

MT CANNINDAH HOLE 11 COPPER GOLD IN BRECCIA EXTENDED TO BOTTOM OF HOLE AT 1100m

SIGNIFICANT GOLD & COPPER FROM BRECCIA ZONES IN THE DEEPEST SECTIONS PAST 850M OF CAE HOLE # 11.

 Zones of extensive copper gold silver mineralized breccia are present throughout CAE hole # 11, from near surface to 1085m. Incorporating the previously reported high grade upper zone aggregates the mineralized breccia interval to :

1022m @ 0.48% CuEq*(0.31% Cu, 0.2 g/t Au, 5.5 g/t Ag)

- Drill results from new gold zones : 9m @ 1.62 g/t Au (860m-869m)
 3m @ 3.73 g/t Au (890m-893m). Some high grade assays include
 1m @ 7.73 g/t Au,13.8 g/t Ag , 1m @ 10.0 g/t Au,17.5 g/t Ag).
- Combining with previously reported results demonstrates potential of the lower gold mineralised interval which aggregates to 118m @ 0.70 g/t Au (775m to 893m).
- A deeper copper zone associated with altered mineralised breccia contains scattered intervals of elevated to moderate copper which aggregates to 46m @ 0.29% CuEq, (0.2% Cu,0.1 g/t Au, 4 g/t Ag : 1022m-1068m).
- Mt Cannindah Breccia continues to great depth, with the deepest copper intersected to date, in the deepest hole drilled to date, assaying 0.5% Cu, 0.3 g/t Au,7.5 g/t Ag at 1085m.

Chlorite matrix clast supported breccia with pyrite chalcopyrite infill 890.3m. Interval 890m-891m grading 10 g/t Au, 0.46% Cu, 17.6 g/t Ag.

Deepest copper zone intersected to date at 1085m : chalcopyritepyrite infill in clast supported breccia with altered rock flour matrix.

*Copper Equivalent calculation is based on metal prices using 30 day average prices in USD for Q4 2021. Further details are provided in the calculation table at page 19 of the text and in the JORC Table 1 at p40.

ASX Announcement

DATE: 15 August 2022

Fast Facts

Shares on Issue: 537,997,393 Market Cap (@\$0.25): \$134.49M (As at 12/8/2022)

Board and Management

Tom Pickett - Executive Chairman

Dr Simon Beams - Non Executive Director

Geoff Missen - Non Executive Director

Michael Hansel - Non Executive Director

Garry Gill - Company Secretary

Company Highlights

- Exceptional exploration management
- Located within existing mining lease
- 100km from Gladstone Port
- Significant copper intercepts at flagship Mt Cannindah project over hundreds of metres
- New Gold discovery within current drill program at Mt Cannindah
- Expansion of current
 5.5MT resource is the focus of the current program
- Large Gold portfolio with Piccadilly project 100km west of Townsville with existing mining lease and EPMs with large target areas yet to be drilled

• No debt

ASX RELEASE 15 August 2022 ASX Code: CAE

EXECUTIVE CHAIRMAN COMMENTS

"The result of the lower section of hole 11 past 850m confirming the expansion of the depth extent of the Mt Cannindah breccia is very encouraging. This 1100m hole returned a very impressive aggregate of approximately 1022m @ 0.50%CuEq and I could not be happier with the result achieved by our team. The existence of significant copper and gold below 850m further underpins the strategy of creating potential scale at Mt Cannindah. As I mentioned in the last release on hole 11, with the push for critical metals used in the green energy transition we will need more and more copper. CAE is well placed to take advantage of the looming shortage of supply which was highlighted in the recent M&A activity in the sector. CAE will continue to explore for these expansive results at Mt Cannindah located 100km from Gladstone port within existing mining leases."

TECHNICAL DETAILS & RESULTS OF CAE HOLE 11 AT MT CANNINDAH

Cannindah Resources Limited ("Cannindah", "CAE") is pleased to announce the next set of completed assay results from the drilling program currently underway at Mt Cannindah, copper gold silver project south of Gladstone near Monto in central Queensland (Figs 1 to 2) pertaining to the middle section (481m to 856m) of hole 22CAEDD011.

Hole CAE #11 is the northern most hole that CAE have drilled to date at Mt Cannindah. At a final depth of over 1099.4m, it is also the deepest, drilling east to west down the axis of a major tabular breccia body. The results reported here further expand the depth extent of sulphidic, copper-gold -silver bearing breccia and altered porphyry zones. CAE hole #11 was collared in unaltered diorite, targeting blind breccia mineralisation.

CAE holes in this northern zone (CAE # 9 ,10,11) have all returned thick intersections of high grade copper-gold silver (Fig 3), reported in previous CAE ASX announcements

CAE hole 9 :ASX announcement dated 4 - 5/4/2022: **341m of 1.03%CuEq** (0.75%Cu, 0.26g/tAu, 14.6g/tAg),

CAE hole 10 -ASX announcement dated 12/5/2022: **271m @1.41% CuEq** (0.98 % Cu, 0.44 g/t Au, 20.3 g/t Ag).

These CAE holes have drilled down the long axis and demonstrably across the layering of the Mt Cannindah breccia body (refer CAE ASX Announcements: 19 October 2021, 9 November 2021, 25 January 2022, 22 February 2022 ,4 April,20h22, 27 June 2022.)

CAE hole # 11 is collared 40m north of CAE hole # 9, similarly drilling east to west, down the axis of the breccia body at the northern extremity of drilling at Mt Cannindah. The trace of CAE hole # 11 crosses over the paths of CAE holes # 9,10 and drills towards CAE hole # 3 during its 1km journey into the depths of the Cannindah breccia system (Fig 3 & Fig 4).

15 August 2022

ASX Code: CAE

 14 sub-blocks •~ 43.5 sq km

```
MLs 3201-3209 (contiguous)
•~ 5.7 sq km
```

Total of 71.5 sq km of Exploration Permits & 5.7 sq km of Mining Leases

OWNERSHIP The Mt Cannindah Project is 100% owned by Cannindah Resources Limited

Fig 1. Mt Cannindah Project Tenure

15 August 2022

Fig 2. Mt Cannindah project Location of prospect areas and mineralised targets.

15 August 2022

ASX Code: CAE

The top section of CAE hole # 11 returned a broad aggregate zone from 121m to 416m of 295m @ 0.84% Cu, 0.33 g/t Au, 13.2 g/t Ag translating to **295m @ 1.14% CuEq** (reported CAE ASX announcement dated 27/6/2022). This broader zone includes a higher grade zone from 150m to 367m of **217m @ 1.47 % CuEq**, (1.08% Cu, 0.41 g/t Au , 17.0 g/t Ag).

Middle sections of hole # 11 were reported in ASX announcement 29/7/2022 : 23m @ 1.8 g/t Au (792m-815m), which includes 6m @ 2.7g/t Au, and high grade intervals of 1m @ 9.6 g/t Au, 60.9 g/t Ag, 1.68% Cu; and 1m @ 7.2 g/t Au, 18.8 g/t Ag. Also including a deeper level wide copper zone eg. 73m @ 0.17% Cu (615m to 688m).

The results of the lowermost section of CAE hole # 11 are reported here, down to final depth of over 1km (1099.4m). Although there are some sections of internal waste, the potential size of the Mt Cannindah breccia is demonstrated by the presence of copper-gold- silver mineralised breccia, country rock hornfels blocks and intensely altered porphyry dykes and intrusive bodies continuing to the end of hole. The mineralised breccia aggregates to **1022m @ 0.48% Cu** (64m – 1086m). Table 1 presents a summary of recent results from the lowermost section of CAE hole # 11. These results are integrated with adjacent up-hole intersections from the middle section of the hole. A deep gold zone containing some high grade and a broad lower copper zone of mineralised breccia are reported.

Key highlights are:

(1) Two gold zones which contain high grade were intersected:

- 860m-869m : 9m @ 1.62 g/t Au (includes 1m @ 7.73 g/t Au,13.8 g/t Ag)
- 890m-893m : 3m @ 3.73 g/t Au (includes 1m @ 10.0 g/t Au,17.5 g/t Ag)

These occur below the previously reported gold zones of :

- 792m-815m : 23m @ 1.8 g/t Au (includes 1m @ 9.63 g/t Au,60.9 g/t Ag; and 1m @ 7.24 g/t Au,18.8 g/t Ag)
- 831m-850m : 19m @ 0.32 g/t Au.

The full potential of these lower gold zones in the western deep section of the Mt Cannindah breccia is recognized from aggregating the lower gold mineralised interval from 775m to 893m of **118m @ 0.70 g/t Au.** Note that this aggregation incorporates previous reported intervals and allows up to 20m of internal waste .

