

DRILLING EXTENDS MATILDA AT DEPTH

• Deep step-out drilling at Matilda proves additional 250m depth continuity, deepest drilling at the project:

- 2m @ 6.98 g/t from 419m incl 1m @ 11.8 g/t from 419m (MARD0470) M1
- Successful extensions to higher grade shoots at M3, M4 & M10 pits:
 - o 4m @ 7.94 g/t from 69m and 3m @ 9.44 g/t from 104m (MARC0433) M10
 - 4m @ 5.75 g/t from 6m (MARC0439) M10
- 5m @ 2.94 g/t from 37m and 2m @ 6.35 g/t from 82m (MARC0435) M10
- 9m @ 3.05 g/t from 133m, incl 2m @ 6.57 g/t from 137m (MARC0469) M3
- 16m @ 2.31 g/t from 163m, incl 1m @ 11.5 g/t from 163m (MARC0465) M4
- M6 extensions confirm mining potential of new resource area
 - 12m @ 2.98 g/t from 42m (EOH) (MARC0459) M6
- District-scale exploration for Matilda-sized (~1Moz) deposits underway

Blackham Resources Ltd **(ASX: BLK) ("Blackham")** is pleased to announce the latest results from resource infill and extension drilling at the Matilda Gold Project in Western Australia. The latest of 60 RC holes for 6,579m and 2 diamond tails for 347.4m, have intersected significant extensions to higher-grade zones and have upgraded a significant portion of the remaining in-pit Inferred resource to Indicated category (refer to ASX release 17th June 2016).

Deeper drilling results, including **2m @ 6.98 g/t from 419m**, confirm the high-grade Matilda mineralised system extends a further 250m down-plunge of previous high-grade drill intercepts, and remains open down plunge. High-grade mineralisation is now known to extend to greater than 400m vertical depth.

Successful drilling of the Matilda Mine has grown the resource to **13.1Mt** @ **1.7** g/t for **721,000oz Au**, (ASX release 17th June 2016) with 61% now in the Measured and Indicated Resource categories (**8.0Mt** @ **1.8g/t** for 460,000oz Au). A resource model update is underway to include these results.

The Matilda Mine is 19km by existing haul roads from the Wiluna gold plant and will provide the base load open pit feed the plant has not had since the early 1990's. The Matilda mineralisation is soft, deeply weathered oxide ore with a number of stacked lodes that often repeat along strike and down plunge.

Blackham's district-scale exploration strategy is well advanced, with an Induced Polarisation geophysical survey underway targeting 10kms of prospective strike along the Matilda shear zone.

BOARD OF DIRECTORS

Milan Jerkovic (Non-Executive Chairman) Bryan Dixon (Managing Director) Alan Thom (Executive Director) Greg Miles (Non-Executive Director) Peter Rozenauers (Non-Executive Director)

ASX CODE BLK

CORPORATE INFORMATION 255.3M Ordinary Shares 33.8M Unlisted Options 6.5M Performance Rights

www.blackhamresources.com.au

E: info@blackhamresources.com.au

P: +61 8 9322 6418 F: +61 8 9322 6398

ABN: 18 119 887 606

PRINCIPAL AND REGISTERED OFFICE Blackham Resources Ltd L2, 38 Richardson Street West Perth WA 6005

POSTAL ADDRESS PO Box 1412 West Perth WA 6872

High grades intersected in deep exploratory drilling

High-grade results have been received for three deep RC and diamond holes drilled to locate down-plunge extensions to M1 deposit, which may be amenable to underground mining. MARD0470 has extended high-grade mineralisation a further 250m down plunge from previous drilling with an intercept of **2m @ 6.98 g/t** from 419m, including **1m @ 11.8g/t** from 419m (Figure 1).

Previously, Matilda deposits had been tested to only 300m below surface; these results demonstrate that Matilda is a large mineralised system which remains open at depth and, significantly, shows longer term potential for underground mining. Follow up drilling is planned to test the plunging shoots at depth.

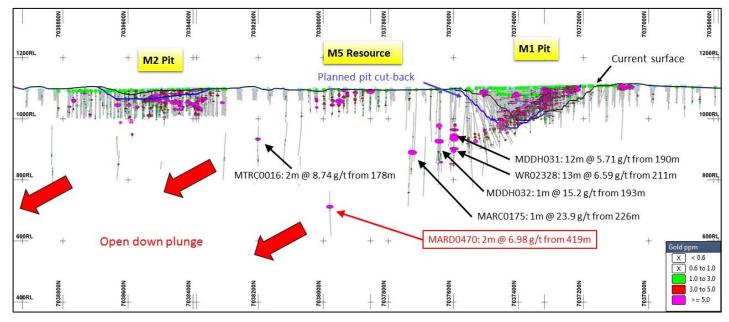


Figure 1 Long section looking east through Matilda showing high-grade zones extending a further 250m down-plunge of M1.

MARD0468 and MARC0469 targeted down-plunge extensions of the M4, M3 and M5 orebodies. MARC0469 intersected **5m @ 2.59 g/t** from 81m and **9m @ 3.05 g/t** from 133m incl. **2m @ 6.57 g/t** from 137m along strike from M3 mineralisation, which may fall within a larger open-pit cutback. Follow-up drilling is planned.

Intercepts from all holes drilled as part of this program are given in Table 1.

