announce the next set of completed assay results from the drilling program currently underway at the Mt Cannindah copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 3) pertaining to the top section (Om to 291m) of hole 22CAEDD012.

CAE hole # 12 drilled to north (magnetic azimuth 351 degrees). It was planned to drill through the high-grade copper zones intersected at the top of hole 9,10,11.

CAE holes in this northern zone (CAE # 9,10, 11) have all returned thick intersections of highgrade copper-gold silver (Fig 4), reported in previous CAE ASX announcements

- CAE hole 9: ASX announcement dated 5/4/2022: 341m of 1.03%CuEq (0.75%Cu, 0.26g/t Au, 14.6g/t Ag: 58m 399m).
- CAE hole 10 -ASX announcement dated 12/5/2022: 295m @1.45% CuEq (0.99 % Cu, 0.48 g/t Au, 21 g/t Ag: 0m to 295m).
- CAE hole 11 ASX Announcement dated 27/6/2022: 217m @1.47% CuEq (1.08 % Cu, 0.41 g/t Au, 17 g/t Ag: 150m to 367m).

Holes # 9 & 11 have drilled down the long axis and demonstrably across the layering of the Mt Cannindah breccia body (refer CAE ASX Announcements: 19 October 2021, 9 November 2021, 25 January 2022, 22 February 2022 ,4 April,2022, 27 June 2022., 15 August,2022)

CAE hole # 12 is collared approximately 50m west of CAE hole # 9, and approximately 75m to south-west of CAE hole # 11.

CAE hole # 12 is drilling to the north (i.e., almost right angles to Holes # 9,11) and inclined at a steep angle of 80 degrees. Hole 12 is targeting east west striking sulphidic structures that were intersected in CAE hole # 11 at approximately 190m depth. The very high-grade copper zone in hole # 11 returned **11m @ 4.49% CuEq% (3% Cu, 1.73 g/t Au, 55 g/t Ag, 9.82 % S.** From 183m to 194m) within a broader high-grade zone of **40m @ 2.02% CuEq% (1.40% Cu, 0.67 g/t Au, 25.9 g/t ag, 7.33 %S** from 165m to 205m). The trace of CAE hole # 12 is at right angles to the other holes.

CAE Hole # 12 crosses the paths of other CAE holes at the downhole depths indicated below:

- Crosses path of CAE hole # 9 at a downhole depth between 126m and 165m in that hole.
- Crosses path of CAE hole # 10 at a downhole depth between 125m and 163m in that hole.
- Crosses path of CAE hole # 11 at a downhole depth between 113m and 142 in that hole.

CAE hole # 12 is a steep hole that pushes to the north-east, the known extent of the copper rich breccia deeper and further than any previous drilling.

29 August 2022

ASX Code: CAE

The summary geology for the section of hole 22CAEDD012 assayed to date is as follows:

- 0m-12.5m weakly mineralised oxidised diorite.
- 12.5m to 85m: Diorite cut by a fine fracture vein network of pyrite-quartz-with occasional and minor chalcopyrite to 85m.
- 85m to 107m: Breccia development evident in the diorite with more prominent matrix infill of pyrite -chalcopyrite and quartz.
- 107m to 202m monomict crackle breccia dominated by angular diorite clasts with
- 202m to 223m: infill breccia with both angular diorite and hornfels clasts, with the latter becoming more dominant with depth. Infill of chalcopyrite, pyrite, calcite, quartz.
- 223m to 225m a series of sheeted quartz sulphide veins of quartz-calcite-pyrite-black sphalerite and chalcopyrite-minor galena. Veins cut a breccia dominated by hornfels clasts.
- 225m to 245m Block of massive hornfels.
- 245m to 268m Chlorite matrix supported polymict breccia, moderately pyritic.
- 268 -291m Polymict clast supported breccia, strongly pyritic with chlorite quartz infill.

Table 1 lists the assay highlights from top section drillhole 22CAEDD012 (0m-291m), Appendix 1. highlights Cu, Au, Ag intersections in CAE hole 12 for the top 291m.

These can be divided up along the lines of geological parameters such as lithology, alteration mineralogy and vein breccia style as follows:

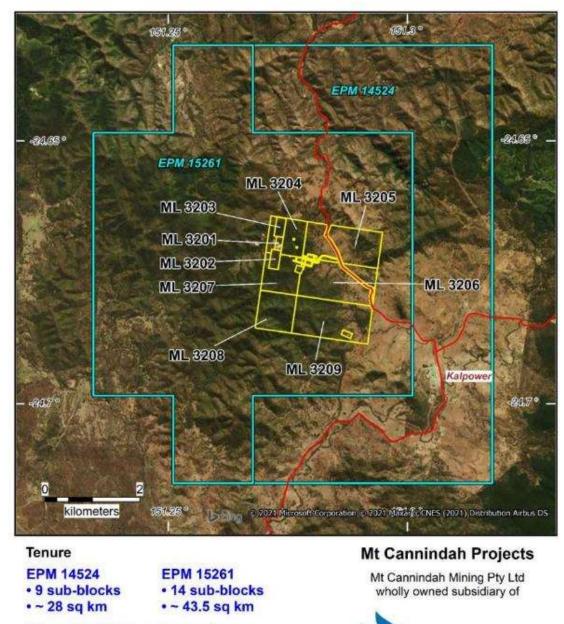
- 12m @ 0.29% Cu, 0.12g/t Au, 4.2g/t Ag (0.39% CuEq): 0-12m: oxidised, gossanous veined diorite.
- **26m @ 0.93% Cu, 0.48g/t Au, 18.6g/t Ag (1.37% CuEq)**: 112m-138m: Upper primary zone, diorite breccia with infill chalcopyrite, pyrite, calcite.
- Includes gold zone: **1m @ 4.44g/t Au, 19.0g/t Ag ,0.37% Cu (3.22% CuEq)**: 137-138m : Sheared sericite sulphide contact bleached altered diorite porphyry and diorite.
- 67m @ 1.34% Cu, 0.36g/t Au, 26.6g/t Ag (1.77% CuEq): 158-225m: High grade primary zone, hydrothermal infill breccia, infill of chalcopyrite, pyrite, calcite, quartz, dominated by angular diorite clasts. More common hornfels clasts below 207m.
- 2m @ 1.53% Cu, 2.73g/t Au, 86.9g/t Ag (3.91% CuEq): 223m-225m: Sheeted veins of quartzpyrite-sphalerite-chalcopyrite, east west striking, dipping steeply north cutting infill breccia with hornfels dominant clasts.

The overall aggregate zone incorporating the intervals identified above Is:

• 228m @ 0.63% Cu, 0.19g/t Au, 12.0g/t Ag (0.84% CuEq): 0m-228m

Which includes a broader vein fracture network, hydrothermal infill breccia intersection:

• 180m @ 0.77% Cu, 0.23g/t Au, 14.9g/t Ag (1.03% CuEq): 48-228m.


And a higher-grade chalcopyrite rich section with hydrothermal infill breccia of:

• 126m @ 1.01% Cu, 0.31g/t Au, 19.8g/t Ag (1.36% CuEq) :102-228m.

29 August 2022

ASX Code: CAE

MLs 3201-3209 (contiguous) • ~ 5.7 sq km

Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases

OWNERSHIP The Mt Cannindah Project is 100% owned by Cannindah Resources Limited Terra Search Pty Ltd March 2021

Limited

Cannindah Resources

CAE_MC_210001_Tenure2021.WOR

Fig 2. Mt Cannindah Project Tenure

Cannindah Resources Limited **ASX RELEASE**

29 August 2022

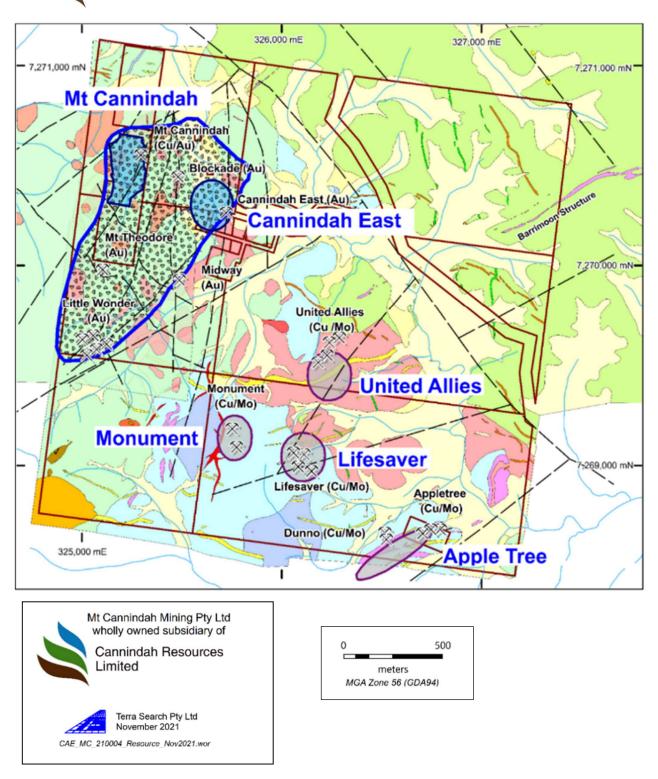


Fig 3. Mt Cannindah Project Location of prospect areas and mineralised targets.

Figs 4 to 6 are plan views showing CAE hole # 12 in relation to the 2021 and 2022 CAE holes in the Mt Cannindah breccia area plotted respectively with Cu, Au, Ag assays. Cross section plots of hole # 12 assay results to date are presented in Fig 7 to Fig 9 respectively as downhole Cu, Au, Ag assays. Fig 10 is a downhole section of hole # 12 showing the correlation between Cu lab assay and visual estimates of chalcopyrite mineralisation.

The location of CAE holes in plan & section view in relation to historic holes is presented in Appendix 2 App 2.1 showing a location plan of the cross section of CAE hole 12 plotted with historical drilling: App 2 Figs 2 to 4 show plan views of CAE and historic drillholes with downhole assays respectively of Cu, Au, and Ag. App 2 Figs 5 to 6 are downhole sections of hole # 12 showing respectively the correlation between Au lab assay Vs visual estimates of pyrite and Au lab assay Vs Ag lab assay.