(2) A lower copper zone associated with sericite altered breccia. :

- 1027m-1068m : 46m @ 0.2% Cu .
- Lower copper breccia contains several scattered 1m to 6m intervals of elevated copper eg 1030m-1031m : 1m @ 1.04% cu, 15 g/t Ag.
 1050m-1054m. 4m @ 0.66 % Cu,13.9 g/t Ag.
- The deepest significant copper intersected to date is 1m @ 0.5% Cu at 1085m.

ASX RELEASE 15 August 2022 ASX Code: CAE

In order to provide a complete assay profile of CAE hole # 11, previously reported results of the drill intersections from drillhole 22CAEDD011 are also presented, with Table 2 summarising the top 481m, and Table 3 summarising the middle section 481m to 856m. The full results of Cu,Au,Ag,S assaying and chalcopyrite/pyrite visual estimates for the section 856m to 1099.4m are presented in Appendix 1 Table 1 along with summaries of the upper intervals.

Figs 3 & 4 are plan views showing CAE hole # 11 in relation to the 2021 and 2022 CAE holes in the Mt Cannindah breccia area plotted respectively with Cu & Au assays. The location of CAE holes in plan & section view in relation to historic holes is presented in Appendix 2 with figure App 2.1 showing a location plan of the cross section of CAE hole 11 plotted with historical drilling; App 2 Fig 2 & Fig 3 show plan views of CAE drillholes with downhole assays respectively of Cu and Au with CAE and historical holes. Cross section plots of hole # 11 assay results to date are presented in Fig 4 to Fig 7 respectively as downhole Cu, Au, Ag assays.

A photo record of the style of sulphidic breccia, sulphidic infill structures and veins occurring in the lowermost section of CAE hole # 11 is presented in Figs 8 to 19.

Down Hole Mineralized Zones Hole 22CAEDD011	From m	To m	m	CuEq %	Cu %	Au g/t	Ag g/t	S %
Gold Zone # 4 (new)	860	869	9	1.09	0.07	1.62	4.7	2.22
Includes	864	865	1	4.95	0.14	7.73	13.8	7.60
Gold Zone # 5 (new)	890	893	3	2.51	0.18	3.73	7.6	1.97
Includes	890	891	1	6.68	0.46	10.00	17.5	2.21
Aggregate Lower Gold zones incorporating previous reported intervals (Note allows up to 20m internal waste ie <0.15% Cu equivalent)	775	893	118	0.55	0.09	0.70	3.7	3.30
Lower Copper mineralized zone (Note allows up to10m <0.25% Cu equivalent)	1022	1068	46	0.29	0.20	0.10	4.0	1.57
Lower Copper Breccia includes	1022	1023	1	0.51	0.32	0.24	6.6	1.98
Lower Copper Breccia includes	1030	1031	1	1.04	0.73	0.32	15.0	5.41
Lower Copper Breccia includes	1038	1044	6	0.36	0.24	0.14	4.1	1.43
Lower Copper Breccia includes	1050	1054	4	0.95	0.66	0.29	13.9	4.71
Deepest significant Copper	1085	1086	1	0.75	0.49	0.33	7.5	2.91
Aggregate Lower Copper mineralized breccia (Note allows up to 20m internal waste ie <0.15% Cu equivalent)	973	1086	113	0.18	0.13	0.06	2.5	1.14
Total Aggregate Mineralised Zone (Note includes some intervals of internal waste ie <0.15% Cu equivalent)	64	1086	1022	0.48	0.31	0.20	5.5	2.60

15 August 2022

ASX Code: CAE

Table 2. Summary of Previously reported Assay Highlights from Drillhole 22CAEDD011 - (seeCAE ASX Announcement 29 July 2022)

Down Hole Mineralized Zones Hole 22CAEDD011	From	То	m	CuEq %	Cu %	Au g/t	Ag g/t	S %
Aggregate Interval	121	416	295	1.14	0.84	0.33	13.2	3.85
Primary Hydrothermal Infill Breccia (high Cu with Ag,Au) Zone 1: diorite dominant, strong sulphide	150	367	217	1.47	1.08	0.41	17.0	4.66
Includes	165	205	40	2.02	1.40	0.67	25.9	7.33
quartz pyrite vein cutting infill breccia, low angle to drill core.	183	194	11	4.49	3.00	1.73	55.0	9.82
includes	190	194	4	7.78	4.52	4.07	97.8	14.07
	249	258	9	2.43	1.42	1.34	23.8	6.30
Primary Hydrothermal Infill Breccia (high Cu with Ag,Au) , strong sulphide	275	360	85	1.99	1.51	0.51	21.6	5.29
includes	309	311	2	8.07	1.71	9.92	40.8	7.22

 Table 3. Summary of Deeper Assay middle section 22CAEDD011

Down Hole Mineralized Zones Hole 22CAEDD011	From	То	m	CuEq* %	Cu %	Au g/t	Ag g/t	S %
Aggregate Interval	126	852	726	0.59				
	558	559	1	2.45	2.09	0.38	15.5	
	578	588	10	0.24	0.18			
includes	585	586	1	1.23	0.89	0.38	13.3	
	600	609	9	0.24	0.14			
includes	608	609	1	1.02	0.40	0.81	15.1	
	615	688	73	0.26	0.17			
includes	615	617	2	0.96	0.77	0.18	10.3	
includes	658	659	1	1.55	0.10	2.33	3.1	
	696	709	13	0.16	0.11			
Gold Zone 1	782	789	7	0.77	0.15	0.92	7.0	
Main Gold Zone # 2	792	815	23	1.46	0.19	1.80	8.5	
includes	792	798	6	2.25	0.47	2.70	16.8	
includes	794	795	1		1.68	9.63	60.9	
	800	812	12	1.44	0.13	0.29	7.6	
includes	801	802	1		0.27	7.24	18.8	
Gold Zone 3	831	850	19	0.36	0.13	0.32	3.8	
includes	840	841	1		0.92	1.21		
includes	843	844	1		0.03	1.49		

15 August 2022

ASX Code: CAE

Fig 3. CAE Hole # 11 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Cu plotted, CuEq intercepts annotated. All Assays reported for CAE hole # 11 from 0m to 1099.4m. Drilling completed on CAE hole #12, assays awaited.

15 August 2022

Fig 4. CAE Hole # 11 in relation to 2021-2022 CAE Drillholes at Mt Cannindah. Downhole lab Au plotted , CuEq intercepts annotated. All Assays reported for CAE hole # 11 from 0m to 1099.4m. Drilling completed CAE hole #12, assays awaited.

15 August 2022

ASX Code: CAE

Fig 5. Mt Cannindah mine area east-west cross section CAE hole 11 looking north, with Cu lab assay results plotted down hole, significant intersections annotated All Assays reported for CAE hole # 11 from 0m to 1099.4m.

15 August 2022

ASX Code: CAE

Fig 6. Mt Cannindah mine area east-west cross section CAE hole 11 looking north, with Au lab assay results plotted down hole, significant intersections annotated All Assays reported for CAE hole # 11 from 0m to 1099.4m

15 August 2022

ASX Code: CAE

Fig 7. Mt Cannindah mine area east-west cross section CAE hole 11 looking north, with Ag lab assay results plotted down hole, significant intersections annotated. All Assays reported for CAE hole # 11 from 0m to 1099.4m

15 August 2022

ASX Code: CAE

Fig 8. NQ Core photos hole 22CAEDD0011, 864.5m, polymict clast supported breccia with clasts of hornfels and diorite, minor altered rock-flour matrix. Strong pyrite – silica-carbonate alteration and infill. Interval 864m-865m assays 1m @ 7.73 g/t Au 0.14% Cu, , 13.8 g/t Ag, 7.6 % S

Fig 9. NQ Core photos hole 22CAEDD0011, 868.4m , Quartz sericite pyrite infill of shear/fault zone within clast supported breccia. Interval 868m-869m assays 1m @ 2.58 g/t Au 0.06% Cu, , 5.0 g/t Ag, 2.8 % S

15 August 2022

ASX Code: CAE

Fig 10. NQ Core photos hole 22CAEDD0011, 890.3m ,Sericitic altered ,clast supported breccia with chlorite -rock flour matrix , pyrite -chalcopyrite chlorite infill. Interval 890m-891m assays 1m @ 10.0 g/t Au 0.46% Cu, , 17.5 g/t Ag, 2.21 % S

Fig 11. NQ Core photos hole 22CAEDD0011, 890.7m ,Sericitic altered ,clast supported breccia with chlorite -rock flour matrix , pyrite -chalcopyrite chlorite infill. Interval 890m-891m assays 1m @ 10.0 g/t Au 0.46% Cu, , 17.5 g/t Ag, 2.21 % S

Fig 12. NQ Core photos hole 22CAEDD0011, 1030.7m ,Sericitic altered ,clast supported breccia , pyrite chlorite infill. Low sulphide section of metre. Interval 1030m-1031m assays 1m @ 0.32 g/t Au 0.73% Cu, , 15 g/t Ag, 5.41 % S.