Shallow higher grades intersected at M6 North

Initial results from the M6 North shoot, as reported to the ASX on 22nd February and 11th April 2016, included:

С	20m @ 1.81 g/t from 22m	(MARC0334)
С	7m @ 4.71 g/t from 42m incl. 2m @ 11.9 g/t from 44m	(MARC0325)
С	5m @ 4.04 g/t from 15m	(MARC0324)
С	6m @ 3.28 g/t from 74m	(MARC0406)
С	7m @ 4.21 g/t from 69m incl. 2m @ 7.56 g/t from 73m	(MARC0408)
С	4m @ 4.20 g/t from 73m	(MARC0411)

Follow-up drilling during the current program has yielded a best intercept of **12m @ 2.98 g/t** from 44m (end of hole) in MARC0459, adjacent to the historical M6 pit (Figure 2). M6 North prospect has now been drilled to 50m vertical depth to a spacing that has the potential to yield Inferred and Indicated resources.

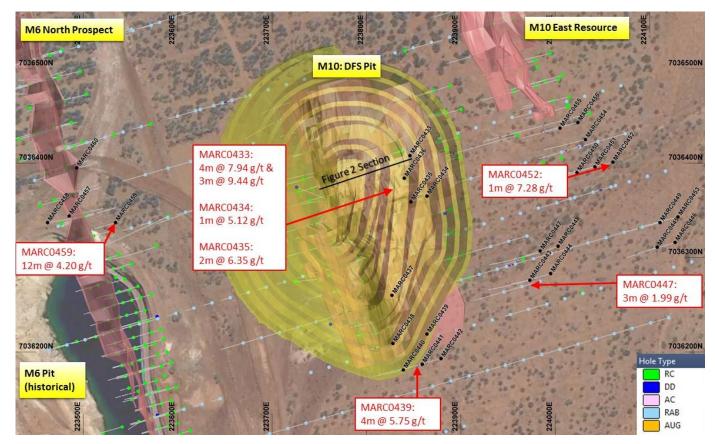


Figure 2. M6 and M10 plan view of drill hole locations and significant intercepts.

Exploratory drilling of historical RAB anomalies along the M10 East structure returned generally low tenor results, with better results including MARC0452: **1m @ 7.28 g/t** from 52m and MARC0447: 3m @ 1.99 g/t from 42m (Figure 2).

Matilda District Exploration

Blackham's exploration strategy is to test the full 10km-long strike extent of the Matilda shear zone to identify further Matilda-sized deposits (~1Moz). Historical drilling intercepts up to 4km along strike from the mine include **4m @ 13.9g/t** and **6m @ 13.9g/t** (Figure 3). To assist with target definition, a gradient array and dipole-dipole IP geophysical survey has commenced at Matilda to detect sulphides beneath alluvial cover north and south of the mine. Preliminary results suggest that the M6 mineralisation continues at depth to the north of the previously mined M6 pit and that there may be additional mineralised structures to the west of M6 which are yet to be drill tested. Final results and modelling of the IP data are expected in August.

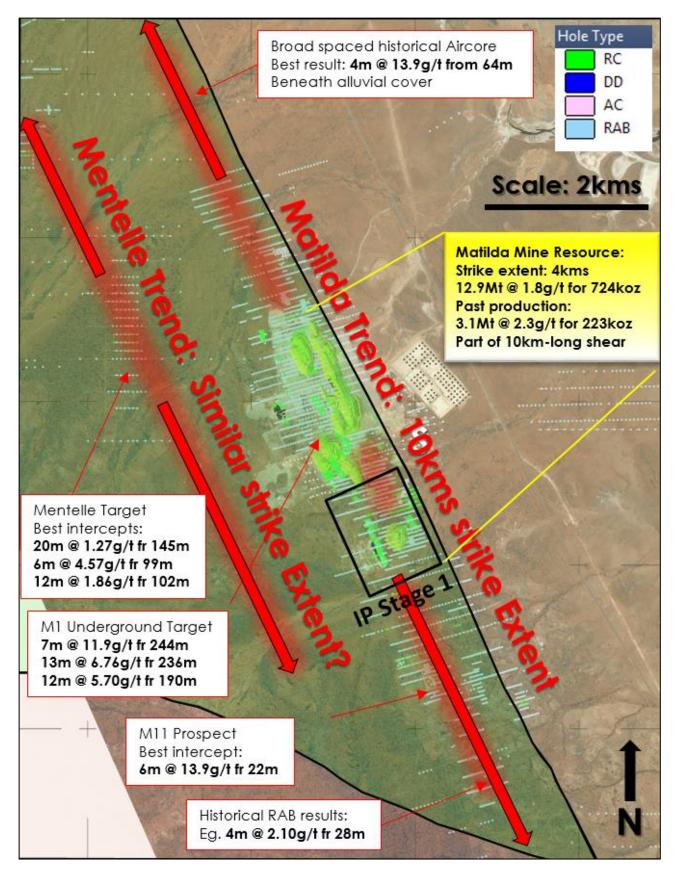


Figure 3 Matilda district-scale targets with historical intercepts along 10km of strike on the Matilda Trend.