A photo record of the style of sulphidic breccia, sulphidic infill structures and veins occurring in the top section of CAE hole # 12 is presented in Figs 12 to 18.

Down Hole Mineralized Zones Hole 22CAEDD012	From	То	m	CuEq %	Cu %	Au g/t	Ag g/t	S %
Aggregate Interval	0	228	228	0.84	0.63	0.19	12.0	3.08
Primary vein fracture network in diorite below which is diorite breccia & then hydrothermal infill breccia dominated by diorite and/or hornfels clasts.	48	228	180	1.03	0.77	0.23	14.9	3.62
Primary Hydrothermal breccia, diorite clast/or hornfels dominant.	102	228	126	1.36	1.01	0.31	19.8	4.21
Includes Following zones								
Oxidised vein fracture network in diorite	0	12	12	0.39	0.29	0.12	4.2	0.05
High Sulphidic breccia	102	103	1	3.3	2.77	0.37	37.5	7.40
Primary Hydrothermal breccia, diorite clast dominant.	112	138	26	1.37	0.93	0.48	18.6	5.32
Include high Au zone	137	138	1	3.22	0.37	4.44	19.0	4.04
Primary Hydrothermal Infill Breccia (high Cu with Ag,Au) , strong sulphide	158	225	67	1.77	1.34	0.36	26.6	4.14
includes Sheeted veins of quartz-pyrite-sphalerite- chalcopyrite	223	225	2	3.91	1.53	2.73	86.9	4.95

Table 1. Assay Highlights from Top Section Drillhole 22CAEDD012 (0m-291m)

29 August 2022

ASX Code: CAE

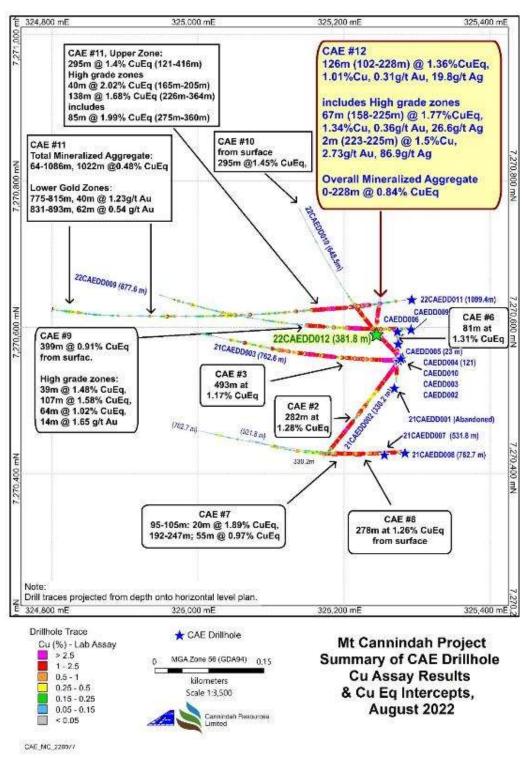


Fig 4. CAE Hole # 12 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Cu plotted , CuEq intercepts annotated. Assays reported for CAE hole # 12 from 0m to 291m.

29 August 2022

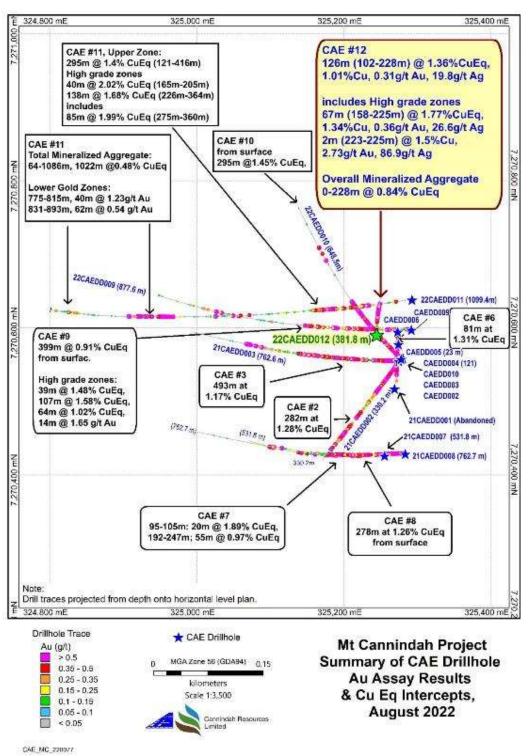


Fig 5. CAE Hole # 12 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Au plotted , CuEq intercepts annotated. Assays reported for CAE hole # 12 from 0m to 291m.

29 August 2022

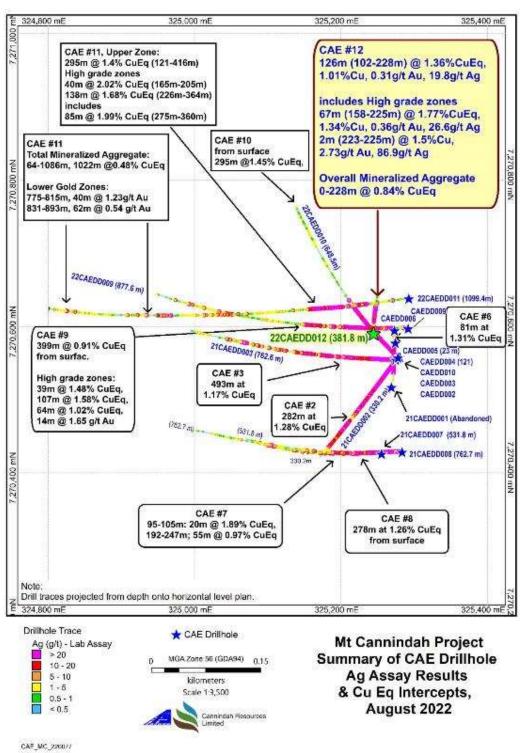


Fig 6. CAE Hole # 12 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Ag plotted , CuEq intercepts annotated. Assays reported for CAE hole # 12 from 0m to 291m.

29 August 2022

ASX Code: CAE

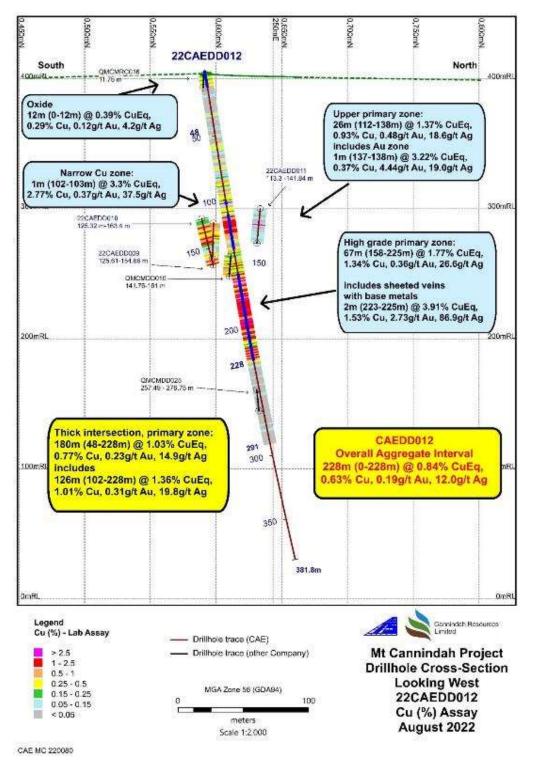


Fig 7. Mt Cannindah mine area north-south cross section CAE hole 12 looking west, with Cu lab assay results plotted down hole, significant intersections annotated. Assays reported for CAE hole # 12 from 0m to 291m.

29 August 2022

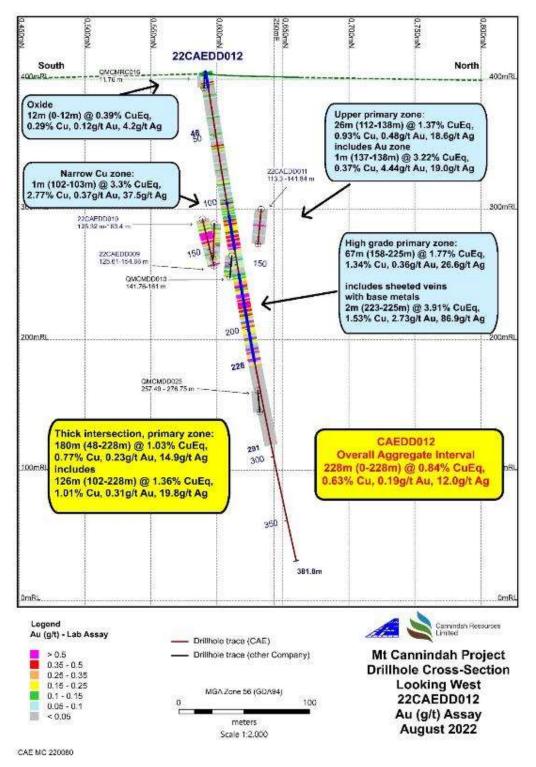


Fig 8. Mt Cannindah mine area north-south cross section CAE hole 12 looking west, with Au lab assay results plotted down hole, significant intersections annotated. Assays reported for CAE hole # 12 from 0m to 291m.

29 August 2022

ASX Code: CAE

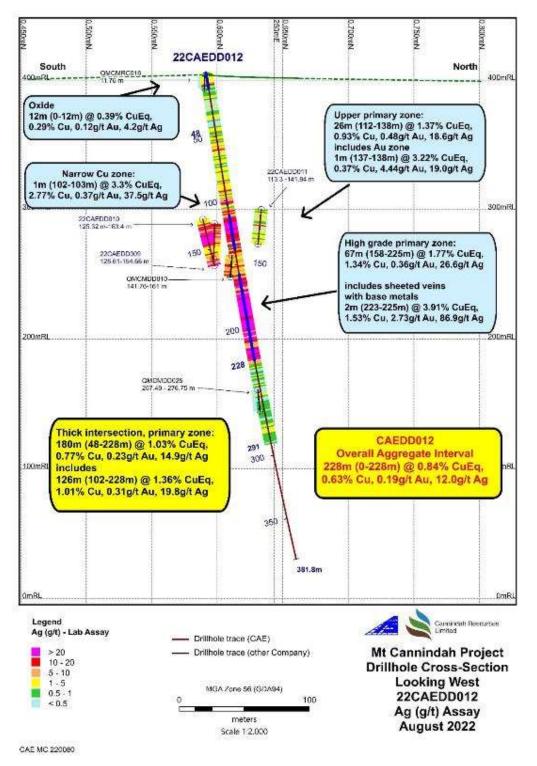


Fig 9. Mt Cannindah mine area north-south cross section CAE hole 12 looking west , with Ag lab assay results plotted down hole, significant intersections annotated. Assays reported for CAE hole # 12 from 0m to 291m.