15 August 2022

ASX Code: CAE

Fig 13. NQ Core photos hole 22CAEDD0011, 1030.9m ,Sericitic altered ,clast supported breccia , pyrite, chalcopyrite, chlorite, quartz infill. Semi-massive sulphide section of metre. Interval 1030m-1031m assays 1m @ 0.32 g/t Au 0.73% Cu, , 15 g/t Ag, 5.41 % S.

Fig 14. NQ Core photos hole 22CAEDD0011, 1039.6m ,Sericitic altered ,clast supported breccia , quartz,pyrite, chalcopyrite infill. Interval 1039m-1040m assays 1m @ 0.27 g/t Au 0.34% Cu, , 6.5 g/t Ag, 3.36 % S.

Fig 15. NQ Core photos hole 22CAEDD0011, 1051.5m Pyrite, quartz, chlorite, chalcopyrite infill within section of, clast supported breccia, Interval 1051m-1052m assays 1m @ 0.34 g/t Au 0.72% Cu, , 14.2 g/t Ag, 5.83 % S.

15 August 2022

ASX Code: CAE

Fig 16. NQ Core photos hole 22CAEDD0011, 1051.23m Chalcopyrite, pyrite, quartz, infill, some sulphide veins, within clast supported breccia, dominated by hornfels clasts with some diorite. Interval 1051m-1052m assays 1m @ 0.34 g/t Au 0.72% Cu, , 14.2 g/t Ag, 5.83 % S.

Fig 17. NQ Core photos hole 22CAEDD0011, 1052.3m Chalcopyrite,pyrite,quartz,calcite chlorite infill, , within clast supported breccia, dominated by hornfels clasts with chloritized rock flour matrix. Interval 1052m-1053m assays 1m @ 0.47 g/t Au 0.99% Cu, , 22.5 g/t Ag, 6.24 % S.

15 August 2022

ASX Code: CAE

Fig 18 NQ Core photos hole 22CAEDD0011, 1052.8m Chalcopyrite, pyrite, quartz, calcite chlorite infill, within clast supported breccia, dominated by hornfels clasts with chloritized rock flour matrix. Polymict clasts some stockwork veined. Interval 1052m-1053m assays 1m @ 0.47 g/t Au 0.99% Cu, , 22.5 g/t Ag, 6.24 % S.

Fig 19 NQ Core photos hole 22CAEDD0011, 1085.4m Chalcopyrite, pyrite, chlorite, quartz, calcite infill, within clast supported breccia ,dominated by hornfels clasts with chloritized rock flour matrix. Deepest copper zone intersected. Interval 1085m-1086m assays 1m @ 0.33 g/t Au 0.49% Cu, ,7.5 g/t Ag, 2.91 % S.

15 August 2022

ASX Code: CAE

Fig 20 NQ Core photos hole 22CAEDD0011, 1085.2m chlorite quartz, calcite , pyrite ,chalcopyrite, infill , within clast supported breccia ,dominated by hornfels clasts with chloritized rock flour matrix. Hornfels clasts cut by stockwork of vein fracture network. Deepest copper zone intersected to date at Mt Cannindah breccia. Interval 1085m-1086m assays 1m @ 0.33 g/t Au 0.49% Cu, ,7.5 g/t Ag, 2.91 % S.

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on information compiled by Dr. Simon D. Beams, a full-time employee of Terra Search Pty Ltd, geological consultants employed by Cannindah Resources Limited to carry out geological evaluation of the mineralisation potential of their Mt Cannindah Project, Queensland, Australia. Dr Beams is also a non-Executive Director of Cannindah Resources Limited.

Dr. Beams has BSc Honours and PhD degrees in geology; he is a Member of the Australasian Institute of Mining and Metallurgy (Member #107121) and a Member of the Australian Institute of Geoscientists (Member # 2689). Dr. Beams has sufficient relevant experience in respect to the style of mineralization, the type of deposit under consideration and the activity being undertaken to qualify as a Competent Person within the definition of the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code).

Dr. Beams consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

Disclosure:

Dr Beams' employer Terra Search Pty Ltd and Dr Beams personally hold ordinary shares in Cannindah Resources Limited.

For further information, please contact:

Tom Pickett Executive Chairman Ph: 61755578791

15 August 2022

ASX Code: CAE

Appendix 1 Table 1 Cu,Au,Ag,S assays , chalcopyrite, pyrite visual estimates bottom section CAE hole 11-

Appendix 2 Plan & section views of recent drill results , Mt Cannindah

Appendix 3 JORC Table 1

Appendix 4 – JORC Table 2

Formula for Copper Equivalent calculations

Copper equivalent has been used to report the wider copper bearing intercepts that carry Au and Ag credits, with copper being dominant.

We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah.

We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries.

This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag.

The full equation for Copper Equivalent is:

CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery)

When recoveries are equal this reduces to the simplified version:

CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5

We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au , Ag , specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1 ppm gold in ore, USD\$0.74 per 1 ppm silver in ore .

We have conservatively used equal recoveries of 80% for copper, 80% for gold , 80% for Ag and applied to the CuEq calculation.CAE are planning Metallurgical test work to quantify these recoveries.

15 August 2022

ASX Code: CAE

Appendix 1 Table 1 Cu,Au,Ag,S assays and chalcopyrite/pyrite visual estimates, to 1099.4m (End of hole) 22CAEDD011. intervals at upper portion of hole are summarized here. Results to 481m were fully reported CAE ASX Release 27/6/2022. Results to 856m were fully reported in ASX release 29/7/2022.

Decod	es : DRT	= Diorite;HFL	=Hornf	els,PHY	= bleache	ed diorit	e porphy	ry, CLBX	(=Clast s	upported breccia.

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyri e Visual %	Lithology
11	0	64	64	0.02	0.01	0.5	0.89	1.5	0.1	Diorite (DRT)
11	64	101	37	0.07	0.03	1.8	1	2	0.2	Veined and Altered DRT
11	64	65	1	0.99	0.45	31.1	2.77	4	3	Qz-Py-Cpy Vein in DRT
11	101	121	20	0.04	0.01	0.6	1.41	2.5	0.1	Altered DRT
11	121	416	295	0.84	0.32	13.2	3.85	6	2.5	Main Infill Breccia Zone
11	126	127	1	2.5	3.73	66.9	10.82	15	7	Qz-Py-Cpy Vein in DRT
11	163	205	42	1.35	0.64	24.9	7.06	10	4	Py-Cpy Infill Breccia in DRT
11	165	177	12	1.01	0.49	21.3	9.49	15	3	Py-Cpy Infill Breccia in DRT
11	183	205	22	1.91	0.93	34.3	7.65	10	6	Py-Cpy Infill Breccia in DRT
11	226	234	8	2.25	0.32	29.8	5.39	6	7	Py-Cpy Infill Breccia
11	247	367	120	1.3	0.49	19.4	5.19	8	4	Py-Cpy Infill Breccia
11	247	269	22	0.99	0.64	17	6	10	3	Py-Cpy Infill Breccia
11	275	364	89	1.48	0.49	21	5.21	7	4	Py-Cpy Infill Breccia
11	412	416	4	0.54	0.11	7.7	2.21	3	1.5	Clast Supported Breccia
11	412	413	1	1.16	0.22	15.4	2.35	2.5	3	Clast Supported Breccia
11	416	434	18	0.04	0.02	0.7	0.93	2	0.1	Clast Supported Breccia
11	434	521	87	0.11	0.03	1.6	0.96	1.5	0.3	Clast Supported Breccia
11	521	558	37	0.03	0.02	1	0.8	1.5	0.1	Clast Supported Breccia
11	558	559	1	2.09	0.38	15.5	8.65	15	6	Clast Supported Breccia
11	559	560	1	0.38	0.06	3.7	4.53	8	1	Clast Supported Breccia
11	560	561	1	0.63	0.08	6.2	4.1	7	2	Clast Supported Breccia
11	561	580	19	0.03	0.01	0.6	1.71	3	0.1	Clast Supported Breccia
11	580	581	1	0.14	0.04	1.9	3.6	7	0.4	Clast Supported Breccia
11	581	582	1	0.08	0.03	1.4	2.49	5	0.2	Clast Supported Breccia
11	582	583	1	0.02	0.01	0.3	0.69	1.5	0.1	Matrix Supported Breccia
11	583	584	1	0.01	0	0.3	0.09	0.2	0	Matrix Supported Breccia
11	584	589	5	0.06	0.01	0.8	0.93	2	0.2	Clast Supported Breccia
11	589	600	11	0.03	0.01	0.59	0.84	1.6	0.1	Clast Supported Breccia
11	600	601	1	0.14	0.03	1.6	0.59	1	0.4	Clast Supported Breccia
11	601	603	2	0.11	0.02	1.47	0.93	2	0.3	Clast Supported Breccia
11	603	605	2	0.17	0.05	2.4	4.29	8	0.5	Clast Supported Breccia
11	605	607	2	0.01	0	0.3	1.33	2	0	Clast Supported Breccia
11	607	609	2	0.31	0.43	10.2	4.63	8	1	Clast Supported Breccia
11	609	615	6	0.04	0.02	1.05	1.36	2	0.1	Clast Supported Breccia
11	615	647	32	0.26	0.06	5.94	4.22	8	1	Clast Supported Breccia