Table 1 Matilda significant assays

Hole ID	Prospect	East	North	RL	EOH (m)	Azi	Dip	Fro m	То	Downhole Thickness (m)	Au g/t	True Thickness (m)
MARC0362	Thunder	222988	7038590	1090	156	254	-60	84	86	2	0.96	1.3
								147	155	8	1.71	5.3
							incl	152	153	1	6.16	0.7
MARC0387	Scorchers	223286	7037582	1106	96	254	-80	80	81	1	1.93	0.7
								89	90	1	1.41	0.7
MARC0388	Scorchers	223286	7037582	1106	75	254	-60	NSI				
MARC0415	Iceberg 2	222861	7038759	1085	135	254	-60	32	36	4	1.03	2.7
								90	91	1	3.24	0.7
								106	115	9	1.27	6
								118	121	3	1.28	2
MARC0416	Iceberg 2	222849	7038788	1085	132	254	-60	64	66	2	0.9	1.3
								110	111	1	3.43	0.7
								115	120	5	1.45	3.3
MARC0417	Iceberg 2	222821	7038800	1085	110	254	-50	41	43	2	1.02	1.3
								49	52	3	1.41	2
								69	76	7	0.66	4.7
MARC0418	Iceberg 2	222827	7038802	1085	138	254	-60	95	99	4	0.78	2.7
MARC0419	Hurricanes	222814	7038829	1085	80	254	-60	NSI				
MARC0420	Hurricanes	222790	7038847	1086	60	254	-50	45	49	4	0.71	2.7
								59	60	1	2.72	0.7
MARC0421	Hurricanes	222809	7038875	1085	72	254	-60	NSI				
MARC0422	Hurricanes	222800	7038932	1085	80	254	-60	26	29	3	0.7	2
								40	41	1	2.54	0.7
MARC0423	Hurricanes	222791	7038979	1085	110	254	-60	0	1	1	1.58	0.7
								46	49	3	1.06	2
MARC0424	Hurricanes	222732	7038982	1087	66	254	-60	NSI				
MARC0425	Hurricanes	222748	7038988	1086	78	254	-60	34	39	5	2.51	3.3
MARC0426	Hurricanes	222766	7038993	1086	84	254	-60	13	14	1	2.51	0.7
								77	79	2	0.77	1.3
MARC0427	Hurricanes	222785	7038998	1086	80	254	-60	19	20	1	3.34	0.7
								61	62	1	5.83	0.7
			7000010	400-				66	68	2	1.06	1.3
MARC0428	Hurricanes	222739	7039016	1087	70	254	-60	NSI				
MARC0429	Hurricanes	222757	7039021	1086	90	254	-60	38	40	2	1.06	1.3
MARC0430	Hurricanes	222757	7038886	1089	54	0	-90	5	8	3	0.9	2
MADOOLOG	These	222025	7020607	1005	0.4	254	60	51	54	3	1.31	2
MARC0431	Thunder	222925	7038697	1085	84	254	-60	NSI	E 0		4.24	2.2
MARC0432	Thunder	222964	7038708	1085	100	254	-60	48	53	5	1.34	3.3
MARC0433	M10	223846	7036408	1096	126	254	-60	25	28	3	1.14	2
								33	37	4	1.01	2.7
								45	47	2	1.49	1.3
								57	64	7	2.07	4.7
							incl	62	63	1	5.29	0.7

								69	73	4	7.94	2.7
							incl	71	72	1	25	0.7
								104	107	3	9.44	2
							incl	105	106	1	26.1	0.7
MARC0434	M10	223840	7036384	1096	144	254	-60	52	53	1	1.33	0.7
								63	65	2	0.9	1.3
								72	77	5	1.77	3.3
							incl	76	77	1	5.12	0.7
								101	102	1	2.84	0.7
MARC0435	M10	223847	7036359	1096	140	254	-60	37	42	5	2.94	3.3
							incl	40	41	1	7.25	0.7
								45	46	1	1.37	0.7
								66	68	2	1.87	1.3
								82	84	2	6.35	1.3
							incl	83	84	1	8.91	0.7
MARC0436	M10	223864	7036365	1095	150	254	-60	45	48	3	1.23	2
								100	102	2	0.96	1.3
MARC0437	M10	223827	7036260	1095	96	254	-60	NSI				
MARC0438	M10	223828	7036209	1094	84	254	-60	29	33	4	1.82	2.7
								39	41	2	0.68	1.3
MARC0439	M10	223864	7036219	1095	110	254	-60	6	10	4	5.75	2.7
							incl	8	9	1	16.25	0.7
								44	45	1	1.35	0.7
								58	59	1	1.78	0.7
MARC0440	M10	223839	7036181	1096	70	254	-60	4	7	3	0.63	2
								55	56	1	3.77	0.7
MARC0441	M10	223859	7036187	1096	96	254	-60	7	9	2	0.71	1.3
								38	41	3	1.39	2
								53	55	2	0.85	1.3
								62	64	2	1.6	1.3
MARC0442	M10	223879	7036193	1096	110	254	-60	105	106	1	1.2	0.7
MARC0443	M10 East	223973	7036276	1094	90	254	-60	NSI				
MARC0444	M10 East	223995	7036283	1094	90	254	-60	49	50	1	3.21	0.7
MARC0445	M10 East	224108	7036311	1093	70	254	-60	46	48	2	1.43	1.3
MARC0446	M10 East	224127	7036316	1093	85	254	-60	76	77	1	1.73	0.7
MARC0447	M10 East	223984	7036307	1094	108	254	-60	32	36	4	0.66	2.7
								42	45	3	1.99	2
								53	54	1	2.1	0.7
MARC0448	M10 East	224003	7036312	1094	100	254	-60	NSI				
MARC0449	M10 East	224111	7036337	1093	90	254	-60	NSI				
MARC0450	M10 East	224023	7036390	1094	108	254	-60	NSI				
MARC0451	M10 East	224042	7036396	1093	108	254	-60	NSI				
MARC0452	M10 East	224061	7036401	1093	100	254	-60	52	53	1	7.28	0.7
MARC0453	M10 East	224130	7036343	1093	85	254	-60	43	47	4	0.64	2.7
								56	59	3	0.77	2
MARC0454	M10 East	224032	7036425	1093	90	254	-60	NSI				