29 August 2022

ASX Code: CAE

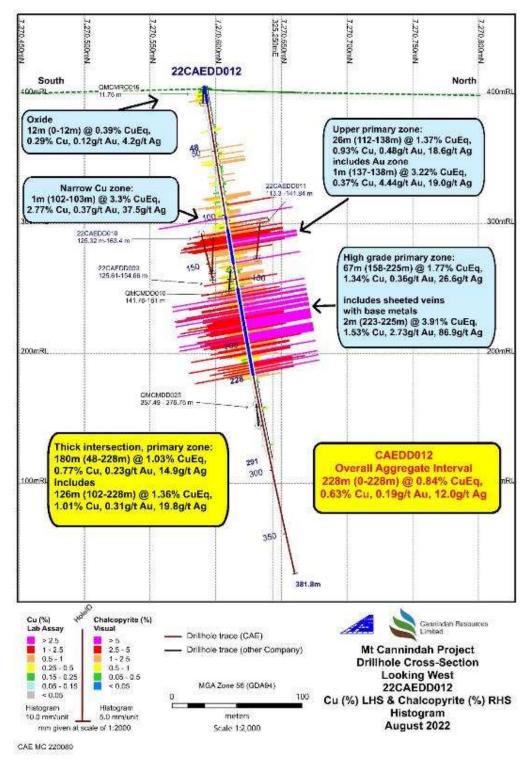


Fig 10. Mt Cannindah mine area north-south cross section CAE hole 12 looking west. Histogram correlation of Cu Vs Chalcopyrite Significant intersections annotated. Assays reported for CAE hole # 12 from 0m to 291m. Au Vs Ag and Au Vs pyrite plotted in Appendix 2 Figs 5 to 6 respectively,

29 August 2022

ASX Code: CAE

Fig 11. HQ Core photos hole 22CAEDD0012, 166.0m, Chalcopyrite – pyrite-quartz – calcite infill between angular clasts of sericite altered diorite. Interval 166m-167m grading 3.05% Cu, 0.56 g/t Au,55.2 g/t Ag.9.62% S

Fig 12. HQ half Core oriented in Core Orienting Frame, hole drilling north at 80 degrees, looking south-east. Contact of semi-massive chalcopyrite -quartz-calcite infill in structure trending east south- east (strike 120-300 magnetic bearing, dipping 65 degrees to north-east) in contact with strongly silica sericite altered diorite breccia. Hole 22CAEDD0012, 175.7m, Interval 175m-176m grading 2.45% Cu, 0.54 g/t Au,50.6 g/t Ag.7.86% S

29 August 2022

ASX Code: CAE

Fig 13 HQ Half Core photos hole 22CAEDD0012, 184.3, Chalcopyrite pyrite-calcite infill in monomict crackle brecciated diorite.. Interval 184m-185m assays 1m @ 2.36% Cu, 0.22 g/t Au, 33.5 g/t Ag, 6.38 % S

Fig 14. HQ Half Core photos hole 22CAEDD0012, 194.3, Chalcopyrite pyrite-calcite infill in monomict crackle brecciated diorite.. Interval 194m-195m assays 1m @ 4.52% Cu, 0.94 g/t Au, 57.3 g/t Ag, 8.04 % S

Fig 15. Close up HQ half core black sphalerite rich vein cutting a breccia dominated by hornfels clasts. Quartzcalcite-sphalerite-pyrite-chalcopyrite bearing vein. CAEDD0012, 224m.4, Interval 224m-225m 1m grading 0.91% Cu, 2.37g/t Au,76 g/t Ag, 4.51% S, 2712 ppm As, 615 ppm Pb, 2712 ppm Sb, 8202 ppm Zn.

29 August 2022

ASX Code: CAE

Fig 16. HQ half Core oriented in Core Orienting Frame, hole drilling north at 80 degrees, looking south-east. Sheeted veins of quartz-calcite-pyrite-black sphalerite and chalcopyrite-minor galena. Veins cut a breccia dominated by hornfels clasts. Vein has east west strike (100-280 magnetic bearing dipping 70 degrees to north). Hole 22CAEDD0012, 224m, Interval 223m-225m 2m grading 1.53% Cu, 2.73g/t Au,86.9 g/t Ag.4.95% S, 2315 ppm As, 635 ppm Pb, 1159 ppm Sb, 5272 ppm Zn.

Fig 17. Close up HQ half sheeted veins cutting a breccia dominated by hornfels clasts. Two sheeted veins with intervening sericite altered hornfels dominated breccia. CAEDD0012, 224m.4 , Interval 224m-225m 1m grading 0.91% Cu, 2.37g/t Au,76 g/t Ag, 4.51% S, 2712 ppm As, 615 ppm Pb, 2712 ppm Sb, 8202 ppm Zn.

29 August 2022

ASX Code: CAE

Fig 18. HQ half Core oriented in Core Orienting Frame, hole drilling north at 80 degrees, looking south-east. Splinter breccia dominated by tabular clasts of hornfels with pyrite-chalcopyrite, quartz calcite infill between clasts. Clasts are generally aligned and dip relatively gently to the south south-west. Overall attitude of the clasts is strike (110-290 magnetic bearing dip 45 degrees to south south-west). Hole is interpreted as drilling down long axis of the breccia, with clast alignment almost at right angles to drill direction. Hole 22CAEDD0012, 223.3m, Interval 223m-224: 1m grading 2.15% Cu, 3.17/t Au,96.5 g/t Ag, 5.38% S.

29 August 2022

ASX Code: CAE

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited.

Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

Dr. Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Disclosure:

Dr Beams' employer Terra Search Pty Ltd and Dr Beams personally hold ordinary shares in Cannindah Resources Limited.

For further information, please contact:

Tom Pickett Executive Chairman Ph: 61 7 55578791 Appendix 1 Table 1 Cu, Au, Ag, S assays, chalcopyrite, pyrite visual estimates. 0-291m Hole 12

Appendix 2 Plan & section views of recent drill results, Mt Cannindah

Appendix 3 JORC Table 1

Appendix 4 – JORC Table 2

29 August 2022

ASX Code: CAE

Formula for Copper Equivalent calculations

Copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits, with copper being dominant.

We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah.

We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries.

This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu, Au, Ag.

The full equation for Copper Equivalent is:

CuEq/% = (Cu/% * 92.50 * Cu Recovery + Au/ppm * 56.26 * Au Recovery + Ag/ppm * 0.74 * Ag Recovery)/(92.5* Cu Recovery)

When recoveries are equal this reduces to the simplified version:

CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5

We have applied a 30-day average prices in USD for Q4,2021, for Cu, Au, Ag, specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt % Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore.

We have conservatively used equal recoveries of 80% for copper, 80% for gold, 80% for Ag and applied to the CuEq calculation. CAE are planning Metallurgical test work to quantify these recoveries.

29 August 2022

ASX Code: CAE

Appendix 1 Table 1 Cu, Au, Ag, S assays and chalcopyrite/pyrite visual estimates, to 291m 22CAEDD012. intervals at upper portion of hole are summarized here.

Decodes: DRT = Diorite; HFL=Hornfels, PHY = bleached diorite porphyry, CLBX=Clast supported breccia.

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	0	1	0.27	0.13	3.4	0.07			Weathered Diorite
DD012	1	2	0.17	0.12	3.8	0.01			Weathered Diorite
DD012	2	3	0.14	0.11	3.2	0.03			Weathered Diorite
DD012	3	4	0.18	0.05	2.2	0.03			Weathered Diorite
DD012	4	5	0.34	0.05	3.3	0.03			Weathered Diorite
DD012	5	6	0.31	0.07	4.3	0.02			Weathered Diorite
DD012	6	7	0.22	0.02	2.2	0.03			Weathered Diorite
DD012	7	8	0.33	0.05	2.7	0.03			Weathered Diorite
DD012	8	9	0.30	0.35	9.3	0.07			Weathered Diorite
DD012	9	10	0.60	0.30	14.2	0.18	2		Weathered Diorite
DD012	10	11	0.30	0.12	0.9	0.02	0.1		Weathered Diorite
DD012	11	12	0.31	0.02	1	0.12	0.5		Weathered Diorite
DD012	12	13	0.03	0.01	0.5	0.57	2		Weathered Diorite
DD012	13	14	0.02	0.01	0.7	0.70	2	0.1	Diorite with fracture network
DD012	14	15	0.02	0.01	0.25	1.22	1		Diorite with fracture network
DD012	15	16	0.03	0.02	0.8	1.77	3		Diorite with fracture network
DD012	16	17	0.04	0.02	0.9	1.48	3		Diorite with fracture network
DD012	17	18	0.03	0.02	0.7	1.78	4		Diorite with fracture network
DD012	18	19	0.08	0.11	1.3	1.93	4	0.1	Diorite with fracture network
DD012	19	20	0.10	0.03	2	1.36	2		Diorite with fracture network
DD012	20	21	0.03	0.05	0.8	0.83	3	0.1	Diorite with fracture network
DD012	21	22	0.01	0.01	0.25	0.46	2		Diorite with fracture network
DD012	22	23	0.01	0.00	0.25	0.45	2	0.1	Diorite with fracture network
DD012	23	24	0.04	0.03	2.3	1.76	2	0.1	Diorite with fracture network
DD012	24	25	0.01	0.01	0.25	0.87	2		Diorite with fracture network