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	647	660	13	0.09	0.22	3.5	5.07	10	0.1	Clast Supported Breccia
11	660	668	8	0.15	0.03	4.6	3.78	5	0.5	Clast Supported Breccia
11	668	675	7	0.04	0.06	1.91	3.97	5	0.1	Clast Supported Breccia
11	675	682	7	0.21	0.04	7.4	4.26	5	0.5	Clast Supported Breccia
11	682	689	7	0.06	0.01	2.37	3.93	5	0.2	Clast Supported Breccia
11	689	696	7	0	0	0.3	0.1	0.2	0	Post-Mineral Andesite
11	696	719	23	0.09	0.03	2.7	3.7	7	0.3	Clast Supported Breccia
11	719	735	16	0.03	0.02	1.3	3.32	7	0.1	Clast Supported Breccia
11	735	736	1	0.12	0.03	4.9	3.82	7	0.3	Clast Supported Breccia
11	736	743	7	0	0	0.3	0.07	0.1	0	Post-Mineral Andesite
11	743	746	3	0.14	0.04	2.73	7.71	15	0.5	Clast Supported Breccia
11	746	753	7	0.04	0.02	1.4	3.26	5	0.1	Clast Supported Breccia
11	753	775	22	0.02	0.02	0.7	3.62	7	0.1	Clast Supported Breccia
11	775	776	1	0.73	1.25	22.7	10.66	20	2	Clast Supported Breccia
11	776	782	6	0.04	0.01	1.1	5.56	10	0.1	Clast Supported Breccia
11	782	789	7	0.16	1.54	7.27	8.53	15	0.5	Clast Supported Breccia
11	789	792	3	0.02	0.02	0.8	2.54	5	0.1	Clast Supported Breccia
11	792	793	1	0.16	0.56	6.2	6.11	10	0.5	Clast Supported Breccia
11	793	794	1	0.46	2.96	16.8	10.71	20	1.5	Clast Supported Breccia
11	794	795	1	1.68	9.83	60.9	17.44	30	5	Semi massive sulphide vein CLBX
11	795	796	1	0.18	1.12	5.5	6.35	10	0.5	Clast Supported Breccia
11	796	797	1	0.28	1.62	8.4	9.19	20	1	Clast Supported Breccia
11	797	800	3	0.03	0.07	1.8	5.83	10	0.1	Clast Supported Breccia
11	800	801	1	0.18	0.94	6.1	6.55	15	0.5	Clast Supported Breccia
11	801	802	1	0.27	7.24	18.8	8.41	15	1	Clast Supported Breccia
11	802	803	1	0.2	1.81	5.7	5.18	10	0.5	Clast Supported Breccia
11	803	804	1	0.18	1.7	9.2	4.52	9	0.5	Clast Supported Breccia
11	804	805	1	0.16	0.96	4.4	7.21	15	0.5	Clast Supported Breccia
11	805	806	1	0.07	0.14	2.6	1.83	4	0.2	Clast Supported Breccia
11	806	807	1	0.06	2.12	3.4	3.77	7	0.2	Clast Supported Breccia
11	807	808	1	0.01	0.23	4	12.48	25	0	Argillised Diorite
11	808	809	1	0.02	0.01	0.3	0.42	1	0.1	Diorite
11	809	812	3	0.12	3.22	12.37	7.56	1	0.3	Qz-Py-Cpy Vein in DRT
11	812	815	3	0.01	0.16	0.5	0.2	0	0	Diorite
11	815	831	16	0.01	0.01	0.3	0.49	1	0	DRT/CLBX
11	831	832	1	0.04	1.13	4.5	1.78	3	0.1	Clast Supported Breccia
11	832	837	6	0.05	0.08	1.6	1.58	3	0.14	Clast Supported Breccia
11	837	838	1	0.2	0.38	5.3	2.11	4	0.5	Clast Supported Breccia

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	838	839	1	0.31	0.04	5.8	1.18	1.5	1	Clast Supported Breccia
11	839	840	1	0.47	0.14	10.5	2.5	4	1.5	Clast Supported Breccia
11	840	841	1	0.92	0.15	25.3	1.89	2	2.5	Clast Supported Breccia
11	841	842	1	0.2	0.03	4.6	1.19	2	0.5	Clast Supported Breccia
11	842	843	1	0.05	0.32	1.6	1.58	3	0.1	Clast Supported Breccia
11	843	844	1	0.03	2.21	2.1	2.58	5	0.1	Clast Supported Breccia
11	844	849	5	0.01	0.07	0.78	0.67	1.5	0	Clast Supported Breccia
11	849	850	1	0.05	0.92	1.5	2.34	5	0.1	Clast Supported Breccia
11	850	856	6	0.01	0.04	0.5	0.66	1.5	0	Clast Supported Breccia
11	856	857	1	0.01	0.02	0.50	0.83	1.5	0.0	Clast Supported Breccia (HFL-DRT) sericite altered
11	857	858	1	0.06	0.07	1	1.41	2.5	0.2	Clast Supported Breccia (HFL-DRT) sericite altered
11	858	859	1	0.01	0.01	0.5	0.09	0.2	0.0	Post Mineral Andesite Dyke
11	859	860	1	0.01	0.01	0.5	0.14	0.3	0.0	Post Mineral Andesite Dyke
11	860	861	1	0.11	0.70	3.5	1.85	3.0	0.5	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	861	862	1	0.02	0.03	0.6	1.82	4.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	862	863	1	0.02	0.13	0.6	0.47	1.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	863	864	1	0.07	2.75	10.1	2.54	5.0	0.2	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	864	865	1	0.14	7.73	13.8	7.63	10.0	0.4	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	865	866	1	0.09	0.18	2.3	0.56	1.0	0.3	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	866	867	1	0.04	0.07	2.7	0.69	1.5	0.1	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	867	868	1	0.06	0.38	3.1	1.67	3.0	0.2	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	868	869	1	0.06	2.58	5.9	2.79	3.0	0.2	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	869	870	1	0.02	0.06	0.6	2.67	3.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite sericite altered
11	870	871	1	0.01	0.01	0.5	0.05	0.1	0.0	Post Mineral Andesite Dyke
11	871	872	1	0.01	0.01	0.5	0.06	0.1	0.0	Post Mineral Andesite Dyke

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	872	873	1	0.03	0.01	0.6	1.07	2.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	873	874	1	0.11	0.05	2.3	4.77	5.0	0.3	Clast Supported Breccia (HFL-DRT) chlorite altered
11	874	875	1	0.01	0.04	0.6	2.34	5.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	875	876	1	0.01	0.01	0.5	0.86	1.5	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	876	877	1	0.02	0.03	0.7	5.11	8.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	877	878	1	0.03	0.32	5.4	8.10	10.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	878	879	1	0.03	0.35	1.7	12.21	15.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	879	880	1	0.03	0.02	0.7	4.19	8.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	880	881	1	0.01	0.02	0.6	1.13	2.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	881	882	1	0.01	0.04	0.6	2.07	4.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	882	883	1	0.02	0.04	0.6	0.39	0.5	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	883	884	1	0.03	0.01	0.5	0.41	0.5	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	884	885	1	0.02	0.01	0.5	1.58	2.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	885	886	1	0.01	0.01	0.5	2.04	3.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	886	887	1	0.02	0.01	0.5	1.38	2.0	0.1	Clast Supported Breccia (HFL-DRT) chlorite altered
11	887	888	1	0.01	0.01	0.5	2.04	3.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	888	889	1	0.00	0.01	0.5	10.80	15.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	889	890	1	0.01	0.01	0.5	2.20	3.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	890	891	1	0.46	10.00	17.5	2.21	3.0	1.0	Clast Supported Breccia (HFL-PHY) chlorite sericite altered
11	891	892	1	0.05	0.31	2	1.42	2.0	0.2	Clast Supported Breccia (HFL-PHY) chlorite sericite altered
11	892	893	1	0.04	0.88	3.4	2.28	3.0	0.1	Clast Supported Breccia (HFL-PHY) chlorite sericite altered