IndicaseIndicas	MARC0455	M10 East	224005	7036437	1094	84	254	-60	NSI				
MARC0457M6 North22348570363311037574608585118.739.73MARC0458M6 North22346270363311037074607978738.739.7373MARC0459M6 North22353703639110360746078<													
MARC048M6 North2346270363311037070706069721306161MARC049M6 North223347036331102502542503542543543202393103MARC040M6 North22343703635110310070 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>26</th> <th>1</th> <th>2 72</th> <th>0.7</th>										26	1	2 72	0.7
MARC049M6 North2233807083710254545536320.120.2986.MARC040M6 North23490708395103666677													
Independence </th <th></th>													
Image in the set of the set	IVIARC0459		223534	/03033/	1102	54	254	-50					
MARC040M6 North223.93703.03931.013.07.08.0N.18.01.012.480.7MARC042Scorcher223.28703.76171.005.02.546.0N.17.07.07.07.0MARC043Scorcher223.28703.75171.019.02.546.0N.17.07.07.07.0MARC044Scorcher223.28703.7531.089.02.546.0N.17.07.07.07.0MARC045Scorcher223.28703.7531.081.022.546.0N.17.07.07.07.07.0MARC046Scorcher223.05703.7531.081.022.546.0N.17.0 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>· · · · ·</th><th></th><th></th><th></th><th></th><th></th></th<>								· · · · ·					
MARC0461Scorchers223214703761410940254603.412.4870.77MARC0462Scorchers2232870375110109025460NSI58602.4.751.3.3MARC0463Scorchers2232870375911088425460NSI59909061.18.30.7MARC0463Scorchers2232870375911088425460NSI501.04.110.7MARC0463Scorchers223057038791081802.5460NSI500.01.64.110.7MARC0463Scorchers223057038791081.01.21.0<			222402	7026205	1102	26	74			46	2	5.32	1
MARC0462Scorchers223228703763111005025460NSIF.I.I.MARC0463Scorchers22328870375311101902546015860251.586.71.33MARC0464Scorchers2232957037537110884254601801501708.336.7MARC0465Thunder2230570384791089192254601801611.10.7MARC0465Thunder22305703847910891021201601601611611.10.7MARC046Thunder22305703847910891021611631611.10.7MARC046Thunder1701													
MARC0468Scorchers22328870375311101902548058602.24.7.51.3.3MARC0464Scorchers223295703755911088425460NSIIINMARC0465Thunder2230370384791089192254609.03.01.0.14.1.10.7MARC0465Thunder2230370384791089192254609.03.01.0.14.1.10.7MARC0465Thunder2230370384791089192254609.03.01.0.13.1.12.0MARC0466Thunder23037038701081.01.01.0.1<										4	1	2.48	0.7
Image of the sector of the s													
MARC0464Scorchers223295703755911088425460N5IIIIIMARC0455Thunder223035703847910891222546029301.14.110.7MARC0465Thunder22303570384791089128128808111.50.7IIIIIIIIIII1.50.7IIIIIIIIIIIII0.7III <td< th=""><th>MARC0463</th><th>Scorchers</th><th>223288</th><th>7037531</th><th>1101</th><th>90</th><th>254</th><th>-80</th><th>58</th><th></th><th></th><th></th><th></th></td<>	MARC0463	Scorchers	223288	7037531	1101	90	254	-80	58				
MARC0465Thunder22303703847910891922546.029301.14.110.7III								incl	59	59	1	8.3	0.7
Image	MARC0464	Scorchers	223295	7037559	1108	84	254	-60	NSI				
Image	MARC0465	Thunder	223035	7038479	1089	192	254	-60	29	30	1	4.11	0.7
Image									80	81	1	1.5	0.7
Image									128	131	3	3.1	2
Image: space of the space of								incl	128	129	1	5.34	0.7
Image: series of the series									134	135	1	1.63	0.7
MARC0466Thunder223036703850510901152546005456121.41.3MARC0467Thunder2229797038500108710024602729206.021.241.3MARC0467Thunder22297970385001087100254602729206.021.3MARC0467Thunder22297970385010871001002120286027281.01.00.7MARC0468InderInderInderInderInderInderInder1.00.70.71.00.70.7MARC0469Ma Ext230907038515109060.829601311322.01.421.30.7MARC0469M4 Ext223097038515109060.82.01.01301400.70.71.440.70.70.71.440.7									163	179	16	2.31	10.7
MARC0467Thunder222979703856010871602546002729206.021.3MARC0467Thunder222979703856010871602546.027281.110.750.7Image: 1000 1000 1000 1000 1000 1000 1000 10								incl	163	164	1	11.5	0.7