29 August 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	25	26	0.01	0.01	0.25	0.70	2		Diorite with fracture network
DD012	26	27	0.01	0.00	0.25	0.47	2		Diorite with fracture network
DD012	27	28	0.01	0.01	1	1.61	2		Diorite with fracture network
DD012	28	29	0.01	0.01	0.25	1.52	2		Diorite with fracture network
DD012	29	30	0.01	0.01	0.25	1.03	2		Diorite with fracture network
DD012	30	31	0.03	0.01	0.7	1.88	3	0.1	Diorite with fracture network
DD012	31	32	0.04	0.02	0.7	1.94	2	0.1	Diorite with fracture network
DD012	32	33	0.05	0.02	0.9	1.63	3	0.1	Diorite with fracture network
DD012	33	34	0.10	0.04	2	1.89	4	0.6	Diorite with fracture network
DD012	34	35	0.31	0.09	4	1.93	3	0.5	Diorite with fracture network
DD012	35	36	0.02	0.10	1.3	0.91	2	0.1	Diorite with fracture network
DD012	36	37	0.01	0.01	0.25	0.66	1		Diorite with fracture network
DD012	37	38	0.05	0.01	0.8	1.21	2	0.2	Diorite with fracture network
DD012	38	39	0.01	0.00	0.25	0.58	2		Diorite with fracture network
DD012	39	40	0.02	0.01	0.25	1.18	2		Diorite with fracture network
DD012	40	41	0.02	0.03	0.25	1.24	1		Diorite with fracture network
DD012	41	42	0.01	0.00	0.25	1.03	2		Diorite with fracture network
DD012	42	43	0.02	0.05	0.6	2.23	5		Diorite with fracture network
DD012	43	44	0.06	0.04	1.4	2.78	4		Diorite with fracture network
DD012	44	45	0.04	0.01	1.1	2.98	7		Diorite with fracture network
DD012	45	46	0.05	0.01	1.2	2.09	3	0.2	Diorite with fracture network
DD012	46	47	0.03	0.01	0.8	1.97	2		Diorite with fracture network

29 August 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	47	48	0.04	0.01	0.7	1.38	4		Diorite with fracture network
DD012	48	49	0.55	0.14	6.9	5.71	10	2	Diorite with fracture network
DD012	49	50	0.05	0.01	0.7	0.91	1		Diorite with fracture network
DD012	50	51	0.05	0.05	1.4	1.21	0.5		Diorite with fracture network
DD012	51	52	0.10	0.02	1.5	1.71	4	0.5	Diorite with fracture network
DD012	52	53	0.03	0.01	0.6	0.44	2	0.3	Diorite with fracture network
DD012	53	54	0.59	0.09	6.1	1.95	2	2	Diorite with fracture network
DD012	54	55	0.04	0.02	0.7	1.24	1		Diorite with fracture network
DD012	55	56	0.04	0.01	1	1.46	2	0.5	Diorite with fracture network
DD012	56	57	0.05	0.02	1	1.31	2		Diorite with fracture network
DD012	57	58	0.49	0.44	9.8	1.89	2	2	Diorite with fracture network
DD012	58	59	0.07	0.04	1.3	0.80	2	0.1	Diorite with fracture network
DD012	59	60	0.49	0.12	5.8	1.73	6	2	Diorite with fracture network
DD012	60	61	0.35	0.20	10.4	4.81	10	2	Diorite with fracture network
DD012	61	62	0.05	0.02	1	1.05	2		Diorite with fracture network
DD012	62	63	0.02	0.01	0.25	0.67	2	0.2	Diorite with fracture network
DD012	63	64	0.09	0.06	3	2.00	6	0.2	Diorite with fracture network
DD012	64	65	0.05	0.04	2.6	1.31	3	0.2	Diorite with fracture network
DD012	65	66	0.03	0.02	0.8	1.01	2	0.1	Diorite with fracture network
DD012	66	67	0.04	0.01	1	1.37	3	0.2	Diorite with fracture network
DD012	67	68	0.03	0.02	0.7	1.90	4	0.1	Diorite with fracture network
DD012	68	69	0.05	0.01	1	2.24	3	0.1	Diorite with fracture network

29 August 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	69	70	0.32	0.03	4.4	2.06	2	1	Diorite with fracture network
DD012	70	71	0.05	0.05	1.2	1.74	1		Diorite with fracture network
DD012	71	72	0.04	0.01	0.7	1.25	2		Diorite with fracture network
DD012	72	73	0.02	0.01	0.25	0.69	2	0.1	Diorite with fracture network
DD012	73	74	0.05	0.01	0.9	1.23	3	0.1	Diorite with fracture network
DD012	74	75	0.30	0.07	4.8	1.87	4	1	Diorite with fracture network
DD012	75	76	0.12	0.03	1.7	0.87	2	0.2	Diorite with fracture network
DD012	76	77	0.26	0.10	3	1.11	2	0.3	Diorite with fracture network
DD012	77	78	0.04	0.01	0.7	1.09	1	0.1	Diorite with fracture network
DD012	78	79	0.07	0.02	1.4	1.97	2		Diorite with fracture network
DD012	79	80	0.06	0.01	1	1.64	2	0.1	Diorite with fracture network
DD012	80	81	0.01	0.01	0.25	0.75	1		Diorite with fracture network
DD012	81	82	0.13	0.02	1.1	0.77	2	0.1	Diorite with fracture network
DD012	82	83	0.21	0.05	2.6	1.46	2	0.2	Diorite with fracture network
DD012	83	84	0.09	0.02	1.5	1.48	1		Diorite with fracture network
DD012	84	85	0.06	0.01	0.8	1.08	1		Diorite with fracture network
DD012	85	86	0.67	0.17	7.5	2.60	3	2	Diorite Breccia
DD012	86	87	0.59	0.09	8.1	1.53	3	2	Diorite Breccia
DD012	87	88	0.47	0.10	4.4	1.47	3	2	Diorite Breccia
DD012	88	89	0.31	0.04	2.9	1.95	2	1	Diorite Breccia
DD012	89	90	0.24	0.05	2.6	1.75	2	0.5	Diorite Breccia
DD012	90	91	0.09	0.02	1.6	1.59	1	0.0	Diorite Breccia
DD012	91	92	0.05	0.02	1	1.74	2	0.2	Diorite Breccia
DD012	92	93	0.99	0.09	17.7	14.78	15	4	Diorite Breccia
DD012	93	94	0.61	0.09	7.2	3.69	5	2	Diorite Breccia
DD012	94 05	95	0.30	0.04	4.9	3.93	5	0.5	Diorite Breccia
DD012	95	96	0.04	0.01	0.8	1.68	3	0.1	Diorite Breccia

22CAE#	From Depth	To Depth	Lab Cu %	Lab Au g/t	Lab Ag	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	m 96	m 97	0.10	0.03	g/t 1.6	1.88	3	0.2	Diorite Breccia
DD012 DD012	97	98	0.35	0.03	5.8	4.44	5	1	Diorite Breccia
DD012	98	99	0.29	0.08	5.8 8.9	5.29	7	1	Diorite Breccia
DD012	99	100	0.31	0.03	9.2	3.55	7	1	Diorite Breccia
DD012	100	101	0.18	0.13	5.7	2.84	5	0.5	Diorite Breccia
DD012	100	102	0.10	0.10	10	7.92	10	1	Diorite Breccia
DD012	101	103	2.77	0.10	37.5	7.40	10	6	Diorite Breccia
DD012	102	104	0.14	0.05	37.3	1.90	4	0.5	Diorite Breccia
DD012	104	105	0.06	0.03	1.6	1.97	3	0.1	Diorite Breccia
DD012	104	106	0.03	0.00	0.7	1.19	2	0.1	Diorite Breccia
DD012	106	107	0.27	0.12	6.2	4.84	6	0.5	Diorite Breccia
DD012	107	108	0.48	0.18	6.3	5.66	6	3	Infill Breccia (DRT)
DD012	108	109	0.47	0.11	10.2	6.58	10	1	Infill Breccia (DRT)
DD012	109	110	0.21	0.07	5.5	4.60	6	0.5	Infill Breccia (DRT)
DD012	110	111	0.49	0.14	11.3	4.67	6	3	Infill Breccia (DRT)
DD012	111	112	0.13	0.05	4.1	1.99	3	1	Infill Breccia (DRT)
DD012	112	113	0.89	0.11	8.2	3.73	4	2	Infill Breccia (DRT)
DD012	113	114	1.29	0.13	36.4	4.48	4	4	Infill Breccia (DRT)
DD012	114	115	0.75	0.27	18.5	4.41	5	2	Infill Breccia (DRT)
DD012	115	116	0.85	0.38	16.6	5.35	5	2	Infill Breccia (DRT)
DD012	116	117	1.00	0.14	16.5	5.43	6	4	Infill Breccia (DRT)
DD012	117	118	1.52	0.25	30.3	8.54	10	4	Infill Breccia (DRT)
DD012	118	119	1.26	0.37	21.5	5.48	8	3	Infill Breccia (DRT)
DD012	119	120	1.17	0.27	20.5	6.80	10	4	Infill Breccia (DRT)
DD012	120	121	1.69	0.15	22.2	6.83	10	5	Infill Breccia (DRT)
DD012	121	122	1.78	0.17	26.2	8.04	10	5	Infill Breccia (DRT)
DD012	122	123	0.67	0.21	17	5.24	5	2	Infill Breccia (DRT)
DD012	123	124	1.83	0.24	27.9	5.82	5	6	Infill Breccia (DRT)
DD012	124	125	1.54	0.44	28.9	5.84	8	6	Infill Breccia (DRT)
DD012	125	126	1.38	0.10	22.9	5.11	8	4	Infill Breccia (DRT)
DD012	126	127	0.62	0.17	16.4	6.60	8	2	Infill Breccia (DRT)
DD012	127	128	0.94	0.57	18.2	6.64	8	2	Infill Breccia (DRT)
DD012	128	129	0.82	0.43	16	6.28	8	3	Infill Breccia (DRT)
DD012	129	130	0.71	0.34	14.1	3.84	8	2	Infill Breccia (DRT)
DD012	130	131	0.81	0.42	22.1	5.10	5	2	Infill Breccia (DRT)
DD012	131	132	0.32	1.00	12.6	4.98	5	1	Infill Breccia (DRT)
DD012	132	133	0.09	0.18	4.4	3.53	5	0.5	Infill Breccia (DRT)
DD012	133	134	0.11	0.67	6.5	5.31	8	0.5	Infill Breccia (DRT)