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	893	894	1	0.04	0.09	0.9	2.48	5.0	0.1	Clast Supported Breccia (HFL-PHY) chlorite sericite altered
11	894	895	1	0.08	0.03	1.4	8.17	10.0	0.2	Clast Supported Breccia (HFL-PHY) chlorite sericite altered
11	895	896	1	0.01	0.01	0.5	0.91	2.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	896	897	1	0.00	0.01	0.5	0.76	1.5	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	897	898	1	0.08	0.06	3.4	1.86	4.0	0.2	Clast Supported Breccia (HFL-DRT) chlorite altered
11	898	899	1	0.01	0.01	0.5	3.72	5.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	899	900	1	0.01	0.02	0.5	1.32	1.0	0.0	Clast Supported Breccia (HFL-DRT) chlorite altered
11	900	902	2	0.01	0.01	0.5	1.60	1.0	0.0	Hornfels
11	902	906	4	0.01	0.01	0.5	1.45	1.6	0.0	Post Mineral Andesite Dyke
11	906	913	7	0.01	0.01	0.5	2.60	3.3	0.0	Clast Supported Breccia (HFL-DRT) sericite altered
11	913	914	1	0.00	0.01	0.5	0.12	0.2	0.0	Post Mineral Andesite Dyke
11	914	917	3	0.01	0.01	0.5	0.32	0.5	0.0	Argillised Breccia
11	917	922	5	0.02	0.01	0.6	0.13	0.1	0.0	Post Mineral Andesite Dyke
11	922	923	1	0.04	0.01	1	1.24	2.0	0.1	Clast Supported Breccia (HFL-DRT) sericite altered
11	923	924	1	0.11	0.02	1.6	1.01	2.0	0.3	Clast Supported Breccia (HFL-DRT) sericite altered
11	924	925	1	0.15	0.02	2.2	1.37	2.0	0.4	Clast Supported Breccia (HFL-DRT) sericite altered
11	925	927	2	0.02	0.01	0.75	0.60	1.0	0.1	Clast Supported Breccia (HFL-DRT) sericite altered
11	927	928	1	0.10	0.05	1.5	1.20	2.0	0.3	Clast Supported Breccia (HFL-DRT) sericite altered
11	928	932	4	0.02	0.01	0.6	0.45	0.9	0.1	Clast Supported Breccia (HFL-DRT) sericite altered
11	932	937	5	0.01	0.01	0.5	0.60	1.2	0.0	Chloritic hornfels
11	937	949	12	0.06	0.03	1.5	0.66	1.1	0.2	Clast Supported Breccia (HFL-PHY) sericite chllorite altered
11	949	950	1	0.02	0.01	0.5	0.16	0.3	0.0	Clast Supported Breccia (HFL-PHY) sericite chllorite altered
11	950	951	1	0.01	0.01	0.5	0.12	0.2	0.0	Clast Supported Breccia (HFL-PHY) sericite chllorite altered

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	951	952	1	0.01	0.01	0.5	0.15	0.3	0.0	Clast Supported Breccia (HFL-PHY) sericite chllorite altered
11	952	953	1	0.01	0.01	0.6	0.39	1.0	0.0	Argillised Fault Zone
11	949	953	4	0.01	0.01	0.5	0.20	0.5	0.0	
11	953	954	1	0.03	0.03	2.5	0.60	1.0	0.1	Clast Supported Breccia (HFL-PHY) sericite chllorite altered
11	954	958	4	0.02	0.01	0.5	0.35	0.7	0.0	Clast Supported Breccia (HFL-PHY) sericite chllorite altered
11	958	966	8	0.04	0.02	0.9	0.65	1.0	0.1	Clast Supported Breccia (HFL-PHY) sericite chllorite altered
11	966	972	6	0.02	0.01	0.5	0.75	1.5	0.1	Chloritic Clast Supported Breccia (HFL)
11	972	974	2	0.12	0.04	1.6	0.85	2.0	0.4	Chloritic Clast Supported Breccia (HFL)
11	974	976	2	0.01	0.01	0.5	0.50	1.0	0.0	Chloritic Clast Supported Breccia (HFL)
11	976	978	2	0.06	0.02	1.2	0.68	1.3	0.2	Clast Supported Breccia (HFL-DRT) sericite altered
11	978	982	4	0.03	0.01	0.8	0.43	0.6	0.1	Clast Supported Breccia (HFL-DRT) sericite altered
11	982	997	15	0.10	0.04	1.7	0.72	1.0	0.3	Clast Supported Breccia (HFL-PHY) sericite chllorite altered
11	997	999	2	0.02	0.01	0.5	0.39	0.8	0.0	Chloritic Clast Supported Breccia (HFL)
11	999	1009	10	0.08	0.04	1.41	0.52	1.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1009	1010	1	0.02	0.01	0.5	0.20	0.4	0.1	Chloritic Clast Supported Breccia (HFL)
11	1010	1011	1	0.17	0.07	3.2	0.70	1.0	0.5	Chloritic Clast Supported Breccia (HFL)
11	1011	1012	1	0.01	0.01	0.5	0.54	1.0	0.0	Chloritic Clast Supported Breccia (HFL)
11	1012	1015	3	0.06	0.04	1.2	0.45	0.5	0.2	Chloritic Clast Supported Breccia (HFL)
11	1015	1018	3	0.02	0.01	0.5	0.37	0.5	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1018	1022	4	0.06	0.03	1.2	0.50	1.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1022	1023	1	0.32	0.24	6.6	1.02	1.0	1.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1023	1024	1	0.14	0.05	2.7	0.92	1.0	0.4	Clast Supported Breccia (HFL-PHY) sericite altered

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	1024	1025	1	0.19	0.24	4.3	1.95	2.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1025	1026	1	0.17	0.06	3.9	0.60	1.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1026	1027	1	0.07	0.04	1.5	0.81	1.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1027	1028	1	0.12	0.04	2.5	1.15	2.0	0.4	Clast Supported Breccia (HFL-PHY) sericite altered
11	1028	1029	1	0.07	0.05	1.5	1.26	2.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1029	1030	1	0.05	0.02	1	0.40	0.5	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1030	1031	1	0.73	0.32	15	5.41	8.0	1.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1031	1032	1	0.06	0.05	1.3	1.31	2.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1032	1033	1	0.05	0.02	0.8	0.53	1.0	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1033	1034	1	0.04	0.02	0.8	1.11	2.0	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1034	1035	1	0.03	0.01	0.6	0.36	0.5	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1035	1036	1	0.03	0.01	0.6	0.26	0.5	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1036	1037	1	0.03	0.01	0.5	0.51	1.0	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1037	1038	1	0.11	0.05	2.2	0.73	1.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1038	1039	1	0.40	0.20	9.5	1.45	2.0	1.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1039	1040	1	0.34	0.27	6.5	3.36	5.0	1.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1040	1041	1	0.09	0.06	1.8	0.52	1.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1041	1042	1	0.06	0.02	1.2	0.36	0.5	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1042	1043	1	0.12	0.04	1.2	0.52	1.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1043	1044	1	0.43	0.25	4.5	2.41	3.0	1.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1044	1045	1	0.02	0.01	0.5	0.17	0.3	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1045	1046	1	0.24	0.12	4	1.26	2.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1046	1047	1	0.05	0.03	1	0.98	2.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	1047	1048	1	0.11	0.07	2.3	1.12	2.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1048	1049	1	0.13	0.05	3.2	0.85	1.5	0.4	Clast Supported Breccia (HFL-PHY) sericite altered
11	1049	1050	1	0.25	0.12	6.2	1.54	2.5	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1050	1051	1	0.47	0.15	8.5	2.15	3.0	1.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1051	1052	1	0.72	0.34	14.2	5.63	10.0	2.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1052	1053	1	0.99	0.47	22.5	6.24	10.0	3.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1053	1054	1	0.46	0.20	10.5	4.82	8.0	1.0	Clast Supported Breccia (HFL-PHY) sericite altered
11	1054	1055	1	0.18	0.07	4	1.06	2.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1055	1056	1	0.15	0.05	3.1	0.70	1.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1056	1057	1	0.14	0.05	2.7	1.07	2.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1057	1058	1	0.15	0.06	4.5	1.32	2.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1058	1059	1	0.17	0.05	3.7	0.91	2.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1059	1060	1	0.07	0.02	1.3	0.44	1.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1060	1061	1	0.14	0.09	2.7	1.83	3.0	0.4	Clast Supported Breccia (HFL-PHY) sericite altered
11	1061	1062	1	0.13	0.06	2.7	1.58	3.0	0.4	Clast Supported Breccia (HFL-PHY) sericite altered
11	1062	1063	1	0.22	0.12	4.8	3.64	5.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1063	1064	1	0.07	0.04	1.3	1.73	3.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1064	1065	1	0.11	0.08	2.2	1.50	3.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1065	1066	1	0.22	0.10	3.9	1.80	3.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1066	1067	1	0.11	0.04	2.2	1.16	2.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1067	1068	1	0.17	0.09	3.4	1.98	3.0	0.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1068	1069	1	0.04	0.03	0.7	1.41	2.0	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1069	1070	1	0.07	0.03	1.3	2.46	3.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered

ASX RELEASE

15 August 2022

CAE Hole #	From m	To m	Interval m	Lab Cu %	Lab Au g/t	Lab Ag g/t	Lab Sulphur%	Pyrite Visual %	Chalcopyrit e Visual %	Lithology
11	1070	1071	1	0.13	0.05	2.7	1.42	2.0	0.4	Clast Supported Breccia (HFL-PHY) sericite altered
11	1071	1072	1	0.10	0.08	2	1.53	3.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1072	1073	1	0.06	0.02	1.1	1.17	2.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1073	1074	1	0.12	0.04	2.4	1.34	2.0	0.4	Clast Supported Breccia (HFL-PHY) sericite altered
11	1074	1075	1	0.03	0.01	0.5	0.36	0.5	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1075	1076	1	0.10	0.05	2.9	2.54	5.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1076	1077	1	0.10	0.05	1.9	2.60	5.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1077	1078	1	0.06	0.03	1.3	2.93	5.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1078	1079	1	0.10	0.05	2.3	2.29	3.0	0.3	Clast Supported Breccia (HFL-PHY) sericite altered
11	1079	1080	1	0.03	0.01	0.7	1.02	2.0	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1080	1081	1	0.03	0.02	0.6	1.45	3.0	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1081	1082	1	0.13	0.06	2.4	1.54	3.0	0.4	Clast Supported Breccia (HFL-PHY) sericite altered
11	1082	1083	1	0.06	0.02	0.9	0.97	2.0	0.2	Clast Supported Breccia (HFL-PHY) sericite altered
11	1083	1084	1	0.04	0.02	1	1.13	2.0	0.1	Clast Supported Breccia (HFL-PHY) sericite altered
11	1084	1085	1	0.08	0.02	1.3	0.38	0.5	0.2	Argillized Fault Zone
11	1085	1086	1	0.49	0.33	7.5	2.91	3.0	1.5	Clast Supported Breccia (HFL-PHY) sericite altered
11	1086	1087	1	0.02	0.01	0.5	0.37	0.5	0.0	Argillized Fault Zone
11	1087	1091	4	0.04	0.03	0.85	1.02	1.5	0.0	Altered diorite prophyry
11	1091	1095	4	0.01	0.01	0.5	0.21	0.3	0.0	Post Mineral Andesite Dyke
11	1095	1097	2	0.00	0.01	0.5	0.05	0.1	0.0	Altered diorite porphyry
11	1097	1099.4	2.4	0.04	0.03	0.7	0.54	1.0	0.1	Altered diorite porphyry

15 August 2022

ASX Code: CAE

Appendix 2 Plans & Sections of CAE and Historical Drilling Mt Cannindah

App2,Fig1 . Plan View of Mt Cannindah showing CAE hole traces (blue) in relation to historical holes . Cross Section line incorporates CAE hole 11 .All Assays reported for CAE hole # 11 from 0m to 1099.4m. Drilling completed on CAE hole #12, assays awaited.

15 August 2022

App2,Fig2 . Plan View of Mt Cannindah showing CAE hole traces with down hole Cu assays in relation to historical holes All Assays reported for CAE hole # 11 from 0m to 1099.4m. Drilling completed on CAE hole #12, assays awaited.

15 August 2022

ASX Code: CAE

App2,Fig3 . Plan View of Mt Cannindah showing CAE hole traces with down hole Au assays in relation to historical holes All Assays reported for CAE hole # 11 from 0m to 1099.4m. Drilling completed on CAE hole #12, assays awaited

15 August 2022

ASX Code: CAE

Appendix 3: JORC Table 1. Section 1: Sampling Techniques and Data

Criteria	Explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.) These examples should not be taken as limiting the broad meaning of sampling.Include reference to measures taken to ensure sampling representivity and the appropriate calibration of any measurement tools or systems used.	. Sampling results are based on sawn half core samples of both PQ ,HQ and NQ diameter diamond drill core. An orientation line was marked along all core sections. One side of the core was consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3kg was pulverised to produce a 30g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Half core samples were sawn up on a diamond saw on a metre basis for HQ,NQ diameter core and a 0.5m basis for PQ diameter core. Samples were forwarded to commercial NATA standard laboratories for crushing, splitting and grinding ,Laboratory used in this instance is Intertek Genalysis , Townsville. Analytical sample size was in the order of 2.5kg to 3kg.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.)	Drill type is diamond core. Core diameter at top of hole is PQ, below 30m core diameter is HQ and NQ.Triple tube methodology was deployed for PQ & HQ, which resulted in excellent core recovery throughout the hole.Core was oriented , utilizing an Ace Orientaion equipment and rigorously supervised by on-site geologist.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Core recovery was recorded for all drill runs and documented in a Geotechnical log. The Triple Tube technology and procedure ensured core recoveries were excellent throughout the hole.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Triple tube methodology ensure excellent core recoveries. Core was marked up in metre lengths and reconciled with drillers core blocks. An orientation line was drawn on the core . Core sampling was undertaken by an experienced operator who ensured that half core was sawn up with one side consistently sent for analysis and the other side was consistently retained for archive purposes. The orientation line was consistently preserved.

15 August 2022

Criteria	Explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Core recoveries were good. An unbiased, consistent half core section was submitted for the entire hole, on the basis of continuous 1m sampling. 0.5m in the case of PQ.The entire half core section was crushed at the lab and then split, The representative subsample was then fine ground and a representative unbiased sample was extracted for further analysis.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies	Geological logging was carried out by well- trained/experienced geologist and data entered via a well-developed logging system designed to capture descriptive geology, coded geology and quantifiable geology. All logs were checked for consistency by the Principal Geologist. Data captured through Excel spread sheets and Explorer 3 Relational Data Base Management System. A geotechnical log was prepared.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography.	Logging was qualitative in nature. A detailed log was described on the basis of visual observations. A comprehensive Core photograph catalogue was completed with full core dry, full core wet and half core wet photos taken of all core.
	The total length and percentage of the relevant intersections logged.	I he entire length of all drill holes has been deologically logged.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Half core samples were sawn up on a diamond saw on a metre basis for HQ, NQ diameter core and a 0.5m basis for PQ diameter core
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	All sampling was of diamond core
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The above techniques are considered to be of a high quality, and appropriate for the nature of mineralisation anticipated.
	Quality control procedures adopted for all sub-sampling stages to maximise representativity of samples.	QA/QC protocols were instigated such that they conform to mineral industry standards and are compliant with the JORC code.
		Terra Search's input into the Quality Assurance (QA) process with respect to chemical analysis of mineral exploration diamond core samples includes the addition of both coarse blanks, Certified pulped Blanks, Certified and Internal matrix matched standards to each batch so that checks can be done after they are analysed. As part of the Quality Control (QC) process, Terra Search checks the resultant assay data against known or previously determined assays to determine the quality of the analysed batch of samples. An assessment is made on the data and a report on the quality of the data is compiled.