MARC0467Thunder222979703856010871602546002729206.021.13Image 1Image 1 </th <th>MARC0466</th> <th>Thunder</th> <th>223036</th> <th>7038505</th> <th>1090</th> <th>115</th> <th>254</th> <th>-60</th> <th>54</th> <th>56</th> <th>2</th> <th>1.4</th> <th>1.3</th>	MARC0466	Thunder	223036	7038505	1090	115	254	-60	54	56	2	1.4	1.3
Image: series of the series									99	101	2	1.24	1.3
Image: state in the state in	MARC0467	Thunder	222979	7038560	1087	160	254	-60	27	29	2	6.02	1.3
Image: series of the series								incl	27	28	1	10.75	0.7
MARD0468M4 Ext22309070385151090603.82496001355141661.464MARC0469M4 Ext22309070385151090603.824960019119211.01.440.7MARC0469M3 Ext2229737038091109051625170818605502.593.33MARC0469M3 Ext22297370380911090516251708131429.03.056.0MARC0469M3 Ext22297370380911090516251708131429.03.056.0MARC0469M3 Ext22293703809110905162.511011331429.03.056.0MARC0470M3 Ext2229370380681092531.62.50167138410221.441.33MARD0470M3 Ext22298370380681092531.62.501677984551.123.33MARD0470M3 Ext22298370380681092531.62.5016779841.351.441.33MARD0470M3 Ext22298370380681092531.62.501671581.351.442.0MARD0470M3 Ext2298370380681092531.62.501.551.581.351.342.01.35MARD0470M3 Ext<									52	56	4	1.16	2.7
MARD0468M4 Ext22309070385151090603.8249-6019119211.411.440.7MARD0468M4 Ext22309070385151090IcIcIc21622040.972.7MARC0469M3 Ext22297370380911090516251-708186552.593.3MARC0469M3 Ext22297370380911090516251-708186552.593.3MARC0469M3 Ext22297370380911090516251incl133142993.056.0MARC0470M3 Ext22298370380681092531.62506.777984531.123.33MARD0470M3 Ext22298370380681092531.62506.767984531.123.33MARD0470M3 Ext22298370380681092531.62506.777984531.123.34MARD0470M3 Ext2298370380681092531.62506.767984531.123.34MARD0470M3 Ext2298370380681092531.62506.767984531.342.00MARD0470M3 Ext2298370380681092531.62501.561.321.343.342.00Mardo141240240 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>130</th><th>132</th><th>2</th><th>1.42</th><th>1.3</th></t<>									130	132	2	1.42	1.3
MARC0469M3 Ext2229737038091109051625170818652.93.053.3MARC0469M3 Ext22297370380911090516251-708186552.593.3MARC0469M3 Ext22297370380911090516251-708186552.593.3MARC0470M3 Ext22298AInclIncl1371391206.571.3MARD0470M3 Ext22298370380681092531.62.506.671.441.3MARD0470M3 Ext22298370380681092531.62.501.561.383.31.423.3MARD0470M3 Ext2208370380681.092531.62.506.671.441.33.3MARD0470M3 Ext2208370380681.092531.62.506.671.441.33.3MARD0470M3 Ext22.98370380681.092531.62.506.671.441.33.3<									135	141	6	1.46	4
MARC0469M3 Ext22297370380911090516251-708186552.593.3Image: Image: Ima	MARD0468	M4 Ext	223090	7038515	1090	603.8	249	-60	191	192	1	1.44	0.7
Image: state in the state									216	220	4	0.97	2.7
And ComparisonAnd <b< th=""><th>MARC0469</th><th>M3 Ext</th><th>222973</th><th>7038091</th><th>1090</th><th>516</th><th>251</th><th>-70</th><th>81</th><th>86</th><th>5</th><th>2.59</th><th>3.3</th></b<>	MARC0469	M3 Ext	222973	7038091	1090	516	251	-70	81	86	5	2.59	3.3
MARD0470 M3 Ext 222983 7038068 1092 531.6 250 677 798 844 531.6 1.12 3.33 MARD0470 M3 Ext 222983 7038068 1092 531.6 250 677 79 844 5 1.12 3.33 MARD0470 M3 Ext 222983 7038068 1092 531.6 250 677 79 844 5 1.12 3.33 Image: Marcon									133	142	9	3.05	6.0
MARD0470 M3 Ext 222983 7038068 1092 531.6 250 67 79 84 55 1.12 3.3 Image: I								incl	137	139	2	6.57	1.3
Image: Constraint of the straint of the str									408	410	2	1.44	1.3
Image: Constraint of the state of	MARD0470	M3 Ext	222983	7038068	1092	531.6	250	-67	79	84	5	1.12	3.3
Image: Constraint of the state of									135	138	3	1.34	2.0
Image: state stat									156	158		0.59	1.3
Image: Constraint of the state of the s									416	428			8.0
Image: Constraint of the second sec								incl	419				
								incl	419				
MARC0471 M4 222772 7038974 1086.3 80 255 -60 16 19 3 1.02 2.0	MARC0471	M4	222772	7038974	1086.3	80	255	-60					