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	134	135	0.92	0.36	15.7	3.72	5	1	Infill Breccia (DRT)
DD012	135	136	0.85	0.66	23.7	5.99	8	2	Infill Breccia (DRT)
DD012	136	137	0.03	0.01	0.8	1.18	2	0.1	Infill Breccia (DRT)
DD012	137	138	0.37	4.44	19	4.04	5	10	Infill Breccia (DRT)
DD012	138	139	0.06	0.09	3	2.52	3	1	Infill Breccia (DRT)
DD012	139	140	0.51	0.19	17.2	2.68	3	2	Infill Breccia (DRT)
DD012	140	141	0.42	0.16	10.1	2.26	4	2	Infill Breccia (DRT)
DD012	141	142	0.20	0.09	4.9	4.67	6	2	Infill Breccia (DRT)
DD012	142	143	0.30	0.07	6.2	5.36	5	0.5	Infill Breccia (DRT)
DD012	143	144	0.24	0.09	5.3	4.14	5	0.4	Infill Breccia (DRT)
DD012	144	145	0.13	0.03	2.8	3.23	3	0.2	Infill Breccia (DRT)
DD012	145	146	0.09	0.03	2.1	7.27	10	0.2	Infill Breccia (DRT)
DD012	146	147	0.43	0.10	7.7	6.56	10	2	Infill Breccia (DRT)
DD012	147	148	0.57	0.07	7.1	5.35	8	2	Infill Breccia (DRT)
DD012	148	149	0.46	0.06	8	3.73	7	2	Infill Breccia (DRT)
DD012	149	150	0.24	0.06	3.8	4.46	6	1	Infill Breccia (DRT)
DD012	150	151	0.30	0.07	4.7	3.64	6	1	Infill Breccia (DRT)
DD012	151	152	1.15	0.21	14.1	4.73	5	3	Diorite
DD012	152	153	0.49	0.06	6.1	1.18	2	2	Diorite
DD012	153	154	0.19	0.01	3.4	1.33	1	0.5	Diorite
DD012	154	155	0.48	0.01	5.7	1.00	1	1	Diorite
DD012	155	156	0.39	0.02	5	1.21	1	1	Diorite
DD012	156	157	0.15	0.02	2.8	0.81	1	0.3	Diorite
DD012	157	158	0.85	0.11	9.8	3.50	5	2	Infill Breccia (DRT)
DD012	158	159	1.32	0.10	18.2	5.46	8	5	Infill Breccia (DRT)
DD012	159	160	0.38	0.05	5.5	2.70	4	1	Infill Breccia (DRT)
DD012	160	161	0.55	0.11	8.2	3.13	4	2	Infill Breccia (DRT)
DD012	161	162	1.10	0.20	19.8	4.92	4	3	Infill Breccia (DRT)
DD012	162	163	0.71	0.17	11.6	4.93	4	2	Infill Breccia (DRT)
DD012	163	164	2.58	0.28	43.9	6.73	4	5	Infill Breccia (DRT)
DD012	164	165	0.99	0.28	17	4.23	6	3	Infill Breccia (DRT)
DD012	165	166	0.58	0.28	11.9	6.63	5	2	Infill Breccia (DRT)
DD012	166	167	3.05	0.56	52.2	9.62	5	10	Infill Breccia (DRT)
DD012	167	168	1.88	0.43	33.5	5.36	6	5	Infill Breccia (DRT)
DD012	168	169	0.25	0.03	4.2	3.02	5	1	Infill Breccia (DRT)
DD012	169	170	0.73	0.14	9.6	3.70	5	2	Infill Breccia (DRT)
DD012	170	171	1.42	0.16	18	3.15	5	5	Infill Breccia (DRT)
DD012	171	172	1.42	0.18	26.2	4.58	6	5	Infill Breccia (DRT)

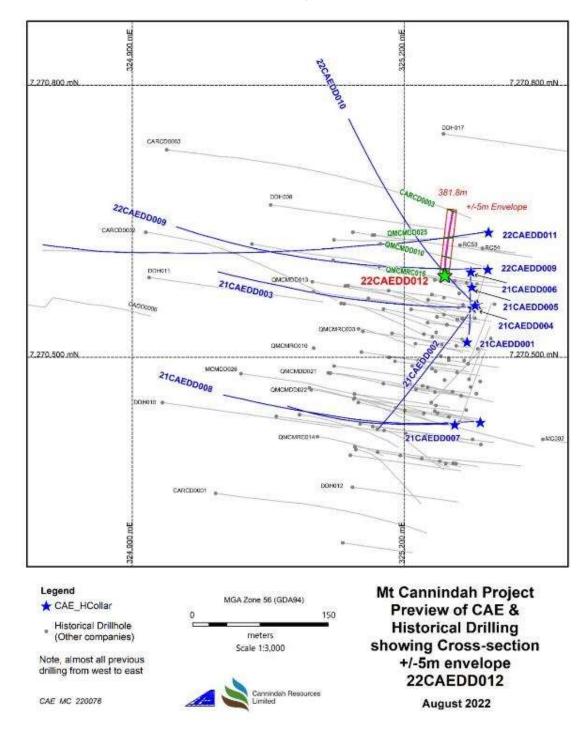
22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	172	173	0.35	0.05	6.9	1.84	3	1	Infill Breccia (DRT)
DD012	173	174	2.06	0.91	45.8	12.79	10	5	Infill Breccia (DRT)
DD012	174	175	3.10	0.56	57.2	7.28	5	8	Infill Breccia (DRT)
DD012	175	176	2.45	0.54	50.6	7.86	8	5	Infill Breccia (DRT)
DD012	176	177	0.69	0.07	13	2.51	5	2	Infill Breccia (DRT)
DD012	177	178	1.43	0.48	34.3	6.70	7	5	Infill Breccia (DRT)
DD012	178	179	2.70	0.30	54.9	11.71	8	8	Infill Breccia (DRT)
DD012	179	180	1.45	1.03	31.5	5.33	6	5	Infill Breccia (DRT)
DD012	180	181	1.07	0.37	22	4.29	5	3	Infill Breccia (DRT)
DD012	181	182	1.30	0.59	23.9	4.29	4	3	Infill Breccia (DRT)
DD012	182	183	2.07	0.53	44.2	5.99	4	5	Infill Breccia (DRT)
DD012	183	184	1.29	0.39	29.1	3.42	5	5	Infill Breccia (DRT)
DD012	184	185	2.36	0.22	35.5	6.38	6	5	Infill Breccia (DRT)
DD012	185	186	1.47	0.38	37.3	5.24	5	5	Infill Breccia (DRT)
DD012	186	187	3.00	0.61	50.8	6.13	5	5	Infill Breccia (DRT)
DD012	187	188	1.23	0.15	20.2	3.31	3	5	Infill Breccia (DRT)
DD012	188	189	1.41	0.13	27.8	5.45	4	5	Infill Breccia (DRT)
DD012	189	190	1.73	0.38	28.4	3.85	5	5	Infill Breccia (DRT)
DD012	190	191	1.27	0.16	20.3	3.80	2	3	Infill Breccia (DRT)
DD012	191	192	0.64	0.33	11	2.00	5	2	Infill Breccia (DRT)
DD012	192	193	0.69	0.07	10.3	2.96	2	2	Infill Breccia (DRT)
DD012	193	194	1.80	0.09	24.2	4.46	6	5	Infill Breccia (DRT)
DD012	194	195	4.52	0.94	57.3	8.04	7	10	Infill Breccia (DRT)
DD012	195	196	1.51	0.13	29.2	3.49	7	5	Infill Breccia (DRT)
DD012	196	197	1.70	0.22	28.5	2.89	3	5	Infill Breccia (DRT)
DD012	197	198	2.65	0.27	29.8	5.75	3	8	Infill Breccia (DRT)
DD012	198	199	1.34	0.81	34.6	6.33	5	5	Infill Breccia (DRT)
DD012	199	200	1.59	0.19	28.5	4.73	6	5	Infill Breccia (DRT)
DD012	200	201	1.32	0.17	22.7	4.24	3	4	Infill Breccia (DRT)
DD012	201	202	0.63	0.15	14.4	2.82	4	2	Infill Breccia (DRT)
DD012	202	203	0.50	0.07	8.7	1.91	4	2	Infill Breccia (DRT,HFL)
DD012	203	204	1.08	0.22	30.4	2.39	4	3	Infill Breccia (DRT,HFL)
DD012	204	205	1.36	0.29	23.9	3.33	2	3	Infill Breccia (DRT,HFL)
DD012	205	206	0.86	0.08	21.6	2.93	2	2	Infill Breccia (DRT,HFL)
DD012	206	207	0.18	0.04	4.2	0.62	1	0.5	Infill Breccia (DRT,HFL)
DD012	207	208	2.15	0.71	43.7	4.51	3	5	Infill Breccia (HFL,DRT)
DD012	208	209	1.05	0.13	27.4	3.09	2	3	Infill Breccia (HFL,DRT)
DD012	209	210	0.76	0.23	16.4	1.70	0.5	3	Infill Breccia (HFL,DRT)