15 August 2022

Criteria	Explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half	The lab results are checked against visual estimations and PXRF sampling of sludge and coarse crush material.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The standard 2kg -5kg sample is more than appropriate for the grainsize of the rock-types and sulphide grainsize. The sample sizes are considered to be appropriate to represent the style of the mineralisation, the thickness and consistency of the intersections.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	After crushing splitting and grinding at Intertek/Genalysis lab Townsville samples were assayed for gold using the 50g fire assay method The primary assay method used is designed to measure both the total gold in the sample as per classic fire assay. The total amount of economic metals tied up in sulphides and oxides such as Cu, Pb, Zn, Ag, As, Mo, Bi,S is captured by the 4 acid digest method ICP finish. This is regarded as a total digest method and is checked against QA-QC procedures which also emploty these total techniques. Major elements which are present in silicates, such as K, Ca, Fe, Ti, Al, Mg are also digested by the 4 acid digest Total method. The techniques are considered to be entirely appropriate for the porphyry, skarn and vein style deposits in the area. The economically important elements in these deposits are contained in sulphides which is liberated by 4 acid digest, all gold is determined with a classic fire assay.
	For geophysical tools, spectrometers, handheld XRF instruments, etc. the parameters used in determining the analysis including instrument make and model, reading times, calibration factors applied and their derivation, etc.	Magnetic susceptibility measurements utilizing Exploranium KT10 instrument, zeroed between each measurement. No PXRF results are reported here. although PXRF analysis has been utilized to provide multi-element data for the prospect and will be reported separately. The lab pulps are considered more than appropriate samples for this purpose. PXRF Analysis is carried out in an air- conditioned controlled environment in Terra Search offices in Townsville. The instrument used was Terra Search's portable Niton XRF analyser (Niton 'trugeo' analytical mode) analysing for a suite of 40 major and minor elements. in. The PXRF equipment is set up on a bench and the sub-sample (loose powder in a thin clear plastic freezer bag) is placed in a lead-lined stand. An internal detector autocalibrates the portable machine, and

15 August 2022

Criteria	Explanation	Commentary
		Terra Search standard practice is to instigate recalibration of the equipment every 2 to 3 hours. Readings are undertaken for 60 seconds on a circular area of approximately 1cm diameter. A higher number of measurements are taken from the centre of the circle and decreasing outwards. PXRF measures total concentration of particular elements in the sample. Reading of the X-Ray spectra is effected by interferences between different elements. The matrix of the sample eg iron content has to be taken into account when interpreting the spectra. The reliability and accuracy of the PXRF results are checked regularly by reference to known standards. There are some known interferences relevant to particular elements eg W & Au; Th & Bi, Fe & Co. Awareness of these interferences is taken into account when assessing the results.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	 QAQC samples are monitored on a batch- by-batch basis, Terra Search has well established sampling protocols including blanks (both coarse & pulped), certified reference material (CRM standards), and in-house standards which are matrix matched against the samples in the program. Terra Search quality control included determinations on certified OREAS samples and analyses on duplicate samples interspersed at regular intervals through the sample suite of both the commercial laboratory batchStandards were checked and found to be within acceptable tolerances. Laboratory assay results for these quality control samples
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 are within 5% of accepted values. Significant intersections were verified by Terra Search Pty Ltd, geological consultants who geologically supervised the drilling. Validation is checked by comparing assay results with logged mineralogy eg sulphide material in relation to copper and gold gradse.
	The use of twinned holes.	There has been little direct twinning of holes, the hole reported here pass close to earlier drill holes , assay results and geology and assay results are entirely consisted with previous results.
	Documentation of primary data, data entry procedures, data verifications, data storage (physical and electronic) protocols.	P Data is collected by qualified geologists and experienced field assistants and entered into excel spreadsheets.

15 August 2022

Criteria	Explanation	Commentary
		Data is imported into database tables from the Excel spreadsheets with validation checks set on different fields. Data is then checked thoroughly by the Operations Geologist for errors. Accuracy of drilling data is then validated when imported into MapInfo.
		Location and analysis data are then collated into a single Excel spreadsheet. Data is stored on servers in the Consultants office and also with CAE. There have been regular backups and archival copies of the database made. Data is also stored at Terra Search's Townsville Office. Data is validated by long-standing procedures within Excel Spreadsheets and Explorer 3 data base and spatially validated within MapInfo GIS.
	Discuss any adjustment to assay data.	No adjustments are made to the Commercial lab assay data. Data is imported into the database in its original raw format.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Collar location information was originally collected with a Garmin 76 hand held GPS. X-Y accuracy is estimated at 3-5m, whereas height is +/- 10m.Coordinates have been reassessed with DGPS, Accuracy is sub 0.5m in X,Y,Z.
		Down hole surveys were conducted on all holes using a Reflex downhole digital camera . Surveys were generally taken every 30m downhole , dip, magnetic azimuth and magnetic field were recorded.
	Specification of the grid system used.	Coordinate system is UTM Zone 55 (MGA) and datum is GDA94
	Quality and adequacy of topographic control.	Pre-existing DTM is high quality and available.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	At the Mt Cannindah mine area previous drilling program total over 100 deep diamond and Reverse Circulation percussion holes Almost all have been drilled in 25m to 50m spaced fences, from west to east, variously positioned over a strike length of 350m and a cross strike width of at least 500m Down hole sample spacing is in the order of 1m to 2m which is entirely appropriate for the style of the deposit and sampling procedures.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Previous resource estimates on Mt Cannindah include Golders 2008 for Queensland Ores and Helman & Schofield 2012 for Drummond Gold. Both these estimates utilised 25m to 50m fences of west to east drillholes, but expressed concerns regarding confidence in assay continuity both between 50m sections and between holes within the plane of the cross sections. The hole reported here

ASX RELEASE

15 August 2022

Criteria	Explanation	Commentary
		addresses some of the concerns about grade continuity, by linking mineralisation from section to section and also in the plane of the cross sections. Further drilling is necessary to enhance and fine tune the previous Mineral Resource. estimates at Mt Cannindah and lift the category from Inferred to Indicated and Measured and compliant with JORC 2012
	Whether sample compositing has been applied.	No sample compositing has been applied, Most are 0.5m to 1m downhole samples.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The main objective of hole 22CAEDD011, reported here is to explore the northern end of the Mt Cannindah Deposit for high grade copper bearing breccia, where previous interpretations suggested it terminated by disappearing under weakly mineralised diorite. The high grade target is essentially blind in this area , with interesting ,but scattered and discontinuous , copper intercepts present in previous drilling. In contrast to historic drilling in this section of the deposit, CAE # 11 was drilled to the west on a magnetic bearing at the collar of 250 degreees The hole started in diorite and successfully targeted breccia between relatively unmineralized diorite and a hornfels block. The Infill breccia is massive textured , recent interpretation suggests the clasts are slabby and have an imbrication or preferred orientation, that is gently to moderately dipping to the east or north east. The holes drilled from east to west may actually be drilling orthogonal to the layering in the breccia Pre and post mineral dykes cut the drill hole , generally in two orientations , east west, and north south , Many structures and lithological contacts are striking north south, or north north east, dipping east so the westerly drill direction is entirely appropriate. There are some significant sulphide veins and feeders that are east west striking and steeply dipping north or south. As these structures are possibly sheeted veins , they are better targeted with north south holes, which is the planned direction of the next drill hole at Mt Capindab
	If the relationship between drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	The Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is gently to moderately dipping to the east or south east. Many structures and lithological contacts are striking north south, or north north east, dipping east so the westerly drill direction is entirely appropriate. No sampling bias is evident in the logging, or the presentation of results or drill cross and

15 August 2022

ASX Code: CAE

Criteria	Explanation	Commentary
		long sections. Steep structures are evident and with steep inclined holes these are cut at oblique anges. The breccia zone at Mt Cannindah is of sufficient width and depth that drillhole 21CAEDD011 provides valuable unbiased information concerning grade continuity of the breccia body. The complete geometry of the breccia body is unknown at this stage. Similarly, vein structures have several orienations and only in certain instances is it evident that vein orientations have introduced a sampling bias. These are well documented with oriented core. There are some significant sulphide veins and feeders that are east west striking and steeply dipping north or south. As these structures are possibly sheeted veins , they are better targeted with north south holes, which is the planned direction of the next few drill holes at Mt Cannindah. Results of these north south holes may help determine which is the appropriate drill direction for the various structural trends evident at Mt Cannindah. From preliminary investigation of the grade model It is anticipated that there is little overall evidence of any sampling bias in the CAE drilling at Mt Cannindah.
Sample security	The measures taken to ensure sample security.	Chain of custody was managed by Terra Search Pty Ltd. Core trays were freighted in sealed & strapped pallets from Monto were they were dispatched by Terra Search . The core was processed and sawn in Terra Search's Townsville facilities and half core samples were delivered by Terra Search to Intertek/Genalysis laboratory Townsville lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been numerous independent reviews carried out on the Mt Cannindah project. reviewing sampling, data sets, geological controls, the most notable ones are Newcrest circa 1996; Coolgardie Gold1999; Queensland Ores 2008;Metallica ,2008; Drummond Gold, 2011; CAE 2014.