* Grid is GDA_94 Z51S. Intercepts are calculated using a minimum 0.6g/t, minimum 1.2 gram x metres, maximum 2m internal dilution. NSI = No significant intercept. MARC = RC holes, MARD = RC collar with DD tail.

The Matilda Mine mineral resource now stands at **13.1Mt** @ **1.7** g/t for **721,000oz Au**, (ASX release 17th June 2016) with 61% now in the Measured and Indicated Resource categories (i.e. **8.0Mt** @ **1.8g/t** for **460,000oz Au**). The Matilda Mining Centre is intended as a base load feed of soft oxide ore for up to 1.7Mtpa through the Wiluna gold plant.

For further information on Blackham please contact:

Bryan Dixon	Tony Dawe
Managing Director	Professional Public Relations
Blackham Resources Limited	Office: +618 9388 0944
Office: +618 9322 6418	

Gold Resources

The Matilda Gold Project has an updated Mineral Resource of **48Mt** @ **3.3g/t for 5.1Moz** (48% indicated) all within a 20 kilometres radius of Blackham's 100% owned Wiluna gold plant capable of processing up to 1.7Mtpa for over 100,000ozpa gold production (refer to BLK ASX release dated 17th June 2016). Measured and Indicated Resources now total **22Mt** @ **3.4g/t for 2.4Moz**.

			Matilda	Gold Pr	oject Res	ource Su	mmary					
Mining Centre		Measure	d		Indicated	d		Inferred			Total 100	%
Mining Cenile	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au
Matilda Mine	0.2	2.1	13	7.8	1.8	447	5.1	1.6	261	13.1	1.7	721
Golden Age				0.4	4.5	51	0.9	3.7	107	1.3	3.8	158
Galaxy				0.4	3.1	42	0.4	2.2	25	0.8	2.7	68
Williamson Mine				3.3	1.6	170	3.8	1.6	190	7.1	1.6	360
Regent				0.7	2.7	61	3.1	2.1	210	3.8	2.2	271
Bulletin Upper				0.9	4.2	120	0.7	5.5	130	1.6	4.8	250
Henry 5 - Woodley - Bulletin Deeps				2.1	5.9	400	0.8	4.6	120	2.9	5.6	520
Happy Jack - Creek Shear Upper				0.1	2.2	7	0.4	3.2	46	0.5	3.0	53
Happy Jack - Creek Shear Lower				1.5	5.9	290	1.3	4.8	200	2.9	5.4	490
East Lode				1.0	5.2	170	2.3	4.7	340	3.3	4.8	510
West Lode				1.4	5.5	240	2.8	5.2	460	4.2	5.3	700
Burgundy - Calais				1.3	6.0	250	0.3	5.7	60	1.6	6.0	310
Moonlight Shear				0.3	3.6	36	2.3	4.7	345	2.6	4.6	381
Other Wiluna Deposits				1.1	4.4	152	1.4	3.5	153	2.5	3.9	305
Total	0.2	2.1	13	22	3.4	2,436	26	3.2	2,647	48	3.3	5,097

Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location shape and continuity of the occurrence and on the available sampling results. The figures in the above table are rounded to two significant figures to reflect the relative uncertainty of the estimate.

Competent Persons Statement

The information contained in the report that relates to Exploration Targets and Exploration Results at the Matilda Gold Project is based on information compiled or reviewed by Mr Bruce Kendall, who is a full-time employee of the Company. Mr Kendall is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Kendall has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information contained in the report that relates to all other Mineral Resources is based on information compiled or reviewed by Mr Marcus Osiejak, who is a full-time employee of the Company. Mr Osiejak, is a Member of the Australian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Osiejak has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears. With regard to the Matilda Gold Project Mineral Resources, the Company is not aware of any new information or data that materially affects the information included in this report and that all material assumptions and parameters underpinning Mineral Resource Estimates as reported in the market announcement dated 17th June 2016 continue to apply and have not materially changed.

Forward Looking Statements

This announcement includes certain statements that may be deemed 'forward-looking statements'. All statements that refer to any future production, resources or reserves, exploration results and events or production that Blackham Resources Ltd ('Blackham' or 'the Company') expects to occur are forward-looking statements. Although the Company believes that the expectations in those forward-looking statements are based upon reasonable assumptions, such statements are not a guarantee of future performance and actual results or developments may differ materially from the outcomes. This may be due to several factors, including market prices, exploration and exploitation success, and the continued availability of capital and financing, plus general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance, and actual results or performance may differ materially from those projected in the forward-looking statements. The Company does not assume any obligation to update or revise its forward-looking statements, whether as a result of new information, future events or otherwise.