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	210	211	0.39	0.18	10.6	1.21	3	1	Infill Breccia (HFL,DRT)
DD012	211	212	0.49	0.06	9.7	0.99	1	2	Infill Breccia (HFL,DRT)
DD012	212	213	0.24	0.01	5.3	0.45	1	0.5	Infill Breccia (HFL,DRT)
DD012	213	214	0.27	0.03	6.8	0.70	1	0.5	Infill Breccia (HFL,DRT)
DD012	214	215	0.24	0.03	4.5	0.75	1	0.5	Infill Breccia (HFL,DRT)
DD012	215	216	2.32	0.52	32.9	2.81	0.5	5	Infill Breccia (HFL,DRT)
DD012	216	217	0.97	0.14	14.7	1.70	1	3	Infill Breccia (HFL,DRT)
DD012	217	218	1.20	0.29	22.1	3.06	1	4	Infill Breccia (HFL,DRT)
DD012	218	219	0.86	0.61	24.5	3.51	3	3	Infill Breccia (HFL,DRT)
DD012	219	220	1.53	0.32	46.9	2.76	1	5	Infill Breccia (HFL)
DD012	220	221	0.69	0.06	14.4	1.05	0.5	2	Infill Breccia (HFL)
DD012	221	222	1.03	0.05	20.9	1.46	1	3	Infill Breccia (HFL)
DD012	222	223	0.81	0.15	18.9	2.22	3	2	Infill Breccia (HFL)
DD012	223	224	2.15	3.17	96.5	5.38	3	5	Quartz Sulphide Vein
DD012	224	225	0.91	2.37	76.2	4.52	3	3	Quartz Sulphide Vein
DD012	225	226	0.07	0.02	1.6	0.26	0.1	0.1	Hornfels
DD012	226	227	0.45	0.05	5.1	1.59	0.1	1	Hornfels
DD012	227	228	0.53	0.17	8.9	3.27	3	2	Hornfels
DD012	228	229	0.02	0.01	0.6	1.03	2	0.1	Hornfels
DD012	229	230	0.05	0.01	0.8	0.56	0.2	0.1	Hornfels
DD012	230	231	0.05	0.01	1	0.50	0.1		Hornfels
DD012	231	232	0.02	0.02	0.6	0.49	0.1	0.2	Hornfels
DD012	232	233	0.01	0.01	0.25	0.22			Hornfels
DD012	233	234	0.01	0.01	0.25	0.16			Hornfels
DD012	234	235	0.04	0.01	0.6	0.25			Hornfels
DD012	235	236	0.03	0.01	0.6	0.55	0.2		Hornfels
DD012	236	237	0.01	0.00	0.25	0.31	0.1		Hornfels
DD012	237	238	0.03	0.02	0.9	1.07	0.5	0.1	Hornfels
DD012	238	239	0.05	0.01	1	0.59	0.5		Hornfels
DD012	239	240	0.03	0.01	0.6	0.72	0.5		Hornfels
DD012	240	241	0.02	0.01	0.6	0.73	0.1		Hornfels
DD012	241	242	0.01	0.01	0.25	0.89	0.5		Hornfels
DD012	242	243	0.00	0.00	0.25	0.24	0.5		Hornfels
DD012	243	244	0.02	0.01	0.6	1.35	2		Hornfels
DD012	244	245	0.06	0.01	1.1	2.08	1		Hornfels
DD012	245	246	0.02	0.02	0.7	2.72	4		Diorite
DD012	246	247	0.01	0.00	0.25	1.51	2		Bleached Diorite Porphyry
DD012	247	248	0.01	0.00	0.25	0.38	0.5		Bleached Diorite Porphyry

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	248	249	0.02	0.01	0.25	0.73	1		Bleached Diorite Porphyry
DD012	249	250	0.01	0.00	0.25	1.45	2		Bleached Diorite Porphyry
DD012	250	251	0.00	0.00	0.25	3.27	5		Matrix Supported Breccia (HFL,DRT)
DD012	251	252	0.10	0.01	1.6	3.35	5	0.3	Matrix Supported Breccia (HFL,DRT)
DD012	252	253	0.14	0.01	1.9	3.24	4	0.5	Matrix Supported Breccia (HFL,DRT)
DD012	253	254	0.02	0.01	0.7	3.63	5		Matrix Supported Breccia (HFL,DRT)
DD012	254	255	0.01	0.00	0.25	3.31	5		Matrix Supported Breccia (HFL,DRT)
DD012	255	256	0.00	0.01	0.25	3.50	4		Matrix Supported Breccia (HFL,DRT)
DD012	256	257	0.01	0.01	0.25	2.59	4		Matrix Supported Breccia (HFL,DRT)
DD012	257	258	0.01	0.01	0.6	2.78	3		Matrix Supported Breccia (HFL,DRT)
DD012	258	259	0.00	0.00	0.8	3.02	3		Matrix Supported Breccia (HFL,DRT)
DD012	259	260	0.00	0.01	0.5	2.91	3		Matrix Supported Breccia (HFL,DRT)
DD012	260	261	0.00	0.00	0.5	2.91	3		Matrix Supported Breccia (HFL,DRT)
DD012	261	262	0.00	0.00	0.5	3.06	5		Matrix Supported Breccia (HFL,DRT)
DD012	262	263	0.01	0.00	0.6	3.72	5		Matrix Supported Breccia (HFL,DRT)
DD012	263	264	0.02	0.00	0.7	3.12	5		Matrix Supported Breccia (HFL,DRT)
DD012	264	265	0.00	0.00	0.25	2.68	5		Matrix Supported Breccia (HFL,DRT)
DD012	265	266	0.02	0.00	0.6	2.67	5		Matrix Supported Breccia (HFL,DRT)
DD012	266	267	0.04	0.01	0.8	2.72	5		Matrix Supported Breccia (HFL,DRT)
DD012	267	268	0.03	0.00	0.7	2.83	5		Clast Supported Breccia chlorite matrix (HFL, PHY)

29 August 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	268	269	0.01	0.02	0.6	3.84	5		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	269	270	0.01	0.00	0.6	3.69	5		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	270	271	0.01	0.00	0.25	3.57	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	271	272	0.00	0.00	0.25	3.48	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	272	273	0.01	0.00	0.6	3.63	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	273	274	0.03	0.01	0.8	3.71	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	274	275	0.03	0.00	0.9	3.37	3		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	275	276	0.06	0.02	2	8.62	10		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	276	277	0.03	0.01	1	3.01	3		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	277	278	0.01	0.00	0.6	3.35	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	278	279	0.01	0.00	0.25	2.73	3		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	279	280	0.05	0.01	1.1	4.58	3		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	280	281	0.12	0.01	2.3	4.29	5	0.2	Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	281	282	0.02	0.00	1.1	3.14	5		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	282	283	0.02	0.00	0.8	3.53	5		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	283	284	0.02	0.00	0.7	3.47	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	284	285	0.03	0.01	0.7	3.26	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	285	286	0.02	0.01	0.7	3.42	3		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	286	287	0.01	0.01	0.6	3.65	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	287	288	0.01	0.00	0.5	3.00	4		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	288	289	0.01	0.01	0.6	3.60	3		Clast Supported Breccia chlorite matrix (HFL, PHY)
DD012	289	290	0.01	0.01	0.25	3.65	5		Clast Supported Breccia chlorite matrix (HFL, PHY)

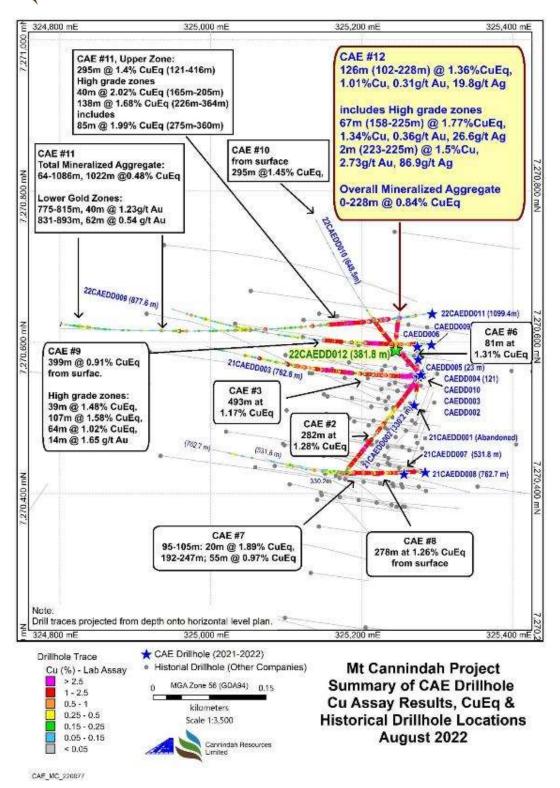

29 August 2022

22CAE#	From Depth m	To Depth m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrite Visual %	Lithology
DD012	290	291	0.01	0.01	0.5	3.65	4		Clast Supported Breccia chlorite matrix (HFL, PHY)

29 August 2022

ASX Code: CAE

Appendix 2 Plans & Sections of CAE and Historical Drilling Mt Cannindah


App2, Fig1. Plan View of Mt Cannindah. Section Line for 22CAEDD012 in relation to CAE hole traces with down hole Cu assays in relation to historical holes.