APPENDIX 2 – JORC Code Table 2

Section 2: Reporting of Exploration Results

Mineral tenement and	Type, reference name/number, location	Exploration conducted on MLs 2301,
land tenure status	and ownership including agreements or	2302, 2303, 2304, 2307, 2308, 2309, EPM
	material issues with third parties such as	14524, and EPM 15261. 100% owned by
	joint ventures, partnerships, overriding royalties, native title interests, historical	Cannindah Resources Pty Ltd.
	sites, wilderness or national and	The MLs were acquired in 2002 by
	environmental settings.	Queensland Ores Limited (QOL), a
		precursor company to Cannindah

15 August 2022

		Resources Limited. QOL acquired the Cannindah Mining Leases from the previous owners, Newcrest and MIM, As part of the purchase arrangement a 1.5% net smelter return (NSR) royalty on any production is payable to MIM/Newcrest and will be shared 40% by MIM and 60% by Newcrest. An access agreement with the current landholders in in place.
	The accurity of the tenure hold at the time	No impodimento to operato are known
	of reporting along with any known impediments to obtaining a license to operate in the area.	
Exploration done by other parties	Acknowledgement and appraisal of exploration by other parties.	Previous exploration has been conducted by multiple companies. Data used for evaluating the Mt Cannindah project include : Drilling & geology, surface sampling by MIM (1970 onwards) drilling data Astrik (1987), Drill,Soil, IP & ground magnetics and geology data collected by Newcrest (1994-1996), rock chips collected by Dominion (1992),. Drilling data collected by Coolgardie Gold (1999), Queensland Ores (2008-2011), Planet Metals-Drummond Gold (2011-2013). Since 2014 Terra Search Pty Ltd, Townsville QLD has provided geological consultant support to Cannindah Resources.
Geology	Deposit type, geological setting and style of mineralisation.	Breccia and porphyry intrusive related Cu- Au-Ag-Mo , base metal skarns and shear hosted Au bearing quartz veins occur adjacent to a Cu-Mo porphyry.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception depth Hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	A major drill data base exists for the Mt Cannindah district amounting to over 400 holes. Selected Cu and Au down hole intervals of interest have been listed in CAE's ASX announcement, March,2021.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	No cut-offs have been routinely applied in reporting of the historical drill results or the drillhole 21CAEDD011 reported here.

15 August 2022

Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations be shown in detail	The Cu-Au-Ag breccia style mineralisation at Mt Cannindah is developed over considerable downhole lengths. The breccia is generally mineralised, although copper grade and sulphide content is variable. In addition pre and post mineral dykes and intrusive bodies can mask the mineralisation .Down hole Cu-Au-Ag intercepts have been quoted both as a semi-continuous, aggregated down hole interval and also as tighter higher grade Cu-Au-Ag sections. In addition, historical results have been reported in the aggregated form displayed in the ASX Announcement for CAE , March,2021, many times previously. There are some zones of high grade which can influence the longer intercepts, All results are reported as down hole plots or tabulated with lower grade zones clearly noted. Aggregation of the longer intercepts at Mt Cannindah is advantageous for analysis and comparison of historical and recently collected drill data.
The assumptions used for any reporting of metal equivalent values should be clearly stated.	A copper equivalent has been used to report the wider copper bearing intercepts that carriy Au and Ag credits with copper being dominant. Previous holders have undertaken preliminary metallurgical test work. We have confidence that existing metallurgical processes would recover copper, gold and silver from Mt Cannindah.
	We have confidence that the Mt Cannindah ores are amenable to metallurgical treatments that result in equal recoveries. This confidence is reinforced by some preliminary metallurgical test work by previous holders, geological observations and our geochemical work which established a high correlation between Cu,Au,Ag.
	The full equation for Copper Equivalent is:
	CuEq/% = (Cu/% * 92.50 * CuRecovery + Au/ppm * 56.26 * AuRecovery + Ag/ppm * 0.74 * AgRecovery)/(92.5* CuRecovery)
	When recoveries are equal this reduces to the simplified version:
	CuEq/% = (Cu/% * 92.50 + Au/ppm * 56.26 + Ag/ppm * 0.74)/ 92.5
	We have applied a 30 day average prices in USD for Q4,2021, for Cu, Au, Ag, specifically copper @ USD\$9250/tonne, gold @ USD\$1750/oz and silver @ USD\$23/oz. This equates to USD\$92.50 per 1 wt %Cu in ore, USD\$56.26 per 1

15 August 2022

ASX Code: CAE

ppm gold in ore, USD\$0.74 per 1 ppm silver in ore .As these prices are similar to current Q1-Q2,2022 averages, CAE has maintained these prices in order to allow consistent reporting from 2021 to 2022.

We have conservatively used equal recoveries of 80% for copper, 80% for gold , 80% for Ag and applied to the CuEq calculation.

Relationship between mineralisation widths and intercept lengths The relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its

nature should be reported If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. down hole length, true width not known). 22CAEDD011 reported here is an angled hole, inclined 70 degrees to the west (magnetic azimuth 250 degrees at the drill collar. The hole is collared on diorite and drills into a breccia body which is blind at this surface position.

. The Mt Cannindah Infill breccia is massive textured , recent interpretation suggests the clasts may have an imbrication or preferred orientation, that is relatively flat dipping to the east or south east. If this is the case, the holes drilled vertically or from east to west may be actually be drilling orthogonal to the layering in the breccia.. Pre and post mineral dykes cut the drill hole , generally in two orientations , east west, and north south .

There are some significant sulphide veins and feeders that are east west striking and steeply dipping north or south. The downhole widths in these instances are likely to be at variance with the true thickness of the mineralised structures which could be thin but high grade. The thickness of the feeder structure however not the only determinant is of mineralisation thickness the as mineralisation extends from the vein well into the breccia as infill. Therefore as the breccia geometry is still to be established, the true attitude and thickness of the mineralisation is unknown at this stage. As some of these structures in hole 11 are possibly sheeted veins , they are better targeted with north south holes, which is the planned direction of the next few drill holes at Mt Cannindah. Results of these north south holes may help determine the orientation and true thickness of the various mineralised trends evident in the northern section of Mt Cannindah Breccia. Previous resource estimations at Mt Cannindah model the breccia body as elongated NNE-SSW and at least 100m plus thick in an east west direction. Previous estimations indicate a potentially depth extension to 350m plus.. The breccia body geometry, as modelled at surface has the long axis oriented NNE-

15 August 2022

Diagrams	Annropriate mans and sections (with	SSW. In this context hole 22CAEDD011 drills along the northern boundary of the mineralised envelope interpreted around the breccia body. The potential true width of the body is oriented at an oblique ange to inclined hole 22CAEDD011. However, geological consultants, Terra Search argue that the dimensions of the mineralised body are uncertain , the longest axis could well be plunging to greater depths, and the upper and lower contacts , effectively the hanging and footwall contacts are still to be firmly established. The results of CAE hole 11 confirm that the breccia system is still open down plunge and as an undrilled window to the north. Further investigation is required to establish the geometry of the mineralised breccia body in the north, south and down plunges of the Mt Cannindah deposit.
Diagrams	Appropriate maps and sections (with scale) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	22CAEDD011 reported here, are included in this report.Geological data is still being assembled at the time of this report.
Balanced reporting	where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results.	Ine majority of Cu,Au,Ag assays from the 856m-1099.4m section of hole 22CAEDD011 are listed with this report. In some instances , these have been reported as lithological and geochemical groups or sub-sets. The majority of the upper section of hole 22CAEDD011 from 0m to 856m were reported as 1m assays in CAE ASX Announcement 27/6/2022, 29/7/2022. Significant intercepts of Cu,Au,Ag are tabulated. All holes were sampled over their entire length,Reported intercepts have been aggregated where mineralization extends over significant down hole widths. This aggregation has allowed for the order of 10m-20m of non mineralized late dykes or lower grade breccia sections.to be incorporated within the reported intersections. In general, a lower value of 0.15% CuEq has been utilized for the aggregated results. Wider aggregations have been reported for comparative purposes, in respect of reporting assaying of the mineralized sections which extend over the entire hole length. Aggregated intersections that contain zones of internal waste are clearly identified.
exploration data	material, should be reported including (but not limited to): geological observations; geophysical survey results: geochemical	Cannindah project are reported here. The report concentrates on the Cu,Au, Ag results. Other data, although not material
	survey results; bulk samples – size and method of treatment; metallurgical test	to this update will be collected and reported in due course.

15 August 2022

ASX Code: CAE

	results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g. test for lateral extensions or depth extensions or large-scale step-out drilling).	Drill targets are identified and further drilling is required. Drilling has continued after the completion of hole 22CAEDD011 which has drilled on to a final depth of 1099.4m Hole 2CAEDD012 targets the northern potential of the deposit and drills with a northerly azimuth, right angles to hole 11. CAE hole # 12 is complete , assay results are awaited. Hole 13 is drilling at the southern end of the main Cannindah breccia. Futher drilling is planned at Mt Cannindah Breccia.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Not yet determined, further work is being conducted.

APPENDIX 4– JORC Code Table 2

Section 3: Estimation and Reporting of Mineral Resources

Audits or Review	The results of audits and reviews of any ore resource Estimates.	There have been several resource estimations made over the various deposits at Mt Cannindah. These have been in the public domain for a number of years.
		The most recent resource statement by by Hellman & Schofield in 2011 is for Drummond Gold on the resource at Mt Cannindah itself. This was reported under the JORC 2004 code and has not been updated to comply with JORC 2012 on the basis that the information has not materially changed since it was last reported.