APPENDIX A - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Matilda data represents a portion of a large drilling database compiled since the 1980's by various project owners. Historically (pre-Blackham Resources), drill samples were taken at predominantly 1m intervals in RC holes, or as 2m or 4m composites in AC holes. Historical core sampling is at various intervals so it appears that sampling was based on geological observations at intervals determined by the logging geologist. Blackham Resources has used i) reverse circulation drilling to obtain 1m samples from which ~3kg samples were collected using a cone splitter connected to the rig, and ii) both PQ core with ¼ core sampling and HQ3 core with ¼ core sampling. Blackham's sampling procedures are in line with standard industry practice to ensure sample representivity. Core samples are routinely taken from the right-hand-side of the cut line. For Blackham's RC and AC drilling, the drill rig (and cone splitter) is always jacked up so that it is level with the earth to ensure even splitting of the sample. It is assumed that previous owners of the project had procedures in place in line with standard industry practice to ensure sample representivity. At the laboratory, samples >3kg were 50:50 riffle split to become <3kg. The <3kg splits were crushed to <2mm in a Boyd crusher and pulverized via LM5 to 90% passing 75µm to produce a 50g charge for fire assay. Historical assays were obtained using either aqua regia digest or fire assay, with AAS readings. Blackham Resources analysed samples using ALS and SGS laboratories in Perth. Analytical method was Fire Assay with a 50g charge and AAS finish. Historically, gold analyses were obtained using industry standard methods; split samples were pulverized in an LM5 bowl to produce a 50g charge for assay by Fire Assay or Aqua Regia with AAS finish at the Wiluna Mine site laboratory.

Drilling techniques	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is	Blackham data reported herein is RC 5.5" diameter holes. Downhole surveys are taken every ~5 or 10m using a gyro tool for RC drilling, and every 30m downhole using a Reflex Electronic single shot tool for AC drilling. Historical drilling data contained in this report includes RC, AC and DD core samples. RC sampling utilized face-sampling hammer of 4.5" to 5.5" diameter, RAB sampling utilized open-hole blade or hammer sampling, and DD sampling utilized NQ2 half core samples. It is unknown if core was orientated, though it is not material to this report. All Blackham RC drilling used a face-sampling bit.
Drill sample recovery	 sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	For Blackham RC drilling, chip sample recovery is visually estimated by volume for each 1m bulk sample bag, and recorded digitally in the sample database. For DD drilling, recovery is measured by the drillers and Blackham geotechnicians and recorded into the digital database. Recoveries were typically 100% except for the non-mineralised upper 3 or 4m. For historical drilling, recovery data for drill holes contained in this report has not been located or assessed, owing to incomplete data records. Database compilation is ongoing. RC drilling, sample recovery is maximized by pulling back the drill hammer and blowing the entire sample through the rod string at the end of each metre. Where composite samples are taken, the sample spear is inserted diagonally through the sample bag from top to bottom to ensure a full cross-section of the sample is collected. To minimize contamination and ensure an even split, the cone splitter is cleaned with compressed air at the end of each rod, and the cyclone is cleaned every 50m and at the end of hole, and more often when wet samples are encountered. Historical practices are not known, though it is assumed similar industry-standard procedures were adopted by each operator. For historical drilling with dry samples it is unknown what methods were used to ensure sample recovery, though it is assumed that industry-standard protocols were used to maximize the representative nature of the samples, including dust-suppression and rod pull-back after each drilled interval. For wet samples, it is noted these were collected in polyweave bags to allow excess water to escape; this is standard practice though can lead to biased loss of sample material into the suspended fine sample fraction. For DD drilling, sample recovery is maximised by the use of short drill runs (typically 1.5m) and triple tube splits for HQ3 drilling. For Blackham drilling, no such relationship was evaluated as sample recoveries were generally excellent.
Logging	geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical	Drill samples have been logged for geology, alteration, mineralisation, weathering, and other features to a level of detail considered appropriate for geological and resource modelling. Logging of geology and colour for example are interpretative and qualitative, whereas logging of mineral percentages is quantitative. All holes were logged in full.

Sub-sampling	• If core, whether cut or sawn and whether	• RC sampling with cone splitting, and 4m scoop composites compiled from individual 1m samples.
techniques and sample preparation	 quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Sampling with cone splitting, dut with storge composites complete from individual 1m sumplex. Sampling is RC. Mention is made in historical reports of 1m and 2m or 4m composites for Asarco drilling For Blackham drilling, 1m RC samples were split using a cone splitter. Most samples were dry; th moisture content data was logged and digitally captured. Where it proved impossible to maintain dr samples, at most three consecutive wet samples were obtained before drilling was abandoned, as per procedure. AC samples were 4m composites; holes were abandoned when >3 consecutive wet sample were received to minimise sample contamination. RC sampling with riffle or cone splitting and spear compositing is considered standard industry practice. Boyd <2mm crushing and splitting is considered to be standard industry practice; each sample particl has an equal chance of entering the split chute. At the laboratory, >3kg samples are split so they can f into a LMS pulveriser bowl. At the laboratory, >3kg samples are split 50:50 using a riffle splitter so the can fit into a LMS pulveriser bowl. Field duplicates were collected approximately every 40m down hole for Blackham holes. Analysis or results indicated good correlation between primary and duplicate samples. RC duplicates are taken usin the secondary sample chute on the cone splitter. AC duplicates were scooped in the field. It is not clear how the historical field duplicates were taken for RC drilling. Sample sizes are considered appropriate for these rock types and style of mineralisation, and are in lin with standard industry practice.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Blackham's significant intercepts have been verified by several company personnel, including the database manager and exploration manager. Twinned holes are not reported herein, though Blackham has recently completed twin RC-DD holes and results will be analysed fully in coming resource estimation work. Drilling has been designed at different orientations, to help correctly model the mineralisation orientation. Data is stored in Datashed SQL database. Internal Datashed validations and validations upon importing into Micromine were completed, as were checks on data location, logging and assay data completeness and down-hole survey information. QAQC and data validation protocols are contained within Blackham's manual "Blackham Exploration Manual 2015". Historical procedures are not documented. Assay results were not adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Blackham's drill collars are routinely surveyed using a DGPS with centimetre accuracy, though coordinates reported herein are GPS surveyed to metre-scale accuracy. All historical drill holes at Matilda appear to have been accurately surveyed. MGA Zone 51 South. Height data (Australian height datum) is collected with DGPS and converted to local relative level using a factor. Prior to DGPS surveys, relative levels are estimated based on data for nearby historical holes.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Blackham's exploration holes are generally drilled 25m apart on east-west sections, on sections spaced 50m apart north-south. Using Blackham's drilling and historical drilling, a spacing of approximately 12.5m (on section) by 20m (along strike) is considered adequate to establish grade and geological continuity. Areas of broader drill spacing have also been modelled but with lower confidence. Samples have been composited only where mineralisation was not anticipated. Where composite samples returned significant gold values, the 1m samples were submitted for analysis and these results were prioritized over the 4m composite values.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes were generally orientated towards the west to intersect predominantly steeply east-dipping mineralisation, or oriented towards the east at M6 to intersect the west-dipping mineralisation. Thus true thickness is approximately 2/3 of drilled thickness. Such a sampling bias is not considered to be a factor as the RC technique utilizes the entire 1m sample.
Sample security	• The measures taken to ensure sample security.	• Drill samples are delivered to Toll Ipec freight yard in Wiluna by Blackham personnel, where they are stored in a gated locked yard (after hours) until transported by truck to the laboratory in Perth. In Perth the samples are likewise held in a secure compound.