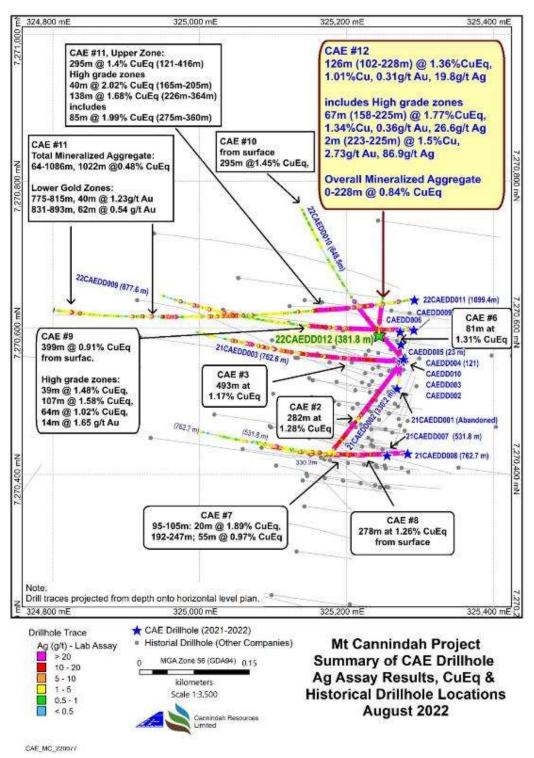
Cannindah Resources Limited

ASX RELEASE

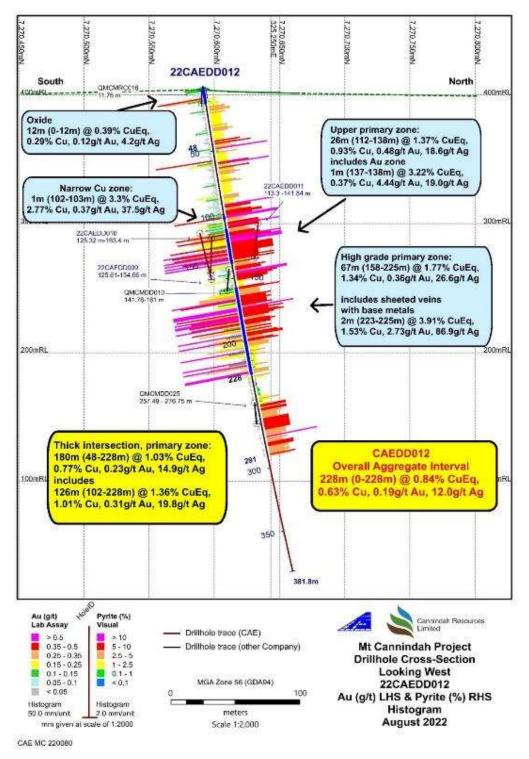
29 August 2022

ASX Code: CAE

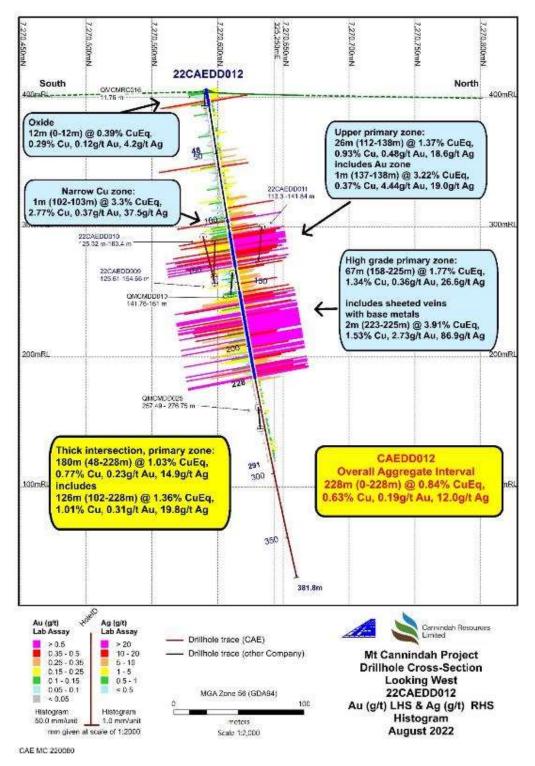
App2, Fig2 Plan View of Mt Cannindah showing CAE hole traces with down hole Cu assays in relation to historical holes. Assays reported for CAE hole # 12 from 0m to 291m.


29 August 2022

App2, Fig3. Plan View of Mt Cannindah showing CAE hole traces with down hole Au assays in relation to historical holes. Assays reported for CAE hole # 12 from 0m to 291m.


29 August 2022

App2, Fig4. Plan View of Mt Cannindah showing CAE hole traces with down hole Ag assays in relation to historical holes. Assays reported for CAE hole # 12 from 0m to 291m.


29 August 2022

App2, Fig5 . Mt Cannindah mine area north-south cross section CAE hole 12 looking west, Histogram correlation of Au Vs Pyrite Significant intersections annotated. Assays reported for CAE hole # 12 from 0m to 291m.

29 August 2022

App2, Fig 6 . Mt Cannindah mine area north-south cross section CAE hole 12 looking west, Histogram correlation of Au Vs Ag Significant intersections annotated. Assays reported for CAE hole # 12 from 0m to 291m.

ASX RELEASE

29 August 2022

ASX Code: CAE

Appendix 3: JORC Table 1. Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.) These examples should not be taken as limiting the broad meaning of sampling.	. Sampling results are based on sawn half core samples of both PQ ,HQ and NQ diameter diamond drill core. An orientation line was marked along all core sections. One side of the core was consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.
	Include reference to measures taken to ensure sampling representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Half core samples were sawn up on a diamond saw on a metre basis for HQ,NQ diameter core and a 0.5m basis for PQ diameter core. Samples were forwarded to commercial NATA standard laboratories for crushing, splitting and grinding ,Laboratory used in this instance is Intertek Genalysis , Townsville. Analytical sample size was in the order of 2.5kg to 3kg.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	Drill type is diamond core. Core diameter at top of hole is PQ, below 30m core diameter is HQ and NQ.Triple tube methodology was deployed for PQ & HQ, which resulted in excellent core recovery throughout the hole.Core was oriented, utilizing an Ace Orientaion equipment and rigorously supervised by on-site geologist.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery was recorded for all drill runs and documented in a Geotechnical log. The Triple Tube technology and procedure ensured core recoveries were excellent throughout the hole.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Triple tube methodology ensure excellent core recoveries. Core was marked up in metre lengths and reconciled with drillers core blocks. An orientation line was drawn on the core . Core sampling was undertaken by an experienced operator who ensured that half core was sawn up with one side consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.

29 August 2022

Criteria	Explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were good. An unbiased, consistent half core section was submitted for the entire hole, on the basis of continuous 1m sampling. 0.5m in the case of PQ.The entire half core section was crushed at the lab and then split, The representative subsample was then fine ground and a representative unbiased sample was extracted for further analysis.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Geological logging was carried out by well- trained/experienced geologist and data entered via a well-developed logging system designed to capture descriptive geology, coded geology and quantifiable geology. All logs were checked for consistency by the Principal Geologist. Data captured through Excel spread sheets and Explorer 3 Relational Data Base Management System. A geotechnical log was prepared.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography.	Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core.
	The total length and percentage of the relevant intersections logged.	The entire length of all drill holes has been geologically logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All sampling was of diamond core
	For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	The above techniques are considered to be of a high quality, and appropriate for the nature of mineralisation anticipated. QA/QC protocols were instigated such that they conform to mineral industry standards and are compliant with the
		JORC code. Terra Search's input into the Quality Assurance (QA) process with respect to chemical analysis of mineral exploration diamond core samples includes the addition of both coarse blanks, Certified pulped Blanks, Certified and Internal matrix matched standards to each batch so that checks can be done after they are analysed. As part of the Quality Control (QC) process, Terra Search checks the resultant assay data against known or previously determined assays to determine the quality of the analysed batch of samples. An assessment is made on the data and a report on the quality of the data is compiled.

29 August 2022

Criteria	Explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	estimations and PXRF sampling of sludge and coarse crush material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	·
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Intertek/Genalysis lab Townsville samples
	For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc.	Magnetic susceptibility measurements utilizing Exploranium KT10 instrument, zeroed between each measurement. No PXRF results are reported here. although PXRF analysis has been utilized to provide multi-element data for the prospect and will be reported separately. The lab pulps are considered more than appropriate samples for this purpose. PXRF Analysis is carried out in an air- conditioned controlled environment in Terra Search offices in Townsville. The instrument used was Terra Search's portable Niton XRF analyser (Niton 'trugeo' analytical mode) analysing for a suite of 40 major and minor elements. in. The PXRF equipment is set up on a bench and the sub-sample (loose powder in a thin clear plastic freezer bag) is placed in a lead-lined stand. An internal detector autocalibrates the portable machine, and

29 August 2022

Criteria	Explanation	Commentary
		Terra Search standard practice is to instigate recalibration of the equipment every 2 to 3 hours. Readings are undertaken for 60 seconds on a circular area of approximately 1cm diameter. A higher number of measurements are taken from the centre of the circle and decreasing outwards. PXRF measures total concentration of particular elements in the sample. Reading of the X-Ray spectra is effected by interferences between different elements. The matrix of the sample eg iron content has to be taken into account when interpreting the spectra. The reliability and accuracy of the PXRF results are checked regularly by reference to known standards. There are some known interferences relevant to particular elements eg W & Au; Th & Bi, Fe & Co. Awareness of these interferences is taken into account when assessing the results.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	by-batch basis, Terra Search has well established sampling protocols including blanks (both coarse & pulped), certified
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Significant intersections were verified by Terra Search Pty Ltd, geological consultants who geologically supervised the drilling. Validation is checked by comparing assay results with logged mineralogy eg sulphide material in relation to copper and gold gradse.
	The use of twinned holes.	There has been little direct twinning of holes, the hole reported here pass close to earlier drill holes , assay results and geology and assay results are entirely consisted with previous results.
	Documentation of primary data, data entry procedures, data verifications, data storage (physical and electronic) protocols.	and experienced field assistants and

29 August 2022

Criteria	Explanation	Commentary
		Data is imported into database tables from the Excel spreadsheets with validation checks set on different fields. Data is then checked thoroughly by the Operations Geologist for errors. Accuracy of drilling data is then validated when imported into MapInfo.
		Location and analysis data are then collated into a single Excel spreadsheet. Data is stored on servers in the Consultants office and also with CAE. There have been regular backups and archival copies of the database made. Data is also stored at Terra Search's Townsville Office. Data is validated by long-standing procedures within Excel Spreadsheets and Explorer 3 data base and spatially validated within MapInfo GIS.
	Discuss any adjustment to assay data.	No adjustments are made to the Commercial lab assay data. Data is imported into the database in its original raw format.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar location information was originally collected with a Garmin 76 hand held GPS. X-Y accuracy is estimated at 3-5m, whereas height is +/- 10m.Coordinates have been reassessed with DGPS, Accuracy is sub 0.5m in X,Y,Z.
		Down hole surveys were conducted on all holes using a Reflex downhole digital camera. Surveys were generally taken every 30m downhole, dip, magnetic azimuth and magnetic field were recorded.
	Specification of the grid system used.	Coordinate system is UTM Zone 55 (MGA) and datum is GDA94
	Quality and adequacy of topographic control.	Pre-existing DTM is high quality and available.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	At the Mt Cannindah mine area previous drilling program total over 100 deep diamond and Reverse Circulation percussion holes Almost all have been drilled in 25m to 50m spaced fences, from west to east, variously positioned over a strike length of 350m and a cross strike width of at least 500m Down hole sample spacing is in the order of 1m to 2m which is entirely appropriate for the style of the deposit and sampling procedures.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Previous resource estimates on Mt Cannindah include Golders 2008 for Queensland Ores and Helman & Schofield 2012 for Drummond Gold. Both these estimates utilised 25m to 50m fences of west to east drillholes, but expressed concerns regarding confidence in assay continuity both between 50m sections and between holes within the plane of the cross sections. The hole reported here