Audits or	• The results of any audits or reviews of sampling	•	No such audits or reviews have been undertaken as they are not considered routinely required; review
reviews	techniques and data.		will be conducted by external resource consultants when resource estimates are updated.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	 The drilling is located wholly within M53/34. The tenements are owned 100% by Kimba Resources Ltd, a wholly owned subsidiary of Blackham Resources Ltd. The tenement sits within the Wiluna Native Title area, and a mining heritage agreement is in place with the Native Title holders. The tenement is in good standing and no impediments exist. Franco Nevada have royalty rights over the Matilda Mine mining leases. On the Matilda Mining Leases, a royalty of between 3 to 5% of gold revenue of is payable.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	 Historical artisanal mining was conducted on the M53/34 tenement and most historical workings have now been incorporated into the modern open pits. Modern exploration has been conducted on the tenement intermittently since the mid-1980's by various parties as tenure changed hands many times. This work has included mapping and rock chip sampling, geophysical surveys and extensive RAB, RC and core drilling for exploration, resource definition and grade control purposes. This exploration is considered to have been successful as it led to the eventual economic exploitation of several open pits during the late 1980's / early 1990's.The deposits remain 'open' in various locations and opportunities remain to find extensions to the known potentially economic mineralisation.
Geology	• Deposit type, geological setting and style of mineralisation.	• The gold deposits are categorized as orogenic gold deposits, with similarities to most other gold deposits in the Yilgarn region. The deposits are hosted within the Matilda Domain of the Wiluna greenstone belt. Rocks in the Matilda Domain have experienced Amhibolite-grade regional metamorphism. At the location of this drilling, the Matilda Domain is comprised of a fairly monotonous sequence of highly sheared basalts. Gold mineralisation is related to early deformation events, and it appears the lodes have also been disrupted by later shearing / faulting on the nearby Erawalla Fault, as well as later cross-faults.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation 	See Table 1 of this report for drill hole details.

Criteria	JORC Code explanation	Commentary
	 above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 In the significant intercepts Table 1, drill hole intercepts are reported as length-weighted averages, above a 1m @ 0.6g/t cut-off, or > 1.2 gram x metre cut off (to include narrow higher-grade zones) using a maximum 2m contiguous internal dilution. For the body of the report and in Figures, wider zones of internal dilution are included for clearer presentation. AC intercepts are based on 4m composites. High-grade internal zones are reported at a 5g/t envelope, e.g. MADD0018 contains 14.45m @ 6.74g/t from 162.55m including 4.4m @ 15.6g/t from 162.55m. No metal equivalent grades are reported because only Au is of economic interest.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Various lode geometries are observed at Matilda, including east-dipping, west-dipping and flat-lying geometries. Generally the lodes strike north-northeast. Historical drilling was oriented vertically or at - 60° west, the latter being close to optimal for the predominant steeply-east dipping orientation. Blackham's drill holes are not always drilled at optimal drill angles, i.e. perpendicular to mineralisation, owing to these various geometries, limitations of the rig to drilling >35° angled holes, and difficulty in positioning the rig close to remnant mineralisation around open pits. See significant intercepts Table 1 for estimates of mineralisation true widths.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a	See body of this report.

Criteria	JORC Code explanation	Commentary
	plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Full reporting of the historical drill hole database of over 40,000 holes is not feasible. A full list of results from the current drilling program is included with the report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Other exploration tests are not the subject of this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow-up resource definition drilling is likely, as mineralisation is interpreted to remain open in various directions. Diagrams are provided in the body of this report.