ASX RELEASE

29 August 2022

Criteria	Explanation	Commentary
	Whether sample compositing has been	addresses some of the concerns about grade continuity, by linking mineralisation from section to section and also in the plane of the cross sections. Further drilling is necessary to enhance and fine tune the previous Mineral Resource. estimates at Mt Cannindah and lift the category from Inferred to Indicated and Measured and compliant with JORC 2012 No sample compositing has been applied,
	applied.	Most are 0.5m to 1m downhole samples
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The main objective of hole 22CAEDD012, reported here is to explore the northern end of the Mt Cannindah Deposit for high grade copper bearing breccia, where previous interpretations suggested it terminated by disappearing under weakly mineralised diorite. The high grade target is essentially blind in this area , with interesting ,but scattered and discontinuous , copper intercepts present in previous drilling. In contrast to historic drilling in this section of the deposit, CAE # 12 was drilled to the north on a magnetic bearing at the collar of 358 degrees The hole started in diorite and successfully targeted breccia between relatively unmineralized diorite and a hornfels block. The Infill breccia is massive textured , recent interpretation suggests the clasts are slabby and have an imbrication or preferred orientation, that is gently to moderately dipping to the east or north east, in the case of hole 22CAEDD012, the alignment of slabs appears to have swung to an east west direction and gently dipping to the south. If this is the case, the steep inclination of hole # 12 suggest that it is is drilling right angles to the fabric of the breccia and down the long axis of the breccia i, ie right angle to the slab layering Pre and post mineral dykes cut the drill hole , generally in two orientations , east west, and north south , There are some significant sulphide veins and feeders that are east west striking and steeply dipping north or south. As these structures are possibly sheeted veins , they are better targeted with north south holes, which is the appropriate direction of the 22CAEDD012
	If the relationship between drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is gently to moderately dipping to the east or south east. Many structures and lithological contacts are striking north south, or north north east, dipping east so the westerly drill direction

ASX RELEASE

29 August 2022

ASX Code: CAE

Criteria	Explanation	Commentary
Criteria	Explanation	Commentary is entirely appropriate. No sampling bias is evident in the logging, or the presentation of results or drill cross and long sections. Steep structures are evident and with steep inclined holes these are cut at oblique anges. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 21CAEDD012 provides valuable unbiased information concerning grade continuity of the breccia body. The complete geometry of the breccia body is unknown at this stage. Similarly, vein structures have several orienations and only in certain instances is it evident that vein orientations have introduced a sampling bias. These are well documented with oriented core. There are some significant sulphide veins and feeders that are east west striking and steeply dipping north or south. As these structures are possibly sheeted veins, they are better targeted with north south holes, which is the appropriate direction of the 22CAEDD012 . Results of these north south holes may help determine which is the appropriate
		help determine which is the appropriate drill direction for the various structural trends evident at Mt Cannindah. From preliminary investigation of the grade model It is anticipated that there is little overall evidence of any sampling bias in
Sample security	The measures taken to ensure sample security.	the CAE drilling at Mt Cannindah. Chain of custody was managed by Terra Search Pty Ltd. Core trays were freighted in sealed & strapped pallets from Monto were they were dispatched by Terra Search . The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been numerous independent reviews carried out on the Mt Cannindah project. reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008;Metallica ,2008; Drummond Gold, 2011; CAE 2014.

APPENDIX 2 – JORC Code Table 2

Section 2: Reporting of Exploration Results

Mineral tenement and	Type, reference name/number, location	Exploration conducted on MLs 2301,
land tenure status	and ownership including agreements or	2302, 2303, 2304, 2307, 2308, 2309, EPM
	material issues with third parties such as	14524, and EPM 15261. 100% owned by
	joint ventures, partnerships, overriding	Cannindah Resources Pty Ltd.
	royalties, native title interests, historical	,

ASX RELEASE

29 August 2022

	sites, wilderness or national and environmental settings.	The MLs were acquired in 2002 by Queensland Ores Limited (QOL), a precursor company to Cannindah Resources Limited. QOL acquired the Cannindah Mining Leases from the previous owners, Newcrest and MIM, As part of the purchase arrangement a 1.5% net smelter return (NSR) royalty on any production is payable to MIM/Newcrest and will be shared 40% by MIM and 60% by Newcrest. An access agreement with the current landholders in in place.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area.	No impediments to operate are known.
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	Previous exploration has been conducted by multiple companies. Data used for evaluating the Mt Cannindah project include : Drilling & geology, surface sampling by MIM (1970 onwards) drilling data Astrik (1987), Drill,Soil, IP & ground magnetics and geology data collected by Newcrest (1994-1996), rock chips collected by Dominion (1992),. Drilling data collected by Coolgardie Gold (1999), Queensland Ores (2008-2011), Planet Metals-Drummond Gold (2011-2013). Since 2014 Terra Search Pty Ltd, Townsville QLD has provided geological consultant support to Cannindah Resources.
Geology	Deposit type, geological setting and style of mineralisation.	Breccia and porphyry intrusive related Cu- Au-Ag-Mo , base metal skarns and shear hosted Au bearing quartz veins occur adjacent to a Cu-Mo porphyry.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of interest have been listed in CAE's ASX announcement, March,2021.

29 August 2022

Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No cut-offs have been routinely applied in reporting of the historical drill results or the drillhole 21CAEDD011 reported here.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail	The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. The breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dykes and intrusive bodies can mask the mineralisation .Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, historical results have been reported in the aggregated form displayed in the ASX Announcement for CAE , March,2021, many times previously. There are some zones of high grade which can influence the longer intercepts, All results are reported as down hole plots or tabulated with lower grade zones clearly noted. Aggregation of the longer intercepts at Mt Cannindah is advantageous for analysis and comparison of historical and recently collected drill data.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	A copper equivalent has been used to report the wider copper bearing intercepts that carriy Au and Ag credits with copper being dominant. Previous holders have undertaken preliminary metallurgical test work. We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah.
		We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag.
		The full equation for Copper Equivalent is:
		CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery)
		When recoveries are equal this reduces to the simplified version:
		CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5

29 August 2022

		We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au , Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore .As these prices are similar to current Q1-Q2,2022 averages, CAE has maintained these prices in order to allow consistent reporting from 2021 to 2022. We have conservatively used equal recoveries of 80% for copper, 80% for gold , 80% for Ag and applied to the CuEq calculation.
Relationship between mineralisation widths and intercept lengths	The relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known).	22CAEDD012 reported here is an angled hole, inclined 80 degrees to the northt (magnetic azimuth 351 degrees at the drill collar). The hole is collared on diorite and drills into a breccia body which is blind at this surface position. . The Mt Cannindah Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is relatively flat dipping to the east or south east. If this is the case, the holes drilled vertically or from east to west may be actually be drilling orthogonal to the layering in the breccia Pre and post mineral dykes cut the drill hole , generally in two orientations , east west, and north south , There are some significant sulphide veins and feeders that are east west striking and steeply dipping north or south. The downhole widths in these instances are likely to be at variance with the true thickness of the mineralised structures which could be thin but high grade. The thickness of the feeder structure however is not the only determinant of mineralisation thickness as the mineralisation extends from the vein well into the breccia as infill. Therefore as the breccia geometry is still to be established, the true attitude and thickness of the mineralisation is unknown at this stage. Some structures in hole 12 are possibly sheeted veins which are targeted with north south holes, in agreement with the direction of hole 12 at Mt Cannindah. Results of such north south holes may help determine the orientation and true thickness of the various mineralised trends evident in the northern section of Mt Cannindah Breccia.

29 August 2022

Diagrams	Appropriate maps and sections (with	elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus The breccia body geometry, as modelled at surface has the long axis oriented NNE- SSW. In this context hole 22CAEDD012 drills through the northern boundary of the mineralised envelope interpreted around the breccia body. The potential true width of the body may be oriented at an oblique angle to inclined hole 22CAEDD012. However, geological consultants, Terra Search argue that the dimensions of the mineralised body are uncertain, the longest axis could well be plunging to greater depths, and the upper and lower contacts , effectively the hanging and footwall contacts are still to be firmly established. The results of CAE hole 12 confirm that the breccia system is still open as an undrilled window to the north. Further investigation is required to establish the geometry of the mineralised breccia body in the north, south and down plunges of the Mt Cannindah deposit.
	scale) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	22CAEDD012 reported here, are included in this report .Geological data is still being assembled at the time of this report.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	The majority of Cu,Au,Ag assays from the Om to 291m section of hole 22CAEDD012 are listed with this report. In some instances, these have been reported as lithological and geochemical groups or sub-sets. Significant intercepts of Cu,Au,Ag are tabulated. All holes were sampled over their entire length, Reported intercepts have been aggregated where mineralization extends over significant down hole widths. This aggregation has allowed for the order of 10m-20m of non mineralized late dykes or lower grade breccia sections to be incorporated within the reported intersections. In general, a lower value of 0.15% CuEq has been utilized for the aggregated results. Wider aggregations have been reported for comparative purposes, in respect of reporting assaying of the mineralized sections which extend over the entire hole length. Aggregated intersections that contain zones of internal waste are clearly identified.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical	The latest drill results from the Mt Cannindah project are reported here. The report concentrates on the Cu,Au, Ag results. Other data, although not material

29 August 2022

ASX Code: CAE

	survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	to this update will be collected and reported in due course.
Further work	The nature and scale of planned further work (e.g. test for lateral extensions or depth extensions or large-scale step-out drilling).	Drill targets are identified and further drilling is required. Hole 2CAEDD012 targets the northern potential of the deposit and drills with a northerly azimuth, right angles to hole 11. CAE hole # 12 is complete, assay results for the section below 291m are awaited. Hole 13 is drilling at the southern end of the main Cannindah breccia. Further drilling is planned at Mt Cannindah Breccia
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Not yet determined, further work is being conducted.

APPENDIX 4– JORC Code Table 2

Section 3: Estimation and Reporting of Mineral Resources

Audits or Review	The results of audits and reviews of any ore resource Estimates.	There have been several resource estimations made over the various deposits at Mt Cannindah. These have been in the public domain for a number of years.
		The most recent resource statement by by Hellman & Schofield in 2011 is for Drummond Gold on the resource at Mt Cannindah itself. This was reported under the JORC 2004 code and has not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported.