ASX/MEDIA RELEASE

KEMPFIELD RESOURCE STATEMENT UPGRADED TO JORC 2012 STANDARD

HIGHLIGHTS:

- Mineral Resource statement upgraded to JORC Code 2012 standard in preparation for the next steps in exploration drilling program, and progressing the Kempfield project toward production
- No change in the Mineral Resource estimates reflects the quality of the Mineral Resources and the standard of work performed to date by Argent Minerals
- Mineral Resource estimates do not yet include the additional intercepted high grade Pb/Zn/Ag/Au mineralisation reported by Argent on 10 March 2014
- Kempfield Project on a solid, quality foundation for Argent Minerals growth path

KEMPFIELD, NSW AUSTRALIA

Argent Minerals Limited (ASX: ARD, Argent, Argent Minerals or the Company) is pleased to report the Mineral Resource for its Kempfield Polymetallic Project in accordance with the 2012 edition of the JORC code (JORC 2012).

The Mineral Resource previously reported under the 2004 JORC code has undergone a comprehensive review by resource specialists H&S Consultants Pty Ltd (**H&SC**) for reporting under the JORC 2012 requirements; Argent has elected to upgrade its reporting to the new standard in preparation for the next phase of the continuing exploration at Kempfield, and progressing the project toward production.

A key result of the review is that there has been no material change to the Mineral Resource Estimate reported on 26 April 2012, and the Company is pleased to provide further detailed information in the Appendix of this announcement, prescribed by JORC 2012 as 'Table 1'.

Argent Minerals Managing Director David Busch said, "We are delighted with this outcome, as it reflects both the quality of the Mineral Resource itself, and the high standard of the Argent Minerals work to date on the project".

"As those who have undertaken this process will know, a JORC 2012 Mineral Resource Table 1 review is not a trivial exercise, and it cannot be assumed that a previous estimate reported under JORC 2004 will automatically meet the new standard. If, for example, exploration drilling procedures, checks and controls have not been performed or documented to a sufficient standard to enable reporting under the increased transparency requirements of JORC 2012, then those areas of a Mineral Resource could be at risk to being restricted to Inferred category unless additional drilling is performed to confirm the original drillihole information".

"Under the JORC Code, Inferred Mineral Resources cannot be included in Ore Reserve estimates, and are generally excluded or discounted by financiers when considering capital raising proposals for mining projects. Only Measured or Indicated Mineral Resource categories are able to offer any opportunity for the estimation of Ore Reserves for mining production".

"Argent Minerals is in an excellent position, with 82% of the Mineral Resource tonnes in either Measured or Indicated category including 90% in the oxide/transitional material - now reported in accordance with the JORC 2012 standard. This places Argent Minerals on a strong, quality foundation for the growth path ahead".

Boost to Argent Minerals growth strategy

The strong, quality foundation affirmed by this Argent Minerals JORC 2012 Mineral Resource Statement provides a boost to the Company's three element growth strategy announced on 31 January 2014:

Exploration. Argent Minerals has entered an new exciting phase of exploration. The Company is aggressively pursuing the significant upside potential identified within the Kempfield Project area, and new, rich mineralisation that has been identified as announced on 10 March 2014 (New Mineralisation).

Under ASX Listing Rule 5.8 (LR 5.8), any material change to a Mineral Resource Estimate triggers a requirement for the entire resource to be reported in accordance with JORC 2012 and LR 5.8, a potentially significant and detailed workload that is not without risk.

Having already completed these requirements for the existing Mineral Resource, and with the excellent outcome reported in this announcement, Argent Minerals is well-placed and on a solid foundation for the continuation of the drilling program. The Company is confident that it will be able to efficiently estimate and report any material changes that occur as a result of the combination of the New Mineralisation and continuing drilling. Tonnes and grade are key factors in all mining project economics, and the Company's current main focus is to add both where opportunities exist to do so, particularly where this has the potential to add to the Company's zinc and lead resources.

- Income generation from mining production. The high percentage of the Kempfield Mineral Resource in Measured or Indicated category, now reported in accordance with JORC 2012, provides a strong foundation from which the Company will continue to advance its 100%-owned Kempfield project, a registered NSW State Significant Development, toward its first stage of production. The first stage of production is based on a low cost silver-gold heap leach operation a design that is advantageous in lower precious metal pricing environments and provides leverage to any price recovery that may occur.
- **Capital Efficiency.** The third key element in Argent's strategy is its capital efficiency. In addition to the low cost project design, the Company's overheads are relatively low, and during the last 12 months, Argent Minerals secured approximately \$2.9 million in funding in one of the most difficult years on record for the industry. Significantly, more than \$2.2 million of this cash was raised through the 2011, 2012, 2013 Research and Development claims and Options Entitlement Issue. A considerable portion of these funds are in the process of being invested directly into project value.

Kempfield drilling program

Planning is currently under way for the next phase of drilling at Kempfield, which will be reported to the ASX once finalised.

Please refer to the Mineral Resource Statement overleaf, which is followed by a Material Information Summary pursuant to LR 5.8, and Appendix A which contains Table 1 Sections 1, 2 and 3 in accordance with JORC 2012 and LR 5.8.

KEMPFIELD RESOURCE STATEMENT - 6 MAY 2014

Table 1.0 is a summary of the Kempfield mineral resource at 6 May, 2014. Table 2.0 shows the resource tonnes and grades by Measured, Indicated and Inferred categories, whilst Table 3.0 provides details of tonnes and contained metal in the Measured and Indicated categories.

At cutoff grades 25 g/t Ag (Oxide/Transitional) and for 50 g/t Ag equivalent¹ (Primary):

Table 1.0 - Kempfield Resource Summary

		Silver (Ag)		Gold (Au)		Lead (Pb)		Zinc (Zn)		In-situ Contained Ag Equivalent ²	
	Resource Tonnes (Mt)	Grade (g/t)	Contained Metal (Moz)	Grade (g/t)	Contained Metal (000 oz)	Grade (%)	Contained Metal (000 t)	Grade (%)	Contained Metal (000 t)	Grade (Ag Eq g/t)	Contained Ag Eq (Moz)
Oxide/ Transitional*	6.0	55	10.7	0.11	21	N/A	N/A	N/A	N/A	-	11.7
Primary**	15.8	44	22.3	0.13	66	0.62	97	1.3	200	-	40.5
Total***	21.8	47	33.0	0.12	86	N/A	97	N/A	200	75	52

* 90% ** 79% *** 82% : % of resource tonnes in Measured or Indicated Category. See Table 3.0 for calculation details.

Table 2.0 - Resource by Category

		Grade (g/t)		Grade (%)		In-situ Grade (Contained Ag Eq g/t)
Category	Resource Tonnes (Mt)	Silver (Ag)	Gold (Au)	Lead (Pb)	Zinc (Zn)	Silver Equivalent (Ag Eq)
Oxide/Transitional						
Measured	2.7	68	0.11	-	-	73
Indicated	2.7	47	0.11	-	-	52
Inferred	0.6	39	0.08	-	-	43
Total Oxide/Transitional	6.0	55	0.11	-	-	60
Primary						
Measured	4.1	57	0.12	0.66%	1.2%	93
Indicated	8.4	41	0.13	0.58%	1.2%	76
Inferred	3.2	35	0.13	0.66%	1.4%	74
Total Primary	15.8	44	0.13	0.62%	1.3%	80
Total Resource	21.8	47	0.12	N/A	N/A	75

				Containe	d Metal	
	Resource Tonnes (Mt)	Moz Silver (Ag)	000 oz Gold (Au)	000 t Lead (Pb)	000 t Zinc (Zn)	In-situ Moz Silver Equivalent (Ag Eq)
Oxide/Transitional						
Measured	2.7	5.8	9.3	-	-	6.3
Indicated	2.7	4.1	9.9	-	-	4.6
Measured + Indicated	5.4	10	19	-	-	11
As % of Total Oxide/Transitional	90%	93%	93%	-	-	93%
Primary						
Measured	4.1	7.5	16	27	51	12
Indicated	8.4	11	36	49	103	21
Measured + Indicated	13	19	51	76	154	33
As % of Total Primary	79%	83%	79%	78%	77%	81%
Oxide/Transitional + Primary						
Measured	6.8	13	25	27	51	19
Indicated	11	15	46	49	103	25
Total Measured + Indicated	18	28	71	76	154	44
As % of Total Resource	82%	86%	82%	78%	77%	84%

Table 3.0 - Kempfield Resource tonnes and contained metal in Measured and Indicated categories

Note 1 - 50 g/t Silver Equivalent Cutoff Grade

This Resource is only reported in Resource tonnes and contained metal (ounces of silver and gold, and tonnes for lead and zinc). The Resource estimation for the Primary material was based on a silver equivalent cutoff grade of 50 g/t.

A silver equivalent was not employed for the oxide/transitional material estimation and was based on a 25 g/t silver only cutoff grade.

The contained metal equivalence formula is based on the following assumptions made by Argent Minerals:

Silver price:	\$US 30/oz (\$US 0.9645/g)
Gold price:	\$US 1,500/oz
Lead & zinc price:	\$US 2,200/tonne
Silver and gold recoverable and payable:	80% of head grade
Lead & zinc recoverable & payable:	55% of head grade

Based on metallurgical testing to date, Argent Minerals is of the opinion that recoverable and payable silver and gold of 80% is achievable, and recoverable and payable lead and zinc at 55% of the head grade. Argent Minerals

is also of the opinion that this is consistent with current industry practice. These metallurgical recoveries were included in the calculation of silver equivalent cutoff grades used for reporting of Mineral Resources. Please note that Ag Eq is reported as in-situ contained ounces and grade ie. not recoverable & payable ounces and grade, and in accordance with the JORC Code 2012 Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves.

Note 2 - Contained Silver Equivalent ('Ag Eq') Calculation Details

- (i) A revenue figure was calculated for each metal by category and material class (r) as follows:
 - r = tonnes * head grade * recoverable and payable %.
 - Eg. For Measured Oxide/Transitional silver: r = 2.7Mt + 68 g/t + 80% / 31.1 g/oz + \$US 30/oz = \$US 142M.
 - Eg. For Measured Primary Zinc: r = 4.1Mt * 1.2% * 55% *\$US 2,200/t = \$US 59.5M.
- (ii) Total revenue R was calculated for each resource category and material class as the sum of all the individual (r) revenues for that category and class.
- (iii) Contained silver metal equivalent ounces was then calculated as follows:

Ag Eq (oz) = R / Ag recoverable and payable % / Ag price = R / 80% /\$US 30.

(iv) Contained silver metal grade was calculated as follows:

Grade (Contained Ag Eq g/t) = Ag Eq (oz) * 31.1 / tonnes.

Note 3 – Rounding and Significant Figures

Figures in the tables in this report may not sum precisely due to rounding; the number of significant figures does not imply an added level of precision.

MATERIAL INFORMATION SUMMARY

Pursuant to ASX Listing Rule 5.8.1 the following summary is provided of information material to understanding the Mineral Resource estimate.

Geology and Geological Interpretation

GEOLOGY

- The deposit type is Volcanogenic Massive Sulphide (VMS);
- The geological setting is Silurian felsic to intermediate volcaniclastics within the intra-arc Hill End Trough in the Lachlan Orogen, Eastern Australia; and
- The style of mineralisation comprises stratiform barite-rich horizons hosting silver, lead, zinc, +/- gold.

GEOLOGICAL INTERPRETATION

- There is a reasonable confidence level in the geological interpretation of the mineral deposits.
- The geological interpretation involved dividing the deposits into mineralised zones, essentially based on assay data, and identifying the fresh, transition and oxide zones from geological logging. Oxidation logging was checked against zinc assays as this element is the most sensitive to oxidation at Kempfield. It was assumed that the assays and logging are accurate.
- There appears to be limited scope for alternative interpretations. The mineralised zones are quite clearly defined, while the oxidation zones are a little more subjective. It is considered unlikely that alternative interpretations would have a substantial impact on the Mineral Resource estimates due to the generally close spacing of the data points.
- The mineralised zones were treated having as hard boundaries during grade estimation, while the oxidation boundaries were treated as soft boundaries, due to their gradational nature.
- The major factor affecting the continuity of both grade and geology is the cross-faulting that truncates or displaces mineralisation. These fault surfaces were treated as hard boundaries during estimation.

Sampling and Sub-sampling Techniques

SAMPLING TECHNIQUES

Overview

- The Kempfield deposit has been explored over a period of approximately forty years by Argent Minerals Limited (Argent Minerals), Golden Cross Operations Pty Ltd (Golden Cross), Jones Mining Limited (Jones Mining), The Shell Company of Australia/Metals Division (Shell), and International Nickel Australia Limited (Inco). Variation in techniques or procedures applied by each exploration company are outlined in this report as appropriate.
- The data on which the Resource Estimate has been determined is considered to be of high quality in nature.
- The Kempfield deposit was sampled with drill chips from reverse circulation (RC) and conventional rotary percussion (PERC) drilling, and with diamond drill hole (DDH) core of PQ, HQ and NQ size.
- A total of 23,374 drill samples have been collected, including 17,188 percussion chip samples and 6,186 diamond drill hole core samples. A summary of Kempfield sample types is provided in Table 4.0.

Table 4.0 - Summary of collected samples by drill hole type and exploration company

Compony	Deried		Samples		
Company	Fenou	DDH	RC/PERC	Total	% Total
Argent Minerals	2007-current	3,051	9,302	12,353	53%
Golden Cross	1996-2007	45	4,090	4,135	18%
Jones Mining	1984-1985	409	-	409	2%
Shell	1979-1984	457	3,796	4,253	18%
Inco	1972-1974	2,224	-	2,224	10%
TOTAL		6,186	17,188	23,374	100%
% TOTAL		26%	74%	100%	

Samples of between 2 and 3 kg each in weight were selected for assay according to the procedures detailed under the criteria heading 'Sub-sampling techniques and sample preparation'. These were crushed to 6 mm and then pulverized to 75 microns. A 25 g split of the sample was fire assayed for gold. The lower detection limit for gold is 0.01 ppm, which has been determined to be an appropriate detection level. All other elements including silver and base metals were analysed using acid digest and either an Inductively Coupled Laser - Mass Spectrometry (ICP-MS) or Inductively Coupled Laser - Atomic Emission Spectroscopy (ICP-AES) finish,

or an Atomic Absorption Spectrometer (AAS).

Measures taken to ensure sample representivity and measurement calibration are noted under the Criteria headings 'Drill sample recovery', 'Sub-sampling techniques and sample preparation' and 'Quality of assay data and laboratory tests'.

SUB-SAMPLING TECHNIQUES AND SAMPLE PREPARATION

Percussion drilling chip sampling

- 74% of the total number of samples were collected by either RC or conventional percussion drilling. A total of 17,188 percussion drill chip samples were collected during three major drilling programs conducted by Shell, Golden Cross, and Argent Minerals. The sampling sizes (between 2 and 3 kg) and techniques are considered to have been appropriate for percussion drilled chip sampling for the style and grain size of mineralisation at Kempfield, and further details are set out according to exploration company as follows:
 - Argent Minerals conducted RC drilling under industry best practice procedures. The total recovered RC drill chips were collected at 1 metre intervals in plastic bags, left to dry out if required, split to 1:12 with a riffle splitter in calico bags each up to 2.5 kg in weight and then composited on 2 metre intervals.
 - Golden Cross conducted RC drilling and collected 4,090 samples. Samples were collected by the spear method the total sample for a 1 metre of drill hole length was collected in a bag which was speared and the spear samples then composited at two metre intervals. Golden Cross samples were collected as both wet and dry, and sample sizes were between 2 and 3 kilograms each.
 - Shell drilled 150 percussion holes in three programs of 30, 30 and 90 holes respectively (147 of which are recorded in the Argent Minerals database and employed in the Kempfield Resource estimation detailed in this report). During programs one and two, cuttings were collected using either simple cyclones or sludge buckets and much of the fines was either blown or washed away. Sample collection methods were improved in the third program through the use of an Ingersoll Rand Jumbo Airtrac drilling rig, and from hole 3PD-27 onward the Aqua-Dust sampling system was used to minimise the loss of fines. Documentation is not available for the specifics of Shell's sample preparation techniques at Kempfield. Argent Minerals believes that it is a reasonable assumption that Shell, as a leading minerals exploration company, would have operated according to documented procedures, and that these procedures were likely to have reflected international best practice at the time. Given that the majority of the Shell holes were shallow (less than 50 metres depth), they are generally higher than the known water table in the area and therefore likely to be collected mostly as dry samples.

Diamond drill core sampling

- The diamond drill core sampling at Kempfield has provided high quality samples that were logged for multiple attributes including lithology, structure, geotechnical data, and density.
- The selected drill core was cut in either half or quarters (or in the case of one large diameter core, eighths), and the respective core section 'split' analysed at a certified assay laboratory.
- The sample sizes were appropriate to correctly represent the sulphide mineralisation at the Kempfield project based on the style of mineralisation, consistency of the intersections, and the sampling methodology.
- Further details are set out according to exploration company as follows:
 - Argent Minerals drilled diamond core with PQ, HQ and NQ size and split as half core (HQ and NQ size) and quarter (PQ) core with a diamond saw to produce samples for assaying. Intervals vary from 0.5 to 1.5 metres maximum. Sampling intervals were selected with an emphasis on mineralisation and geological control.
 - Golden Cross drilled diamond drill core of NQ size was split in half with a diamond saw. The majority of the samples comprised 1 metre intervals. Where zones were of variable geology and mineralisation, intervals of between 1 and 2 metres were selected on the basis of observed geology.

- Most of the Jones Mining core was split along the length by diamond saw, with half taken as either 1 or 2 metre samples. One PQ sized hole, JKF-18, was split and 1/8 core analysed.
- Shell diamond drill core sampling comprised predominantly split core in 2 metre lengths. The upper and lower sections of SKF-1 and all of the SKF-5 sampling was performed by bevelling.
- Inco collected samples comprising: a) 51 mm (2 inch) core chips collected over 1.52 metre (5 feet) intervals and b) 1.52 metre splits of core at varying intervals. Where significant mineralisation was noted, the total respective core length was split for analysis. Inco conducted selective sampling (1,516 samples in the Argent Minerals database) of drill core with limited assays (mostly for base metals).

Selected core intervals were subsequently re-assayed for gold and silver by Shell and Golden Cross. Shell bevelled selected sections of Inco core over 6.1 metre (20 feet) intervals. Whilst some discrepancies in lead values exist, Shell's analysis verified Inco's results overall.

Inco drill holes within the Kempfield resource outline were also resampled by Argent Minerals during 2011 - a total of 709 samples, and arranged for them to be analysed by a laboratory for gold, silver, base metals, pathfinder, and rock-forming elements.

A total of 6,186 drill core samples of different sizes were collected (see Table 5.0 summary).

Table 5.0 – Summary of diamond core samples by drill hole size and sampled portion

Drill core size &
sampled portionNumber of
samples% of Drill CoreComments1/4 PQ67410.9Geotechnical drilling1/2 HQ83113.4Metallurgical drilling1/4 HO5108.4Metallurgical drilling

TOTAL	6.186	100%	100%
1/4 NQ	710	11.5	Exploration drilling including re- assaying of three holes
1/2 NQ	3,452	55.8	Exploration drilling
1/4 HQ	519	8.4	Metallurgical drilling
1/2 HQ	831	13.4	Metallurgical drilling

Summary

A summary of the sample media collected at Kempfield project is presented in Table 6.0.

Table 6.0 – Summary of Sample Media

Total number of samples	RC drill chip samples	DDH drill core samples
23,374	17,188 (74%)	6,186 (26%)
		including:
		1/4 PQ 674 (plus additional 264 re-assays by Golden Cross)
		½ HQ 831
		¼ HQ 519
		½ NQ 3,452
		1/4 NQ 710 (re-assayed by Argent Minerals)

Details of quality control procedures and additional measures taken to ensure representivity are presented under the Criteria heading 'Quality of assay data and laboratory tests' (see the Table 9.0 summary and related discussion under the same Criteria heading).

Drilling Techniques

A total of 495 holes for 42,353 metres of drilling has been conducted. Several industry standard drilling techniques have been applied in the extraction of the samples, including full length diamond drilling, percussion drilling (PERC and RC) and combination RC collar/DDH tails, as summarised in Table 7.0.

Table 7.0 - Summary of Drill Holes by Hole Type and Total Length Drilled

Company	All	All Diamond Drilling		Percussi	on Drilling	Combined RC/DE	Total	
	PQ	HQ	NQ	PERC	RC	RC Pre-Collars	DDH Tail	Total
Number of holes	9	19	38	148	276	5		495
Metres	745	2,543	4,581	7,978	25,132	815	559	42,353

Variation in drilling techniques according to exploration company is set out in Table 8.0.

Company	Period	Full Len	gth DDH	Percuss (RC)	ion Drilling (PERC)	RC	Pre-Collar/D	DH Tail	All F	Holes	%
		Holes	Metres	Holes	Metres	Holes	RC Metres	DDH Tail Metres	Holes	Metres	Total
Argent Minerals	2007-current	28	3,105	179	17,849	2	359	400	209	21,713	51%
Golden Cross	1996-2007	-	-	99	7,586	3	456	159	102	8,201	19%
Jones Mining	1984-1985	14	771	-	-	-	-	-	14	771	2%
Shell	1979-1984	6	917	146	7,675	-	-	-	152	8,592	20%
Inco	1972-1974	18	3,076	-	-	-	-	-	18	3,076	7%
	TOTAL	66	7,869	424	33,110	5	815	559	495	42,353	100%
	% TOTAL	13%	19%	86%	78%	1%	2%	1%	100%	100%	100%

 Table 8.0 – Summary of drilling metres by drilling technique and exploration company

Diamond drilling techniques (including RC Pre-Collar and DDH tail)

- Diamond drilling was conducted with either double tube wireline core barrel or triple tube procedures.
- The historical drill core was orientated relative to regional, steep (80° to W) north-south trending cleavage. This is considered to be the most reliable orientation method for the historical holes at the Kempfield deposit. More recently, state of the art electronic orientation tools have become available, and commencing with hole AKDD177, are now employed at Kempfield as the method of choice.
- Core was measured and marked at 1 metre intervals after each drill run using benchmark block lengths to calibrate depth, except for Inco which marked at 1.52 metre intervals (5 feet). Rig procedures were adjusted as required including drilling rate, run length and fluid pressure, in order to maintain sample integrity.

Percussion drilling techniques

- Percussion drilling was conducted with conventional methods using a standard hammer sizes from 115 to 140 mm (4.5 5.5 inches).
- Please refer to Table 8.0 above for a summary of the relative portions of percussion holes drilled as RC and conventional percussion.

Classification Criteria

- The resource classification is essentially based on an ordinary Kriging three search pass methodology in which Pass 1 was classified as Measured, Pass 2 as Indicated, and Pass 3 as Inferred categories.
- A simplified explanation is that this method in effect considered a maximum drill spacing of 25 X 25 metres for the Measured category, and 50 X 50 metres for both the Indicated and Inferred categories. Both Measured and Indicated categories required at least two drill holes in order to obtain an estimate, whilst Inferred category required only a single hole.
- For search details see under the heading 'Estimation Methodology' below.

Sample Analysis Methods

Quality assurance and quality control (QAQC) procedures for historical sampling, assay data and laboratory tests are summarised in Table 9.0. No geophysical tools or handheld XRF instruments were used. In summary, the net result of all the laboratory techniques and procedures applied are considered to have been high quality in nature, appropriate for the mineralisation and providing a near-total result sufficient for the Mineral Resource Estimate in this report. Additional relevant specifics for each exploration company are set out following the table.

Company	Number of assays	Comments
Argent Minerals	12,353	Full QAQC applied:
Argent Minerals Re-assays of Inco samples	708	 field coarse blanks (every 50th); standard reference material from standards supplied by Geostats Pty Ltd (every 50th); duplicate every 25th or 50th; cross laboratory check (ALS Orange, Genalysis Laboratory Services Pty Ltd); cross analytical technique checks (ICP-MS versus four acid leach); and three pairs of twin holes – RC vs DDH
Golden Cross	4,135	Satisfactory QAQC:
Golden Cross Re-assays of Jones Mining samples	263	 duplicates; and cross-laboratory checks (ALS Orange, ALS Stafford, Becquerel and Genalysis), and cross- analytical technique checks (ICP-AES versus Neutron Activation Analysis - see discussion following this table)
Jones Mining	146	QAQC documentation partially available - Jones Mining re-assayed 82 samples
Shell	4,253	Satisfactory QAQC: - four check holes against percussion drilling program; and - cross-laboratory checks.
Inco	1,516	QAQC documentation not available
TOTAL	23,374	21,712 assays (93%) with satisfactory QAQC procedures and documentation

Table 9.0 – QAQC Summary for each Exploration Company

- Argent Minerals samples were submitted to ALS Laboratories in Orange for gold assays by fire assay, and silver and base metals by ICP-MS.
 - Samples were crushed by ALS to 6 mm and then pulverized to 75 microns. A 25 g split of the sample was fire-assayed for gold. The lower detection limit for gold is 0.01 ppm, which has been determined to be an appropriate detection level. All other elements including silver and base metals were analysed using aqua regia acid digest and an ICP-MS finish.
 - Aqua regia digest/ICP-MS finish was compared with four-acid/ICP-MS finish with a very high correlation achieved, confirming a near-total result for the aqua regia/ICP-MS technique.
 - ALS Laboratory QAQC comprised the use of certified reference materials, blanks, splits and duplicates as part of in-house procedures and internal standards.
 - Argent Minerals submitted an independent suite of standard reference materials (SRM) 1:25 and coarse

blanks 1:50 Field duplicates were collected every 25th sample during RC drill chip sampling. For percussion drilling samples, Argent Minerals performed laboratory cross checking by submitting samples to ALS and Genalysis Laboratory Services Pty Ltd for cross checking; a very high correlation was achieved.

- For core samples, metallurgical assays for 1/2 core were compared with the original 1/4 core assays; a very good correlation was achieved.
- Periodic internal QAQC reports for Argent Minerals sampling procedures show good precision and accuracy of analytical methods and sampling procedures. No obvious contamination was observed during sample preparation.
- Full sets of assay certificates are retained by Argent Minerals.
- **Golden Cross** samples were submitted to ALS Laboratories in Orange for gold assays by fire assay, silver and base metals by aqua regia digest with an ICP-AES finish, and barium by X-ray diffraction (XRF).
 - Samples were crushed by ALS to 6 mm and then pulverized to 75 microns. A 25 g split of the sample was fire-assayed for gold. The lower detection limit for gold is 0.01 ppm, which has been determined to be an appropriate detection level. All other elements including silver and base metals were analysed using aqua regia acid digest and an ICP-AES finish.
 - Duplicate samples were submitted to the Australian Nuclear Science and Technology Organisation (ANSTO) for Neutron Activation Analysis (NAA), a very sensitive method of quantitative multi-elemental analysis with the potential to determine concentrations in a sample from parts per billion (ppb) to tens of percent. Comparison of neutron activation, four acid/ICP-MS and aqua regia digest/ICP-AES assay results verified that the primary technique (aqua regia digest/ICP-AES) was reliable for silver and base metal assaying, yielding near-total results.
 - Full sets of assay certificates are retained by Argent Minerals.
- Jones Mining samples were assayed by Australian Laboratory Services in Brisbane for silver and barium using method XRF-1A, and one hole (JKF-20) by AMDEL in South Australia.
 - The XRF-1A method comprised sample preparation by milling to -75 microns and pressing into briquettes each of minimum 25 g weight. A limited number of samples were analysed for gold (7) and other elements (2), for which analysis procedure documentation has not been located.
 - Jones Mining reassayed many of the 2 metre lengths at 1 metre intervals using the same methodologies as for the original 1 metre interval assays. The PQ size hole, JKF-18, was split and 1/8 core analysed for Ag and Ba by ALS as per the above XRF-1A method together with the core from the other holes. Half of the silver anomalous zones were despatched to AMDEL in South Australia for metallurgical tests as well as silver and barium assays (analytical method documentation not available).
 - Partial documentation has been located in relation to the Jones Mining internal QAQC procedures. The original assay certificates have not been located.
 - In 1998 Golden Cross re-sampled and re-assayed material from Jones Mining's drill holes JKF-7 to JKF-18 and JKF-19 in 1999. Intervals were selected for re-assay where warranted by grade and distribution. A comprehensive inter-laboratory check assay program was performed, with samples sent to ALS Orange, ALS Stafford, Becquerel and Genalysis. Silver was assayed for by method A101 and lead and zinc by method G102. Method A101 was recommended by the lab for lead and silver ores containing barite and comprised aqua regia digestion, hydrochloric acid dissolution with addition of ammonium acetate and thiosulphate for complexation of lead and silver, followed by flame AAS. Method G102 was recommended by the lab for sulphidic samples, and comprised aqua regia digestion followed by flame AAS. Satisfactory QAQC procedures were applied, and data pertaining to ALS's internal lab standards are documented. Evaluation of the data found that there were good correlations between the Stafford laboratory by method A101, Stafford fire assay (correlation coefficient = 0.9976), and Becquerel (correlation coefficient = 0.9982). Data that fell outside the acceptable range of tolerance was discarded from the database, leaving those summarised in Table 9.0. From this work Golden Cross concluded that the best available sample and assay data have been employed in the database (favouring the Golden Cross re-assays). A subsequent

review by Argent Minerals determined that there are no material issues with the remaining Jones Mining data.

- Shell core and percussion samples were originally assayed by ALS method XRF-1A for barium (see description above) and 101-B for copper, lead, zinc, and silver.
 - ALS has advised Argent Minerals that method 101-B is likely to be have been a modified version of A101 (see description above) specifically designed for Pb and Zn analysis, and the Shell documentation notes that it involved 'specially developed digestion'.
 - Shell subsequently selected specific core samples from the six diamond holes and submitted them for reassay by ALS (method 101-B) as well as COMLABS Pty Ltd. SKF-4 was re-assayed from 99 to 120 metres by ALS method 101-B and COMLABS method AAS-3 for silver, base metals and barium. Limited documentation has been located for method AAS-3 which is described as 'AAS using specially developed acid digestion technique'. ALS re-assayed all of the SKF-2, 3, 5 and 6 core sampled originally, with several methods. These included AAS-5B for gold (30 g charge), and for silver, AAS-3, XRF and 'AAS special acid attack' (no details). XRF was also employed for pathfinder elements gallium and antimony.
 - Approximately 11% of the original percussion hole metres were also reassayed by COMLABS in 6 metre segments for gold using method AAS-5B, and pathfinder elements gallium and antimony using XRF.
 - The original assay certificates for the Shell assays have not been located.
 - From this work Shell concluded from that the analytical techniques routinely used by ALS for all Kempfield samples was satisfactory.
- Inco submitted samples for assay by 'INAL' (Inco's own laboratory), Robertson Research', 'Geomin', Boulder Lab' and 'Rockhampton'. In some cases, the laboratory has not been identified in the available documentation.
 - The assay method has been recorded in the drill logs as 'AAS'. Where the method field has not been ticked the almost identical sheet format and context suggest that AAS has been employed.
 - No details of blanks, duplicates or internal standards are recorded in the logs, nor is there information about any of the laboratories' internal QAQC, nor have the original assay certificates been located.
 - In 1980 Shell resampled Inco's drillholes IKF-DDH1, 5, 7, 10, 17 and 18, and submitted them for re-assay by ALS using the AAS method; it had been suggested that the laboratory techniques employed by Inco may have underestimated the lead and silver content of the holes drilled by Inco. It was thought that lead and silver results would be notably depressed in the presence of large amounts of barite when perchloric acid digestion rather than aqua regia digestion was used before AAS determination. In order to test this hypothesis, sections of Inco's drill core were bevel sampled and the samples analysed for lead and silver and in some cases for gold, barium, copper and zinc. The results showed that generally the lead values from Inco's assays were depressed, but silver values were comparable with the re-sampling results.
 - In 1984 Jones Mining assayed some of the core for gold by fire assay.
- In 2012 Argent Minerals resampled selected intervals of Inco's drillholes IKF-DDH1, 5, 7, 10, 12, 14, 15, 17 and 18. A total of 708 samples was re-assayed at ALS in orange using fire assays Au-AA25 for gold and ME-ICP41 for silver and base metals.

Estimation Methodology

- A consistent estimation scheme was applied to all four deposits. All grades were estimated using ordinary Kriging, which was considered an appropriate technique because of the low to moderate coefficients of variation (typically CV < 2.0, where CV, a standardised measure of variability, is the standard deviation divided by the mean grade).
- Samples (typically 1 metre) were composited to nominal 2 metre lengths for data analysis and grade estimation. Domaining was described in the section on geological interpretation.
- Estimation was performed using Datamine software. A three pass search strategy was used, with initial radii of

5 x 25 x 25 metres, which were doubled for the second pass; a minimum of 8 and maximum of 24 composites in at least 4 octants was used for the first 2 passes. The third pass used the same radii as pass 2, with a minimum of 4 and maximum of 24 composites in at least 2 octants.

- The search ellipsoid dipped 70° west for all domains, except for zinc at BJ and McCarron/Mather zones, where the ellipsoid was flat for the oxide zone. The maximum extrapolation distance was 50 metres, and is only applicable to Inferred category; Measured and Indicated category Mineral Resources are essentially only interpolated.
- Several previous estimates were generated by H&SC (and its predecessor H&S) and the new estimates take into account these earlier estimates. The deposit remains unmined, so there are no production records for reconciliation.
- Kempfield is currently considered primarily a silver project, with lead, zinc and gold as by-products. Metallurgical test work has been performed for all these elements (see section below) and they have been incorporated into the cut-off grades for the sulphide (primary) mineralisation using appropriate revenue and recovery factors.
- There are no estimates for potentially deleterious elements or other non-grade variables of economic significance (eg. sulphur). Sulphide content at Kempfield is low, so acid mine drainage is unlikely to be a significant problem. No deleterious elements of economic significance have been identified to date.
- Parent block size is 5 x 12.5 x 10 metres, compared to a nominal sample spacing of 25 x 25 x 2 metres, in the X, Y and Z planes respectively. The block size in X reflects the down-hole sample spacing in the direction of least continuity, while the block size in Y is half the nominal section spacing. The block size in the Z plane is compatible with the proposed bench height and is around half the sample spacing in this direction.
- The model block size (nominally 5 x 12.5 x 10 metres, with sub-blocks to 2.5 x 6.25 x 5 metres) is effectively the selective mining unit for these estimates.
- Correlation between most elements is very weak; the exceptions are lead/zinc with good correlation and silver/barium with weak correlation. No assumptions about correlation between variables were made during estimation – each element was estimated independently.
- A description of how the geological interpretation was used to control the resource estimates was given in the section on geological interpretation.
- No grade cutting or capping was applied because the grade distributions are not particularly skewed, as indicated by the low coefficients of variation.
- The estimates were validated by several methodologies visual and statistical comparisons of block and drill hole grades, examination of grade-tonnage data, and comparison with previous estimates. The comparisons of model and drill hole data demonstrated that the drilling tends to be clustered in the higher grade areas, but the estimates appear reasonable once this factor is taken into account. No reconciliation data is available because the deposit currently remains unmined.

Cut-off Grades

- Cut-off grades are 25 g/t silver for oxide and transitional mineralisation (silver cutoff grade only, no metal equivalence employed for Mineral Resource estimation in oxide/transitional material), and 50 g/t silver equivalent for the primary (fresh rock) mineralisation. The cutoff grades were chosen on the basis of providing reasonable prospects for eventual economic extraction given a multitude of factors including metallurgical testing, long term market prices, and mining and processing costs.
- The 2014 Mineral Resource estimate contained metal equivalence formula is based on the following assumptions made by Argent Minerals:

-	Silver price:	\$US 30/oz (\$US 0.9645/g)
-	Gold price:	\$US 1,550/oz (Gold/silver: 50:1)
-	Lead & zinc price:	\$US 2,200/t

- Silver & gold recoverable and payable: 80% of head grade
- Lead & zinc recoverable and payable: 55% of head grade
- Argent Minerals and the Competent Person have elected to maintain the above assumptions for consistency with the basis for previous estimates, and to maintain a conservative basis for the current estimate. Whereas the fundamentals of the Mineral Resource estimate have not changed from the April 2012 estimate, a reduction in the silver price in the above equivalence formula would have resulted in an apparent increase in the number of resource tonnes in the primary material, as well as an apparent increase in the silver equivalent ounces ('Ag Eq'), which could be potentially misleading.

Modifying Factors

The following modifying factors have been considered to date:

MINING FACTORS OR ASSUMPTIONS

The mining method is currently assumed to be all open pit. The estimates include allowance for mining dilution, in that the parent block size is 5 x 12.5 x 10 metres and it may be possible to mine the resources more selectively than this.

METALLURGICAL FACTORS OR ASSUMPTIONS

- The metallurgical recovery assumptions are based on carbon in leach (CIL) processing for silver and gold, and flotation for lead and zinc. Based on metallurgical testing to date, Argent is of the opinion that silver and gold recoveries of 80%, and payable lead and zinc recoveries at 55% of the head grade, are both achievable and have been employed as the basis for Mineral Resource estimation.
- Metallurgical recoveries from test work are provided in the preceding section on cut-off parameters.

ENVIRONMENTAL FACTORS OR ASSUMPTIONS

- In April 2013, Argent submitted an Environmental Impact Statement for an initial heap leach phase of the Kempfield Project to the NSW Government Department of Planning & Infrastructure. The submitted project is a relatively compact heap leach design with no tailings dam for this phase. The heap leach pad will be underlain with an impermeable layer, and additional safeguards will be provided by underdrainage, electronic sensors, and monitoring systems. Argent has incorporated extreme rainfall event assumptions in the design of the heap leach pad. The environmental impacts associated with the project have been assessed by twelve specialist consultancies. In all cases, the impacts were determined to be less than the relevant criteria, capable of being offset through licencing, or not significant. Additionally, the submitted project includes a proposed biodiversity offset strategy that Argent contends will provide medium and long-term biodiversity benefits within and surrounding the site, while balancing the community need to ensure that agricultural land remains productive.
- Argent Minerals has also undertaken environmental study work for progressing Kempfield to a full scale polymetallic project with a mine life of up to 20 years. The study work was progressed beyond pre-feasibility toward feasibility, and was based on mining lead and zinc in addition to the silver and gold, designed as an open cut mine with CIL/flotation processing and a tailings dam for process residue disposal and waste rock emplacement. The relevant environmental aspects were investigated under the direction of an appropriately qualified environmental consultant experienced with NSW mining projects. Argent Minerals is satisfied that the environmental aspects of a full scale polymetallic project at Kempfield can be successfully managed to the satisfaction of the relevant regulations.

BULK DENSITY

Density measurements were determined on site by Argent personnel in 2011 using an unsealed water immersion method – 292 samples were tested. Of these, 10 samples were submitted to ALS Orange for checking by unsealed and waxed immersion methods. There are a further 45 historical density measurements on core from the Jones Mining and Golden Cross core – these are believed to be unsealed water immersion measurements.

A comparison of the Argent site measurements and 10 ALS waxed values show no significant difference. Since all these samples appear to be fresh rock, little variation would be expected.

JORC Table 1

In accordance with section 5.8.2 of the ASX listing rules, Section 1 (Sampling Techniques and Data), Section 2 (Reporting of Exploration Results), and section 3 (Estimation and Reporting of Mineral Resources) of Table 1 of Appendix 5A (JORC Code) is attached as Appendix A to this announcement.

For further information please contact:

David Busch Managing Director Argent Minerals Limited M: 0415 613 800 E: david.busch@argentminerals.com.au

APPENDIX A - JORC 2012 EDITION TABLE 1

KEMPFIELD RESOURCE

The following information follows the requirements of JORC 2012 Table 1 Sections 1, 2 and 3 as applicable for the estimation and reporting of Mineral Resources.

Section 1 - Sampling	Techniques and Data
----------------------	---------------------

Criteria	Cor	Commentary						
Sampling techniques	<u>Ove</u> • •	rview The Kempfield of Limited (Argent (Jones Mining), Limited (Inco). V in this report as The data on wh nature. The Kempfield of percussion (PEF A total of 23,374 diamond drill ho	leposit has be Minerals), Go The Shell Co ariation in teo appropriate. ch the Resou leposit was se RC) drilling, ar 4 drill samples le core samp	een explored olden Cross (mpany of Au chniques or p rce Estimate ampled with ad with diamo s have been o les. A summa	over a period Dperations Pt stralia/Metals rocedures ap has been de drill chips froi ond drill hole collected, inc ary of Kempfi	d of approx sy Ltd (Gold bivision (S oplied by ea etermined is m reverse of (DDH) core luding 17,1 eld sample	imately fo den Cross Shell), and ach explor s consider circulation e of PQ, H 88 percus types is p	rty years by Argent Minerals i), Jones Mining Limited International Nickel Australia ration company are outlined ed to be of high quality in (RC) and conventional rotary Q and NQ size. ssion chip samples and 6,186 provided in Table 1.1.1.
		Table 1.1.1 – Sumn	nary of collected	l samples by dr	ill hole type and	l exploration	company	
		Company	Period	DDH	Samples BC/PERC	s Total	% Total	
		Argent Minerals	2007-current	3,051	9,302	12,353	53%	
		Golden Cross	1996-2007	45	4,090	4,135	18%	
		Jones Mining	1984-1985	409	-	409	2%	
		Shall	1070 1094	457	2 706	4.052	190/	
		Silei	1979-1904	431	3,730	4,200	1070	
		Inco	1972-1974	2,224	-	2,224	10%	
		TOTAL % TOTAL		6,186 26%	17,188 74%	23,374 100%	100%	
	•	Samples of betw detailed under ti crushed to 6 mr gold. The lower detection level either an Inducti Atomic Emission Measures taken Criteria heading of assay data ar	veen 2 and 3 ne criteria hea n and then pu detection limi All other elem vely Coupled n Spectroscop to ensure sa s 'Drill sample nd laboratory	kg each in w ading 'Sub-sa ulverized to 7 t for gold is (ents includin Laser - Mass by (ICP-AES mple represe e recovery', 'S tests'.	reight were se ampling techr 5 microns. A 0.01 ppm, wh g silver and b s Spectromet) finish, or an entivity and m Sub-sampling	elected for 19 split of 25 g split of 10 has be 20 se metals 20 se met	assay acc sample p of the sam en determ were ana s were ana s or Induc sorption S at calibrations and sar	cording to the procedures reparation'. These were typle was fire assayed for tined to be an appropriate alysed using acid digest and ctively Coupled Laser - Spectrometer (AAS). on are noted under the typle preparation' and 'Quality
Drilling techniques	•	A total of 495 ho techniques have percussion drillir	bles for 42,35 been applied ng (PERC and	3 metres of d d in the extra I RC) and co	drilling has be ction of the s mbination RC	een conduc amples, inc C collar/DD	ted. Seve cluding ful H tails, as	ral industry standard drilling I length diamond drilling, summarised in Table 1.1.2.

0-		٨	All Diamond Drilling Percussion Drilling Combined BC/DDH Drilling									
Co	npany	A PQ	II Diamono HQ	d Drilling	Q P	Percussion Dr ERC	RC	RC Pre-C	d RC/DDH Dri ollars DDI	lling H Tail	Total	
Numbe	r of holes	9	19	38	3 1	48	276		5		495	
M	etres	745	2,54	3 4,58	31 7,	978	25,132	815	5	59	42,353	_
Variatio Table 1 Compa	on in drillin 1.3 – Sumn ny Pe	ng tech m ary of d eriod	nniques drilling ma	accordir etres by dr	ng to exp rilling tech Percuss (RC)	Dioration of inique and end ion Drilling (PERC)	company exploration RC I	is set ou company Pre-Collar/C	ut in Table	e 1.1.3. All I	Holes	_
Arger	+		Holes	Metres	Holes	Metres	Holes	RC Metres	DDH Tail Metres	Holes	Metres	I
Minera	ls ²⁰⁰⁷⁻	-current	28	3,105	179	17,849	2	359	400	209	21,713	51
Cros	1996	6-2007	-	-	99	7,586	3	456	159	102	8,201	19
Minin) 1984	4-1985	14	771	-	-	-	-	-	14	771	2
Shel	1979	9-1984	6	917	146	7,675	-	-	-	152	8,592	2
Inco	1972	2-1974	18	3,076	-	-	-	-	-	18	3,076	-
	%	TOTAL	13%	7,869 19%	424 86%	78%	5 1%	2%	559 1%	495 100%	42,353 100%	1
 Diamo The his cleava Kempt comm 	nd drilling torical dr ge. This is eld depo encing wi	g was c rill core s consi osit. Mo ith hole	onduct was or dered t re rece AKDD	ed with e ientated o be the ntly, stat 177, are	either do relative most re e of the now em	uble tube to regiona liable orier art electro ployed at	wireline Il, steep (Intation m Dic orien Kempfie	core bar 80° to V hethod fo tation to Id as the	rel or tripl V) north-so or the histo ools have t e method	e tube j outh tre orical he oecome of choid	orocedu Inding oles at ti e availab ce.	ne ne
 Diamo The his cleava Kempf comm Core v to calit adjuste integrit 	nd drilling torical dr ge. This is eld depo encing wi vas meas vas meas vrate dep ed as requ y.	g was c rill core s consi osit. Mo ith hole sured ar th, exc uired in	was or dered t re rece AKDD nd mark ept for including	ed with e o be the ntly, stat 177, are ked at 1 Inco whie drilling r	either do relative most re e of the now em metre in ch mark rate, run	uble tube to regiona liable orier art electro ployed at tervals aft ed at 1.52 length an	wireline II, steep (ntation m onic orien Kempfie er each c 2 metre ir d fluid pr	core bar 80° to V tethod fo tation to Id as the drill run u tervals (essure,	rrel or tripl V) north-so or the histo ools have t e method using benco (5 feet). Ri in order to	e tube p buth tre brical ho become of choid chmark g proce mainta	orocedu nding bles at ti e availab ce. block le edures v ain samp	ne Ile, Ingl
 Diamo The his cleava Kempf comm Core v to calit adjuste integrit Percussion Percussion 	nd drilling torical dr ge. This is eld depo encing wi vas meas vas meas vas meas vate dep ed as requ y. drilling	y was c rill core s consid sit. Mo ith hole sured ar th, exc uired in <u>technia</u>	was or dered t re rece AKDD nd mark ept for including	ed with e ientated o be the ntly, stat 177, are ked at 1 Inco whie drilling r	either do relative most re e of the now em metre in ch mark rate, run	uble tube to regiona liable orier art electro ployed at tervals aft ed at 1.52 length an	wireline II, steep (ntation m onic orien Kempfie er each c 2 metre ir d fluid pr	Core bar 80° to V tethod fo tation to Id as the drill run u tervals (essure,	rel or tripl V) north-so or the histo ools have t e method using benc (5 feet). Ri in order to	e tube p buth tre brical ho become of choid chmark g proce mainta	orocedu nding bles at ti e availab ce. block le edures v ain samp	ne Ile, Ingi vera Dle
 Diamo The his cleava Kempf comm Core v to calit adjuste integrit Percussion Percussion to 140 	nd drilling torical dr ge. This is eld depo encing wi vas meas trate dep ed as requ y. drilling mm (4.5	g was c rill core s consid sit. Mo ith hole sured ar th, excu uired in <u>technid</u> ng was - 5.5 ir	was or dered t re rece AKDD nd mark ept for icluding ques s condu	ed with e o be the ntly, stat 177, are ked at 1 Inco whi g drilling r	either do relative most re e of the now em metre in ch mark rate, run	uble tube to regiona liable orier art electro ployed at tervals aft ed at 1.52 length an	wireline II, steep (ntation m onic orien Kempfie er each o 2 metre ir d fluid pr	ECORE bar 80° to V tethod fo tation to Id as the drill run u tervals (essure,	rel or tripl V) north-se or the histo ools have t e method using benc (5 feet). Ri in order to andard ha	e tube p outh tre orical ho occome of choid chmark g proce o mainta	orocedu nding bles at ti a availab ce. block le edures v ain samp izes from	ne Ile, vere ble
 Diamo The his cleava Kempf comm Core v to calit adjuste integrit Percussion Percus to 140 Please and common 	nd drilling torical dr ge. This is eld depo encing wi vas meas trate dep ed as requ y. drilling sion drilli mm (4.5 refer to 7 nventiona	y was c rill core s consid sith hole sured ar th, excu uired in <u>technid</u> ng was - 5.5 ir Table 1 al percu	was or dered t re rece AKDD nd mark ept for icluding condu nches). .1.3 ab ussion.	ed with e ientated o be the ntly, stat 177, are ked at 1 Inco whi g drilling r	either do relative most re e of the now em metre in ch mark rate, run h conver	uble tube to regiona liable orier art electro ployed at tervals aft ed at 1.52 length an ntional me	wireline II, steep (Intation monic orien Kempfie er each o 2 metre ir d fluid pr thods us	core bar 80° to V tethod fo tation to Id as the drill run u tervals (essure, ing a sta	rel or tripl V) north-so or the histo ools have b e method using benc (5 feet). Ri in order to andard ha	e tube p pouth tre prical ho pecome of choid chmark g proce mainta mmer s	orocedu nding bles at ti a availab ce. block le edures v ain samp izes from	ne Ile, vero ble I as
 Diamo The his cleava Kempt comm Core v to calit adjuste integrit Percussion Percus to 140 Please and co The Ar recove follows 	nd drilling torical dr ge. This is eld depo encing wi as meas rate dep ed as requ y. drilling sion drilli mm (4.5 refer to 7 nventiona gent Mine ries. Rele	y was c rill core s consider sit. Mo ith hole sured ar th, excu uired in the excu uired in the excu uired in the excu uired in the excu uired in the excu uired ar the excu ar the excu uired ar the excu ar the excu the excu the excu the excu the e	enduct was or dered t re rece AKDD nd mark ept for icluding condu nches). .1.3 ab ussion.	ed with e ientated o be the ntly, stat 177, are ked at 1 Inco whi drilling r octed with ove for a	either do relative most re e of the now em metre in ch mark rate, run h conver s summa	uble tube to regiona liable orier art electro ployed at tervals aft ed at 1.52 length an ntional me ry of the r	wireline II, steep (Intation monic orien Kempfie er each o metre ir d fluid pr thods us relative po	ing a sta	rel or tripl V) north-so or the histo ools have b e method 5 feet). Ri in order to andard ha of percuss als drill co rilling are	e tube pouth tre prical ho pecome of choid chmark g proce o mainta mmer s ion hole	orocedu nding bles at ti e availab ce. block le edures v ain samp sizes from sizes from sizes drillec drill chip rised as	me ne vera ble m 1 l as
 Diamo The his cleava Kempf comm Core v to calit adjuste integrit Percussion Percus to 140 Please and co The Ar recove follows Diamond co 	nd drilling torical dr ge. This is eld depo encing wi as meas trate dep ed as requ y. drilling sion drilli mm (4.5 refer to 7 nventiona gent Mine ries. Rele	y was c rill core s consision ith hole sured ar th, excu uired in <u>technia</u> ng was - 5.5 ir Table 1 al percu erals da evant as	onduct was or dered to re rece AKDD ad markept for icluding ques a condu aches). .1.3 ab ussion.	ed with e ientated o be the ntly, stat 177, are ked at 1 Inco whi or drilling r octed with ove for a	either do relative most re e of the now em metre in ch mark rate, run h conver s summa s a deta eries for	uble tube to regiona liable orier art electro ployed at tervals aft ed at 1.52 length an ntional me ry of the r	wireline II, steep (ntation m onic orien Kempfie er each o 2 metre ir d fluid pr thods us relative po d of Arge and perc	ing a sta	rel or tripl V) north-so or the histo ools have b e method (5 feet). Ri in order to andard ha of percuss als drill co Irilling are	e tube pouth tre prical ho pecome of choid chmark g proce mainta mmer s ion hole re and summa	orocedu nding bles at ti e availab ce. block le edures v ain samp sizes from sizes from sizes drillec drill chip rised as	me lile, vera ble m 1 l as
 Diamo The his cleava Kempf comm Core v to calil adjuste integrit Percussion Percussion Percus to 140 Please and co The Ar recove follows Diamond co Diamo record record the len entere 	nd drilling torical dr ge. This is eld depo encing wi vas meas vas meas vate dep ed as requ y. drilling mm (4.5 refer to 7 nventiona gent Mine ries. Rele rilling sa nd drill co s (for eve iled durin gth of the d into a s	y was c rill core s considuation solution hole sured ar th, excu uired in th, excu uired in th, excu uired ar th, excu uired ar th, excu uired ar th, excu to a constant th, excu uired ar th, excu to a constant the constant the constant the constant the	enduct was or dered to re rece e AKDD ad markept for including ques is condu actored inches). .1.3 ab ussion. .1.3 ab ussion. .1.3 ab ussion.	ed with e ientated o be the ntly, stat 177, are ked at 1 Inco which g drilling r ove for a e contain of recove Y were der illing pro- pocessing pre and c which wa	either do relative - most re e of the now em metre in ch mark rate, run h conver s a deta eries for and geo livide by as then u	uble tube to regiona liable orier art electro ployed at tervals aft ed at 1.52 length an ntional me ry of the r led record diamond a pugh reco iamond c plogical log the drill in uploaded i	wireline I, steep (ntation monic orien Kempfie er each o 2 metre ir d fluid pr thods us relative po d of Arge and perc prociliation ore recov gging. Th iterval for into the o	core bar 80° to V tethod for tation to Id as the drill run u tervals (essure, ing a sta ortions c nt Miner ussion c of the a veries we e methor c each se database	rel or tripl V) north-so or the histo ools have b e method (5 feet). Ri in order to andard ha of percuss als drill co rilling are actual core ere record od employ ection reco	e tube pouth treprical hopecome of choice chmark g processon maintain mmer states and the summation of the summation of the summation of the s	brocedu nding bles at ti e availab ce. block le edures v ain samp sizes from es drillec drill chip rised as ng driller to mea This wa	me le, mg vero ble m 1 l as

	• Measures undertaken to maximize core recovery include: a) larger core diameter size (HQ) drilled through the weathered intervals and b) the use of short drill runs (0.5 -1.5 metres).
	• A statistical analysis of diamond core recoveries was performed in 2014 on a representative dataset of 27 holes out of the 28 full length diamond holes drilled by Argent Minerals. The result of the analysis is that there was no obvious bias in silver grades due to low sample recoveries.
	Percussion drilling sample recovery
	• During Argent Minerals RC drilling, special care was taken to adjust penetration rate and air pressure, especially if samples were wet. Drill chips were collected at one metre intervals in plastic bags, weighed, split (to 1:12 with a riffle splitter) and then composited on two metre intervals in calico bags. The weight of recovered drill chips per metre enabled recovery rates to be estimated. Wet samples were dried before weighing and splitting.
	 Percussion drill chip recoveries were calculated by weighing recovered chips per metre drilled and reconciling with the volume and expected relative density of the material sampled. This was entered into a separate table which was then uploaded into the database.
	 A statistical analysis of percussion sample recoveries was performed in 2014 on a representative dataset of 22 holes out of 179 RC holes drilled by Argent Minerals. The result of the analysis is that there was no obvious bias in silver grades due to low sample recoveries.
Logging	 Geological logging and re-logging of diamond drill core was employed to record lithology, alteration, mineralisation, veining and structures (faults and foliation).
	• The geological logging of core and chip samples and geotechnical logging of core has been performed to the level of detail required to support appropriate Mineral Resource estimation.
	 Drill core and drill chips were logged as both qualitative (descriptive) and quantitative (percentage volume visual estimates). Core was photographed in both wet and dry condition. Argent Minerals has also re- logged and re-photographed historical drill core stored at the NSW Core Library in Londonderry.
	• 100% of the total 42,353 metres of the diamond and percussion drill holes have been geologically, geochemically and geotechnically (diamond holes) logged.
Sub-sampling	Percussion drilling chip sampling
techniques and sample separation	• 74% of the total number of samples were collected by either RC or conventional percussion drilling. A total of 17,188 percussion drill chip samples were collected during three major drilling programs conducted by Shell, Golden Cross, and Argent Minerals. The sampling sizes (between 2 and 3 kg) and techniques are considered to have been appropriate for percussion drilled chip sampling for the style and grain size of mineralisation at Kempfield, and further details are set out according to exploration company as follows:
	- Argent Minerals conducted RC drilling under industry best practice procedures. The total recovered RC drill chips were collected at 1 metre intervals in plastic bags, left to dry out if required, split to 1:12 with a riffle splitter in calico bags each up to 2.5 kg in weight and then composited on 2 metre intervals.
	- Golden Cross conducted RC drilling and collected 4,090 samples. Samples were collected by the spear method – the total sample for a 1 metre of drill hole length was collected in a bag which was speared and the spear samples then composited at two metre intervals. Golden Cross samples were collected as both wet and dry, and sample sizes were between 2 and 3 kilograms each.
	- Shell drilled 150 percussion holes in three programs of 30, 30 and 90 holes respectively (147 of which are recorded in the Argent Minerals database and employed in the Kempfield Resource estimation detailed in this report). During programs one and two, cuttings were collected using either simple cyclones or sludge buckets and much of the fines was either blown or washed away. Sample collection methods were improved in the third program through the use of an Ingersoll Rand Jumbo Airtrac drilling rig, and from hole 3PD-27 onward the Aqua-Dust sampling system was used to minimise the loss of fines. Documentation is not available for the specifics of Shell's sample preparation techniques at Kempfield. Argent Minerals believes that it is a reasonable assumption that

 0.5 to 1.5 m and geologic Golden Crossof the sample mineralisatio Most of the sort 2 metres Shell diamon and lower set Inco collecter intervals and noted, the to (1,516 samp metals). Selected con Shell bevelle discrepancie linco drill hole 2011 - a tota base metals A total of 6,186 Table 1.1.4 - Summ Drill core size & sampled portion 1/4 PQ 1/2 HQ 1/4 HQ 	aetres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On- nd drill core ections of SI ed samples b) 1.52 me btal respectiones of SI b) 1.52 me btal respectiones of SI et samples in the Ai re intervals we es es in lead va es within the al of 709 sau , pathfinder, drill core sa nary of diamor Number of samples 674 831 519	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's e Kempfield resour mples, and arrang , and rock-forming mples of different nd core samples by du % of Drill Core 10.9 13.4 8.4	NQ size was split in half is. Where zones were of 2 metres were selected with along the length by diamo KF-18, was split and 1/8 ed predominantly split or SKF-5 sampling was per mm (2 inch) core chips or it varying intervals. Where a split for analysis. Inco or abase) of drill core with li or re-assayed for gold and or over 6.1 metre (20 fea analysis verified Inco's re- rice outline were also resa ed for them to be analysis rece outline were also resa ed for them to be analysis elements. sizes were collected (see rill hole size and sampled port <u>Comments</u> <u>Geotechnical drilling</u> <u>Metallurgical drilling</u> <u>Metallurgical drilling</u>	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation was conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s e Table 1.1.4 summary).
 0.5 to 1.5 m and geologic Golden Crossof the sample mineralisatio Most of the sort 2 metre single mineralisation and lower set an	aetres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On- nd drill core ections of SI ed samples b) 1.52 me batal respectiones in the Au re intervals we ed selected se es in lead va es within the al of 709 sar , pathfinder, drill core sa nary of diamor Number of samples 674 831	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's e Kempfield resour mples, and arrang , and rock-forming mples of different nd core samples by di % of Drill Core 10.9 13.4	NQ size was split in half is. Where zones were of 2 metres were selected along the length by diama KF-18, was split and 1/8 wed predominantly split or SKF-5 sampling was per mm (2 inch) core chips or t varying intervals. Where s split for analysis. Inco or abase) of drill core with line or e-assayed for gold and ore over 6.1 metre (20 fea analysis verified Inco's re- rece outline were also resa ed for them to be analysis relements. sizes were collected (see rill hole size and sampled port Comments Geotechnical drilling Metallurgical drilling	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation wa conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s e Table 1.1.4 summary).
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the sort 2 metre single of the sample of 2 metre single of 2 metre singl	aetres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On- nd drill core ections of SI ed samples b) 1.52 me bla respectiones of SI ed samples d b) 1.52 me bla respectiones in the Ai re intervals we ed selected se es in lead va es within the al of 709 sau , pathfinder, drill core sa nary of diamor Number of samples 674	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's e Kempfield resour mples, and arrang mples of different nd core samples by du % of Drill Core 10.9	NQ size was split in half is. Where zones were of 2 metres were selected with along the length by diamo KF-18, was split and 1/8 ed predominantly split of SKF-5 sampling was per mm (2 inch) core chips of t varying intervals. Where a split for analysis. Inco of abase) of drill core with ling or e-assayed for gold and or e over 6.1 metre (20 fea analysis verified Inco's re- rice outline were also resa ed for them to be analysis relements. sizes were collected (see rill hole size and sampled port <u>Comments</u>	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation was conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s e Table 1.1.4 summary).
 0.5 to 1.5 m and geologic Golden Crossof the sample mineralisatio Most of the sort 2 metres Shell diamon and lower set Inco collecter intervals and noted, the to (1,516 sample metals). Selected con Shell bevelle discrepancie lnco drill hole 2011 - a tota base metals A total of 6,186 Table 1.1.4 – Summer State A sampled portion 	aetres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On- nd drill core ections of SI ed samples d b) 1.52 me otal respections of SI ed samples d b) 1.52 me otal respections of sin the An- re intervals we es sin lead va es within the al of 709 san , pathfinder, drill core sa nary of diamor	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's e Kempfield resour mples, and arrang , and rock-forming mples of different nd core samples by du	NQ size was split in half is. Where zones were of 2 metres were selected along the length by diama KF-18, was split and 1/8 and predominantly split of SKF-5 sampling was per mm (2 inch) core chips of t varying intervals. Where a split for analysis. Inco of abase) of drill core with line or e-assayed for gold and ore over 6.1 metre (20 fer analysis verified Inco's re- rece outline were also resa ed for them to be analysis elements. sizes were collected (see rill hole size and sampled port	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation wa conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s e Table 1.1.4 summary). tion
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the a or 2 metre s Shell diamon and lower se Inco collected intervals and noted, the to (1,516 samp metals). Selected con Shell bevelle discrepancie Inco drill hole 2011 - a tota base metals A total of 6,186 Table 1.1.4 – Summ 	netres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On- nd drill core ections of SI ed samples b) 1.52 me bla respectiones of SI ed samples d b) 1.52 me bla respectiones of control and the second control and the seco	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's e Kempfield resour mples, and arrang mples of different	NQ size was split in half is. Where zones were of 2 metres were selected with along the length by diamo KF-18, was split and 1/8 ed predominantly split of SKF-5 sampling was per mm (2 inch) core chips of t varying intervals. Where a split for analysis. Inco of abase) of drill core with ling re-assayed for gold and ore over 6.1 metre (20 fea analysis verified Inco's re- rice outline were also resa ed for them to be analysis relements. sizes were collected (see rill hole size and sampled por	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation was conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s e Table 1.1.4 summary).
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the son 2 metre single mineralisation or 2 metre single diamon and lower set Inco collecter intervals and (1,516 sample metals). Selected con Shell bevelle discrepancies Inco drill hole 2011 - a tota base metals A total of 6,186 	etres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On- nd drill core ections of SI ed samples b) 1.52 me bla respecti- bles in the Air re intervals we d selected se is in lead va es within the al of 709 sau , pathfinder, drill core sa	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's e Kempfield resour mples, and arrang mples of different	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diama KF-18, was split and 1/8 wed predominantly split or SKF-5 sampling was per mm (2 inch) core chips or t varying intervals. Where s split for analysis. Inco or abase) of drill core with li or re-assayed for gold and ore over 6.1 metre (20 fer analysis verified Inco's re- rice outline were also rese ed for them to be analys relements. sizes were collected (see	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation was conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s e Table 1.1.4 summary).
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the son 2 metre sintervals and lower set Shell diamon and lower set Inco collecter intervals and (1,516 samp metals). Selected con Shell bevelle discrepancies lnco drill hole 2011 - a tota base metals 	etres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On nd drill core ections of SI ed samples d b) 1.52 me otal respectiones in the Au re intervals we d selected se is in lead va as within the al of 709 san , pathfinder,	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's eter source and the sour- mples, and arrang and rock-forming	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diama KF-18, was split and 1/8 wed predominantly split ca SKF-5 sampling was per mm (2 inch) core chips of t varying intervals. Where s split for analysis. Inco of abase) of drill core with line or e-assayed for gold and or e over 6.1 metre (20 fer analysis verified Inco's re- rece outline were also resa ed for them to be analysis relements.	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation was conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the son 2 metre son 2 me	etres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On nd drill core ections of SI ed samples d b) 1.52 me otal respectiones in the Au re intervals with the all of 709 same	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's a Kempfield resour mples, and arrang	NQ size was split in half is. Where zones were of 2 metres were selected along the length by diama KF-18, was split and 1/8 and predominantly split ca SKF-5 sampling was per mm (2 inch) core chips of t varying intervals. Where a split for analysis. Inco c abase) of drill core with ling re-assayed for gold and ore over 6.1 metre (20 fer analysis verified Inco's re- acce outline were also resa- ed for them to be analysis	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation was conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden (et) intervals. Whilst some esults overall. ampled by Argent Minerals d ed by a laboratory for gold, s
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the son 2 metres Shell diamon and lower see Inco collecter intervals and noted, the to (1,516 samp metals). Selected con Shell bevelle discrepancie 	etres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. On nd drill core actions of SI ed samples tal respection of selected so is in lead va	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data were subsequently sections of Inco co lues exist, Shell's a	NQ size was split in half is. Where zones were of 2 metres were selected along the length by diama KF-18, was split and 1/8 and predominantly split ca SKF-5 sampling was per mm (2 inch) core chips of t varying intervals. Where a split for analysis. Inco of abase) of drill core with line or e-assayed for gold and ore over 6.1 metre (20 fea analysis verified Inco's re	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation wa conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some esults overall.
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the son 2 metre sintervals and lower see intervals and noted, the to (1,516 sample metals). Selected con Shell bevelle 	etres maxin cal control. ss drilled dia les comprise in, intervals Jones Minir amples. On nd drill core actions of St ed samples d b) 1.52 me otal respecti- oles in the Au re intervals v id selected s	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 etre splits of core a ve core length was rgent Minerals data	NQ size was split in half is. Where zones were of 2 metres were selected along the length by diama KF-18, was split and 1/8 and predominantly split ca SKF-5 sampling was per mm (2 inch) core chips of t varying intervals. Where a split for analysis. Inco of abase) of drill core with ling re-assayed for gold and pre over 6.1 metre (20 feet	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation wa conducted selective sampling mited assays (mostly for bas d silver by Shell and Golden C et) intervals. Whilst some
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the son 2 metre since and lower see Inco collecter intervals and noted, the to (1,516 sample metals). 	etres maxin cal control. ss drilled dia les comprise in, intervals Jones Minir amples. On nd drill core actions of SI ed samples t b) 1.52 me otal respection les in the An	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 tre splits of core a ve core length was rgent Minerals data	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diamo KF-18, was split and 1/8 and predominantly split co SKF-5 sampling was pe mm (2 inch) core chips o t varying intervals. Where s split for analysis. Inco o abase) of drill core with li	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation was conducted selective sampling mited assays (mostly for bas
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the solution or 2 metres Shell diamon and lower set Inco collected intervals and noted, the to (1 516 sample) 	netres maxin cal control. ss drilled dia les comprise in, intervals Jones Minir amples. One nd drill core actions of SI ad samples t b) 1.52 me otal respections of sin the Ano-	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris KF-1 and all of the comprising: a) 51 tre splits of core a ve core length was roent Minerals dat	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diamo KF-18, was split and 1/8 and predominantly split co SKF-5 sampling was pe mm (2 inch) core chips o t varying intervals. Where s split for analysis. Inco o abase) of drill core with i	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling. collected over 1.52 metre (5 f e significant mineralisation wa conducted selective sampling mited assays (mostly for base
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the solution or 2 metre solution Shell diamon and lower selected intervals and 	etres maxin cal control. ss drilled dia les comprise in, intervals Jones Minir amples. On nd drill core actions of Sl ad samples t b) 1.52 me	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris <f-1 all="" and="" of="" the<br="">comprising: a) 51</f-1>	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diamo KF-18, was split and 1/8 ed predominantly split co SKF-5 sampling was pe mm (2 inch) core chips o t varving intervals. Where	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u erformed by bevelling.
 0.5 to 1.5 m and geologic Golden Cros of the sampl mineralisatio Most of the or 2 metre s Shell diamon and lower se 	netres maxin cal control. ss drilled dia les comprise in, intervals Jones Minir amples. One nd drill core ections of Sl	num. Sampling inter amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris <f-1 all="" and="" of="" td="" the<=""><td>NQ size was split in half s. Where zones were of 2 metres were selected along the length by diamo KF-18, was split and 1/8 ed predominantly split co SKF-5 sampling was pe</td><td>with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u</td></f-1>	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diamo KF-18, was split and 1/8 ed predominantly split co SKF-5 sampling was pe	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed. ore in 2 metre lengths. The u
 0.5 to 1.5 m and geologic Golden Cros of the sampl mineralisatio Most of the or 2 metre s Shell diamon 	netres maxin cal control. ss drilled dia les comprise on, intervals Jones Minir amples. One nd drill core	amond drill core of ed 1 metre interval of between 1 and ng core was split a e PQ sized hole, J sampling compris	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diamo KF-18, was split and 1/8	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e core analysed.
 0.5 to 1.5 m and geologic Golden Cross of the sample mineralisatio Most of the sample or 2 metres of the sample or 2 metres of the sample of th	ietres maxin cal control. ss drilled dia les comprise in, intervals Jones Minir amples Occ	amond drill core of ed 1 metre interval of between 1 and 19 core was split a	NQ size was split in half s. Where zones were of 2 metres were selected along the length by diama	with a diamond saw. The m variable geology and on the basis of observed geo ond saw, with half taken as e
 0.5 to 1.5 m and geologic Golden Cross of the sampl mineralisatio 	etres maxin cal control. ss drilled dia les comprise n, intervals	amond drill core of ad 1 metre interval of between 1 and	NQ size was split in half s. Where zones were of 2 metres were selected	with a diamond saw. The m variable geology and on the basis of observed geo
0.5 to 1.5 m and geologic - Golden Cros	etres maxin cal control. ss drilled dia	amond drill core of	NQ size was split in half	with a diamond saw. The m
0.5 to 1.5 m and geologic	etres maxin cal control.	num. Sampling inte	ervais were selected with	r an emphasis on mineralisat
· · · · · · · · · · · · · · · · · · ·		O 11 1 1	or volo vuoro polootod vuith	on omnhooig on minoraligat
 Argent Mine size) and qui 	e rais drilled (arter (PQ) co	diamond core with	ו PQ, HQ and NQ size ar d saw to produce sample	nd split as half core (HQ and es for assaying. Intervals vary
Further details a	ire set out a	ccording to explor	ation company as follow	S:
methodology.				
The sample size project based of	s were appi n the style c	ropriate to correct	ly represent the sulphide onsistency of the interse	mineralisation at the Kempfictions, and the sampling
eighths), and the	e respective	core section 'split	t' analysed at a certified a	assay laboratory.
The selected dri	ill core was	cut in either half or	quarters (or in the case	of one large diameter core.
The diamond dr	ill core sam	pling at Kempfield	has provided high quality	y samples that were logged t
mond drill core	sampling			
dry samples	•			
time. Given t generally hig	that the maj her than the	ority of the Shell he e known water tab	oles were shallow (less the in the area and therefo	nan 50 metres depth), they a pre likely to be collected mos
	time. Given t generally hig dry samples mond drill core s The diamond dr multiple attribute The selected dri eighths), and the The sample size project based o methodology. Further details a - Argent Mine size) and gu	time. Given that the maj generally higher than the dry samples. mond drill core sampling The diamond drill core samp multiple attributes including The selected drill core was eighths), and the respective The sample sizes were app project based on the style of methodology. Further details are set out a - Argent Minerals drilled size) and quarter (PO) of	time. Given that the majority of the Shell h generally higher than the known water tab dry samples. mond drill core sampling The diamond drill core sampling at Kempfield multiple attributes including lithology, structure The selected drill core was cut in either half or eighths), and the respective core section 'split The sample sizes were appropriate to correct project based on the style of mineralisation, c methodology. Further details are set out according to explor - Argent Minerals drilled diamond core with size) and quarter (PO) core with a diamond	 time. Given that the majority of the Shell holes were shallow (less the generally higher than the known water table in the area and therefordry samples. mond drill core sampling The diamond drill core sampling at Kempfield has provided high qualite multiple attributes including lithology, structure, geotechnical data, and The selected drill core was cut in either half or quarters (or in the case eighths), and the respective core section 'split' analysed at a certified a The sample sizes were appropriate to correctly represent the sulphide project based on the style of mineralisation, consistency of the intersemethodology. Further details are set out according to exploration company as follow Argent Minerals drilled diamond core with PQ, HQ and NQ size ar size) and quarter (PQ) core with a diamond saw to produce sample

	•				
	Sum	imary			
	•	A summary of the	e sample n	nedia collected at Kerr	npfield project is presented in Table 1.1.5.
			ary of Sample		
		Total number of sam	nples	RC drill chip samples	DDH drill core samples
		23,374		17,188 (74%)	6,186 (26%)
					1/2 PO 674 (olus additional 264 re-assays by Golden Cross)
					1/2 HQ 831
					¼ HQ 519
					1/2 NQ 3,452
					1/4 NQ 710 (re-assayed by Argent Minerals)
	•	Details of quality presented under summary and rela	control pro the Criteria ated discus	ocedures and addition a heading 'Quality of a ssion under the same	al measures taken to ensure representivity are ssay data and laboratory tests' (see the Table 1.1.6 Criteria heading).
Quality of assay data and laboratory tests	•	Quality assurance laboratory tests a used. In summary to have been high sufficient for the M exploration comp	e and quali are summa y, the net r n quality in Vineral Res pany are se Summary for	ity control (QAQC) pro rised in Table 1.1.6. N result of all the laborato nature, appropriate fo source Estimate in this out following the tab	cedures for historical sampling, assay data and o geophysical tools or handheld XRF instruments were bry techniques and procedures applied are considered or the mineralisation and providing a near-total result is report. Additional relevant specifics for each le.
		Table 1.1.0 - QAQC	Summary for	reach Exploration Compa	'y
		Company	Number of assays		Comments
		Argent Minerals	12,353	Full QAQC applied:	
		Argent Minerals Re-assays of Inco samples	708	 field coarse blanks (standard reference r duplicate every 25th cross laboratory che cross analytical tech three pairs of twin he 	every 50 th); naterial from standards supplied by Geostats Pty Ltd (every 50 th); or 50 th ; ck (ALS Orange, Genalysis Laboratory Services Pty Ltd); nique checks (ICP-MS versus four acid leach); and oles – RC vs DDH
		Golden Cross	4,135	Satisfactory QAQC:	
		Golden Cross Re-assays of Jones Mining samples	263	 duplicates; and cross-laboratory che analytical technique following this table) 	ecks (ALS Orange, ALS Stafford, Becquerel and Genalysis), and cross- checks (ICP-AES versus Neutron Activation Analysis - see discussion
		Jones Mining	146	QAQC documen	tation partially available - Jones Mining re-assayed 82 samples
		Shell	4,253	Satisfactory QAQC: - four check holes aga - cross-laboratory che	ainst percussion drilling program; and acks.
		Inco	1,516	QAQC doo	cumentation not available
	•	Argent Minerals and silver and ba - Samples were sample was fi determined to	samples w se metals e crushed l ire-assayed b be an app	vere submitted to ALS by ICP-MS. by ALS to 6 mm and t d for gold. The lower c propriate detection lev	Laboratories in Orange for gold assays by fire assay, hen pulverized to 75 microns. A 25 g split of the letection limit for gold is 0.01 ppm, which has been el. All other elements including silver and base metals
		were analysedAqua regia dig	d using aqı gest/ICP-N	ua regia acid digest ar IS finish was compare	nd an ICP-MS finish. ad with four-acid/ICP-MS finish with a very high

	correlation achieved, confirming a near-total result for the aqua regia/ICP-MS technique.
	 ALS Laboratory QAQC comprised the use of certified reference materials, blanks, splits and duplicates as part of in-house procedures and internal standards.
	 Argent Minerals submitted an independent suite of standard reference materials (SRM) 1:25 and coarse blanks 1:50 Field duplicates were collected every 25th sample during RC drill chip sampling. For percussion drilling samples, Argent Minerals performed laboratory cross checking by submitting samples to ALS and Genalysis Laboratory Services Pty Ltd for cross checking; a very high correlation was achieved.
	- For core samples, metallurgical assays for 1/2 core were compared with the original 1/4 core assays; a very good correlation was achieved.
	 Periodic internal QAQC reports for Argent Minerals sampling procedures show good precision and accuracy of analytical methods and sampling procedures. No obvious contamination was observed during sample preparation.
	- Full sets of assay certificates are retained by Argent Minerals.
•	Golden Cross samples were submitted to ALS Laboratories in Orange for gold assays by fire assay, silver and base metals by aqua regia digest with an ICP-AES finish, and barium by X-ray diffraction (XRF).
	- Samples were crushed by ALS to 6 mm and then pulverized to 75 microns. A 25 g split of the sample was fire-assayed for gold. The lower detection limit for gold is 0.01 ppm, which has been determined to be an appropriate detection level. All other elements including silver and base metals were analysed using aqua regia acid digest and an ICP-AES finish.
	- Duplicate samples were submitted to the Australian Nuclear Science and Technology Organisation (ANSTO) for Neutron Activation Analysis (NAA), a very sensitive method of quantitative multi- elemental analysis with the potential to determine concentrations in a sample from parts per billion (ppb) to tens of percent. Comparison of neutron activation, four acid/ICP-MS and aqua regia digest/ICP-AES assay results verified that the primary technique (aqua regia digest/ICP-AES) was reliable for silver and base metal assaying, yielding near-total results.
	- Full sets of assay certificates are retained by Argent Minerals.
•	Jones Mining samples were assayed by Australian Laboratory Services in Brisbane for silver and barium using method XRF-1A, and one hole (JKF-20) by AMDEL in South Australia.
	- The XRF-1A method comprised sample preparation by milling to -75 microns and pressing into briquettes each of minimum 25 g weight. A limited number of samples were analysed for gold (7) and other elements (2), for which analysis procedure documentation has not been located.
	- Jones Mining reassayed many of the 2 metre lengths at 1 metre intervals using the same methodologies as for the original 1 metre interval assays. The PQ size hole, JKF-18, was split and 1/8 core analysed for Ag and Ba by ALS as per the above XRF-1A method together with the core from the other holes. Half of the silver anomalous zones were despatched to AMDEL in South Australia for metallurgical tests as well as silver and barium assays (analytical method documentation not available).
	 Partial documentation has been located in relation to the Jones Mining internal QAQC procedures. The original assay certificates have not been located.
	In 1998 Golden Cross re-sampled and re-assayed material from Jones Mining's drill holes JKF-7 to JKF-18 and JKF-19 in 1999. Intervals were selected for re-assay where warranted by grade and distribution. A comprehensive inter-laboratory check assay program was performed, with samples sent to ALS Orange, ALS Stafford, Becquerel and Genalysis. Silver was assayed for by method A101 and lead and zinc by method G102. Method A101 was recommended by the lab for lead and silver ores containing barite and comprised aqua regia digestion, hydrochloric acid dissolution with addition of ammonium acetate and thiosulphate for complexation of lead and silver, followed by flame AAS. Method G102 was recommended by the lab for sulphidic samples, and comprised aqua regia digestion followed by flame AAS. Satisfactory QAQC procedures were applied, and data pertaining to ALS's internal lab standards are documented. Evaluation of the data found that there were good correlations between the Stafford laboratory by method A101, Stafford fire assay (correlation

ASX/MEDIA RELEASE

	coefficient = 0.9976), and Becquerel (correlation coefficient = 0.9982). Data that fell outside the acceptable range of tolerance was discarded from the database, leaving those summarised in Table 1.1.6. From this work Golden Cross concluded that the best available sample and assay data have been employed in the database (favouring the Golden Cross re-assays). A subsequent review by Argent Minerals determined that there are no material issues with the remaining Jones Mining data.
	 Shell core and percussion samples were originally assayed by ALS method XRF-1A for barium (see description above) and 101-B for copper, lead, zinc, and silver.
	 ALS has advised Argent Minerals that method 101-B is likely to be have been a modified version of A101 (see description above) specifically designed for Pb and Zn analysis, and the Shell documentation notes that it involved 'specially developed digestion'.
	- Shell subsequently selected specific core samples from the six diamond holes and submitted them for re-assay by ALS (method 101-B) as well as COMLABS Pty Ltd. SKF-4 was re-assayed from 99 to 120 metres by ALS method 101-B and COMLABS method AAS-3 for silver, base metals and barium. Limited documentation has been located for method AAS-3 which is described as 'AAS using specially developed acid digestion technique'. ALS re-assayed all of the SKF-2, 3, 5 and 6 core sampled originally, with several methods. These included AAS-5B for gold (30 g charge), and for silver, AAS-3, XRF and 'AAS special acid attack' (no details). XRF was also employed for pathfinder elements gallium and antimony.
	 Approximately 11% of the original percussion hole metres were also reassayed by COMLABS in 6 metre segments for gold using method AAS-5B, and pathfinder elements gallium and antimony using XRF.
	- The original assay certificates for the Shell assays have not been located.
	 From this work Shell concluded from that the analytical techniques routinely used by ALS for all Kempfield samples was satisfactory.
	 Inco submitted samples for assay by 'INAL' (Inco's own laboratory), Robertson Research', 'Geomin', Boulder Lab' and 'Rockhampton'. In some cases, the laboratory has not been identified in the available documentation.
	 The assay method has been recorded in the drill logs as 'AAS'. Where the method field has not been ticked the almost identical sheet format and context suggest that AAS has been employed.
	 No details of blanks, duplicates or internal standards are recorded in the logs, nor is there information about any of the laboratories' internal QAQC, nor have the original assay certificates been located.
	- In 1980 Shell resampled Inco's drillholes IKF-DDH1, 5, 7, 10, 17 and 18, and submitted them for re- assay by ALS using the AAS method; it had been suggested that the laboratory techniques employed by Inco may have underestimated the lead and silver content of the holes drilled by Inco. It was thought that lead and silver results would be notably depressed in the presence of large amounts of barite when perchloric acid digestion rather than aqua regia digestion was used before AAS determination. In order to test this hypothesis, sections of Inco's drill core were bevel sampled and the samples analysed for lead and silver and in some cases for gold, barium, copper and zinc. The results showed that generally the lead values from Inco's assays were depressed, but silver values were comparable with the re-sampling results.
	- In 1984 Jones Mining assayed some of the core for gold by fire assay.
	 In 2012 Argent Minerals resampled selected intervals of Inco's drillholes IKF-DDH1, 5, 7, 10, 12, 14, 15, 17 and 18. A total of 708 samples was re-assayed at ALS in orange using fire assays Au-AA25 for gold and ME-ICP41 for silver and base metals.
Verification of sampling and assaying	 Initial internal verification of significant intersections was conducted by technical consultants David Timms (MAIG), senior geologist Chris Johnson and site geologist Hrvoje Horvat, and progressed to independent verification by H&SC for Mineral Resource estimation and reporting purposes.
	 Merging of down-hole sampling intervals with assay data was performed by Dr Vladimir David (RPGeo) using H&SC database software.

	Use of twinned and check holes:
	 Argent Minerals has drilled three pairs of twin RC versus DDH holes. The assay results from these pairs show reasonable correlation in the mineralised intervals. This implies that the RC drilling and the applied sampling procedure was a reliable technique.
	- At the end of Shell's three part percussion program, three percussion holes were drilled alongside the first and second program holes to compare results from the different sampling methods. An additional, short diamond hole was drilled adjacent to a wet Aqua-Dust hole, for a total of four check holes. Equatable sections were compared. With the exception of two of the original 150 program holes, all four check holes upgraded the original intersections.
	• Argent Minerals undertook statistical comparisons of spear sampling versus riffle split sampling in order to confirm the reliability of the spear method; this analysis confirmed a high correlation.
	Data entry, verification and storage protocols are to industry standard practice:
	- Samples are logged on-site with the resulting data digitally entered upon return to the site office, subsequently entered into the project database, and verified at head office. Drill hole data on which the Resource Estimate is based is stored in a reference Microsoft Access database which is maintained by H&SC. Argent Minerals has a copy of the database on its own system, whilst H&SC manages the 'key' for making any changes to the reference database.
	- Procedures are well understood by site personnel and formally documented.
	 All available primary physical documentation such as drill logs and historical documentation has been electronically scanned to Adobe PDF format, and the physical originals are stored securely at the Argent Minerals registered corporate address in Perth.
	- Argent Minerals has invested considerable effort and resources to ensure that all of the company's data is electronically accessible, in order to ensure efficient and reliable access to that data, and the best accuracy and precision in the management of the business. The Argent Minerals central data server is backed up on a nightly incremental basis to an offsite specialist third party service provider, and this is supplemented by regular backups to portable hard disk drives.
	• No adjustment or calibration was made to any primary assay data collected at the Kempfield project for purposes of Mineral Resources estimation and reporting.
Location of	Surveys of the drill hole collars were conducted by the following methods:
data points	 Historical collars surveyed under the Kempfield local grid (47% of the total) and later converted to AMG 66 (Zone 55) grid (by a registered surveyor). Accuracy and quality of drill hole collar survey depends on the age of survey and exploration company which conducted the survey;
	 Holes not originally surveyed by a registered surveyor (8% of the total) were located with a GPS and stored in AMG66 (for consistency with the above); and
	 Collars surveyed by a registered surveyor in GDA 94 (Zone 55) grid (45% of the total) and then converted to AMG 66 (Zone 55) grid (also for consistency); all Argent Minerals drill hole collars are surveyed by a registered surveyor, an H&SC requirement.
	• Drillhole collar surveys are grouped into the three sets as set out in Table 1.1.7:

		Table 1.1.7 – Drillhol	e collar survey summ	ary			
		Company	Collars with historical survey calculated from local coordinates	Collars surveyed with hand-held GPS	Collars registe	s surveyed by ered surveyor	
		Argent Minerals	-	14		195	
		Golden Cross	62	25		15	
		Jones Mining	9	-		5	
		Shell	148	-		4	
		Inco	16	-		2	
		TOTAL	235 (47%)	39 (8%)	22	21 (45%)	
	•	Drill hole collar documents.	surveys conducted	d by registere	d surveyors	were reported a	as hard copy or locked pdf
	•	Down-hole survelectronic came the 495 drill hol	veys of dip and azi era every 50 or 30 es at Kempfield is	muth were co metres to del shown in Tab	nducted usi ect hole dire ile 1.1.8:	ing either a sing ection. A summ	le shot Eastman Camera and ary of down-hole surveys for
		Company	Period	Holes with DH survey	Holes with DH survey inside roads	Holes without DH survey	Comments
		Argent Minerals	2007-current	79	76	54	Holes were surveyed with Eastman camera; CTP100 camera and Campeg Proshop; Holes without surveys are shallow
		Golden Cross	1996-2007	5	92	5	Majority holes surveyed with
		Jones Mining	1984-1985	14	-	-	Holes surveyed with Eastman camera
		Shell	1979-1984	6	-	146	DD holes surveyed with Eastman camera; percussion holes are shallow in average 50m depth
		Inco	1972-1974	18	-	-	Holes surveyed with Eastman camera
		TOTAL		122 (25%)	168 (34%)	205 (41%)	
	•	The block mode 705,728.69mE	els are currently de and 6,256,169.42	efined in the k 2mN in GDA94	Cempfield Lo 1, and a rota	cal Grid, which ation of 21.38° a	has an origin of anti-clockwise from true north.
	•	The elevations for h Elevations for h known surveyer survey (with an	for the Argent hole istorical holes wer d collar elevations accuracy of +/- 5	es were survey e either assign . The DTM wa cm) conducte	ved by an ind ned from dig s derived fro ed by Geosp	dependent regis jital terrain mod om Light Detect pectrum for the l	stered surveyor (195 holes). el (DTM) or interpolated from ing and Ranging (LIDAR) Kempfield project during 2010.
Data spacing and distribution	•	The drill holes a diamond drill ho	are drilled on 25 m	etre sections taken at 1 me	and approxi tre intervals	mately 20 metre down the hole (es apart in vertical distance. In under geological control.
distribution	•	Data spacing an appropriate for	nd distribution is s the Mineral Resou	ufficient to es irce estimatio	tablish the d	legree of geolog s and classificat	ical and grade continuity ions applied.
	•	Sample compo	siting:				
		- Argent and 2 metre inte	Golden Cross RC rvals.	samples were	e taken at 1	metre down-ho	le intervals and composited to
		- Shell drill ch	ips – documentat	ion has not be	en located.		
Orientation of data in relation to	•	In total, 453 (92 60° to intersect	2%) holes were dri the stratigraphy a	lled towards k Ind mineralisa	ocal grid eas tion as close	as possible to	in GDA94) at angles of 55° to perpendicular in order to

Phone 618 9322 6600 | Facsimile 618 9322 6610 www.argentminerals.com.au ABN 89 124 780

ASX/MEDIA RELEASE

geological		provide the most representative samples.
structure	•	No orientation based sampling bias has been identified in the data to date. However, holes drilled to the west (along stratigraphy) usually are controlled by cleavage and/or faults and reported assays can be inconsistent.
Sample security	•	Each sample contained within a calico bag, with every ten calicos enclosed within a polyweave sack and in turn locked up within a sturdy sealable waterproof container.
	•	Sulphide mineralisation can be identified macroscopically and valuable intersections required for analytical or metallurgical tests were stored in refrigerated conditions.
Audits or reviews	•	Sampling techniques and procedures were regularly reviewed internally and by external consultants (H&SC). Data reviews conclude that QAQC protocols have been adequately employed.
	•	Periodically Argent Minerals conducted assays QAQC analysis with emphasis on the field sampling procedures (field duplicates) and laboratory performance involving accuracy and contamination (standards and blanks). Reports relating to assay QAQC have been produced by Argent Minerals and H&SC has confirmed satisfactory performance.
	•	In addition, Argent Minerals undertook internal QAQC review of the rock density data at Kempfield project; the report produced verifies satisfactory quality of data.

Section 2 - Reporting of Exploration Results

Criteria	Con	nmentary						
Mineral tenement and land tenure	• Exploration Licence, Kempfield / EL5748, Trunkey Creek, NSW, held by Argent (Kempfield) Pty Ltd (100% interest), a wholly owned subsidiary of Argent Minerals Limited. There are no overriding royal other than the standard government royalties for the relevant minerals.							
Status	•	Argent Minerals Heritage items I area that includ Argent Minerals registrant.	Argent Minerals has freehold title to the land which has historically been employed for pastural usage. Heritage items have been identified on the property. A native title claim has been lodged over a large area that includes Kempfield. A single counterparty only, the Gundungurra tribe, has responded to Argent Minerals advertisements as part of the standard "right to negotiate" process, and is the sole registrant.					
	•	The Company's Exploration Licence renewal application for the full licence area for a three (3) year term has been approved to July 2015.						
Exploration by other parties	•	Argent Minerals operator of the	Limited through project. Argent N	its wholly owned subsidiary Argent (Kempfield) Pty Ltd is the sole Ainerals introduced best industry practice work.				
	•	Kempfield has t Table 1.2.1.	been explored fo	r more than forty years by several exploration companies as set out in				
	Та	able 1.2.1 – Explora	tion history					
		Company	Period	Exploration activities				
		Argent Minerals	2007-current	Drilling, VTEM survey, pole-dipole IP survey, gravity survey, ground EM and down-hole EM survey				
		Golden Cross	1996-2007	Drilling and high resolution airborne magnetic survey				
		Jones Mining	1982-1995	Drilling				
		Shell	1979-1982	Drilling, ground EM survey, dipole-dipole IP survey, and soil sampling				
		Inco	1972-1974	Drilling				
	•	Earlier exploration historical data is	on was performe s reasonable and	ed to the industry standard of the time; available QAQC indicates that the suitable for use in Mineral Resource estimates.				

Geology	The deposit type is Volcanogenic Massive Sulphide (VMS);
	• The geological setting is Silurian felsic to intermediate volcaniclastics within the intra-arc Hill End Trough in the Lachlan Orogen, Eastern Australia; and
	• The style of mineralisation comprises stratiform barite-rich horizons hosting silver, lead, zinc, +/- gold.
Drill hole Information	No new Exploration Results in this report. This report relates to Mineral Resources only.
Data aggregation methods	• No new Exploration Results in this report. This report relates to Mineral Resources only.
Relationship between mineralisation widths and intercept lengths	No new Exploration Results in this report. This report relates to Mineral Resources only.
Diagrams	• No new Exploration Results in this report. This report relates to Mineral Resources only.
Balanced reporting	No new Exploration Results in this report. This report relates to Mineral Resources only.
Other substantive exploration data	• No new Exploration Results in this report. This report relates to Mineral Resources only.
Further work	• No new Exploration Results in this report. This report relates to Mineral Resources only.

Section 3 - Estimation and Reporting of Mineral Resources

Criteria	Commentary	
Database integrity	• Database integrity was managed by a three phase standardised procedure as follows.	
	• Phase 1 - During data entry. Argent Minerals manually input data directly into the 'front end' of a Microsoft Access relational database designed by H&SC. The database 'backend' performed 'on the fly' data validation during data entry. Data that did not conform to a predetermined set of validity rules, keys and referential integrity checks was rejected, and the operator alerted accordingly. Argent Minerals also performed additional manual checking of sample database records against the original hard copies.	
	All the assay data was imported from an ALS-provided electronic file directly into the master assay tables of the main backend database using an Assay Import Tool developed by H&SC. This tool imports both the metadata (lab report header) and the assay data itself in a systematic, repeatable and traceable way.	
	• Phase 2 - Post-validation. This phase commenced with Argent Minerals merging the drill log and assay datasets, an automated procedure which forms part of the database export process. Argent Minerals then performed automated checks of the merged Microsoft Access database . Using the inbuilt routines created by H&SC as an integral part of the database tool set, this part of the post-validation process looked for inconsistency issues such as missing logs, overlaps or gaps in drill hole intervals and associated data (including assay data), end of hole length, or specific gravity variations. Downhole drill surveys were also automatically checked for variation of drill hole geometry outside predetermined parameters.	
	Argent Minerals then performed manual checks on drill hole cross sections, all of which were able to be	

		generated from the merged database.
		The post-validated database was then exported by Argent Minerals to H&SC for the next steps in the process.
	•	Phase 3 - Final checks. This phase of the process commenced with the merged exported database being uploaded into Datamine by H&SC. A combination of automated, scripted, and manual checks were then performed by H&SC, including:
		- checking drill hole collars against topography;
		- checking for excessive down-hole deviation;
		- checking different assay methods for same elements;
		- visual and statistical checks of assays; and
		 recalculating density values from raw data and checking densities against values calculated from assays.
	•	Whilst no detailed checking of the database against original records was performed by H&SC, both Argent Minerals and H&SC are satisfied that an appropriately comprehensive multiple phase checking process has been employed, upon which the Mineral Resource Statement is based. The conclusion of the above Phase 3 checks by H&SC on the database provided by Argent for Mineral Resource estimation was that no obvious errors were detected
Site visits	•	The Competent Person visited site for 2 days in August 2011.
	•	General site geology and layout were inspected, core and chip samples were examined and RC sample splitting was observed. No drilling was in progress at the time.
	•	Field procedures were being performed in a professional manner and no material issues were identified.
Geological	•	There is a reasonable confidence level in the geological interpretation of the mineral deposits.
interpretation	•	The geological interpretation involved dividing the deposits into mineralised zones, essentially based on assay data, and identifying the fresh, transition and oxide zones from geological logging. Oxidation logging was checked against zinc assays as this element is the most sensitive to oxidation at Kempfield. It was assumed that the assays and logging are accurate.
	•	There appears to be limited scope for alternative interpretations. The mineralised zones are quite clearly defined, while the oxidation zones are a little more subjective. It is considered unlikely that alternative interpretations would have a substantial impact on the Mineral Resource estimates due to the generally close spacing of the data points.
	•	The mineralised zones were treated having as hard boundaries during grade estimation, while the oxidation boundaries were treated as soft boundaries, due to their gradational nature.
	•	The major factor affecting the continuity of both grade and geology is the cross-faulting that truncates or displaces mineralisation. These fault surfaces were treated as hard boundaries during estimation.
Dimensions	•	BJ Zone Main - 250 metres along strike by 100 metres wide on average (multiple lenses); starts at surface and extends to 185 metres below.
	•	South Conglomerate Zone – 400 metres along strike by 20 metres wide on average; starts at surface and extends to 145 metres below.
	•	McCarron East - 200 metres along strike by 30 metres wide on average; starts at surface and extends to 185 metres below.
	•	McCarron West - 700 metres along strike by 35 metres wide on average; starts at surface and extends to 140 metres below.
	•	Mather Zone - 300 metres along strike by 35 metres wide on average; starts at surface and extends to 145 metres below.

ASX/MEDIA RELEASE

	 Quarries Zone – multiple lenses – largest = 160 metres along strike by 25 metres wide on average; starts at surface and extends to 150 metres below.
Estimation and modelling techniques	 A consistent estimation scheme was applied to all four deposits. All grades were estimated using ordinary Kriging, which was considered an appropriate technique because of the low to moderate coefficients of variation (typically CV < 2.0, where CV, a standardised measure of variability, is the standard deviation divided by the mean grade).
	 Samples (typically 1 metre) were composited to nominal 2 metre lengths for data analysis and grade estimation. Domaining was described in the section on geological interpretation.
	• Estimation was performed using Datamine software. A three pass search strategy was used, with initial radii of 5 x 25 x 25 metres, which were doubled for the second pass; a minimum of 8 and maximum of 24 composites in at least 4 octants was used for the first 2 passes. The third pass used the same radii as pass 2, with a minimum of 4 and maximum of 24 composites in at least 2 octants.
	• The search ellipsoid dipped 70° west for all domains, except for zinc at BJ and McCarron/Mather zones, where the ellipsoid was flat for the oxide zone. The maximum extrapolation distance was 50 metres, and is only applicable to Inferred category; Measured and Indicated category Mineral Resources are essentially only interpolated.
	 Several previous estimates were generated by H&SC (and its predecessor H&S) and the new estimates take into account these earlier estimates. The deposit remains unmined, so there are no production records for reconciliation.
	• Kempfield is currently considered primarily a silver project, with lead, zinc and gold as by-products. Metallurgical test work has been performed for all these elements (see section below) and they have been incorporated into the cut-off grades for the sulphide (primary) mineralisation using appropriate revenue and recovery factors.
	• There are no estimates for potentially deleterious elements or other non-grade variables of economic significance (eg. sulphur). Sulphide content at Kempfield is low, so acid mine drainage is unlikely to be a significant problem. No deleterious elements of economic significance have been identified to date.
	• Parent block size is 5 x 12.5 x 10 metres, compared to a nominal sample spacing of 25 x 25 x 2 metres, in the X, Y and Z planes respectively. The block size in X reflects the down-hole sample spacing in the direction of least continuity, while the block size in Y is half the nominal section spacing. The block size in the Z plane is compatible with the proposed bench height and is around half the sample spacing in this direction.
	• The model block size (nominally 5 x 12.5 x 10 metres, with sub-blocks to 2.5 x 6.25 x 5 metres) is effectively the selective mining unit for these estimates.
	 Correlation between most elements is very weak; the exceptions are lead/zinc with good correlation and silver/barium with weak correlation. No assumptions about correlation between variables were made during estimation – each element was estimated independently.
	• A description of how the geological interpretation was used to control the resource estimates was given in the section on geological interpretation.
	• No grade cutting or capping was applied because the grade distributions are not particularly skewed, as indicated by the low coefficients of variation.
	• The estimates were validated by several methodologies – visual and statistical comparisons of block and drill hole grades, examination of grade-tonnage data, and comparison with previous estimates. The comparisons of model and drill hole data demonstrated that the drilling tends to be clustered in the higher grade areas, but the estimates appear reasonable once this factor is taken into account. No reconciliation data is available because the deposit currently remains unmined.
Moisture	• Tonnages are estimated on a dry basis; moisture content not determined.
Cut-off parameters	 Cut-off grades are 25 g/t silver for oxide and transitional mineralisation (silver cutoff grade only, no metal equivalence employed for Mineral Resource estimation in oxide/transitional material), and 50 g/t silver equivalent for the primary (fresh rock) mineralisation. The cutoff grades were chosen on the basis of

		providing reasonable prospects for eventual econometallurgical testing, long term market prices, and	omic extraction given a multitude of factors including mining and processing costs.	
	•	The 2014 Mineral Resource estimate contained metal equivalence formula is based on the following assumptions made by Argent Minerals:		
		- Silver price:	\$US 30/oz (\$US 0.9645/g)	
		- Gold price:	\$US 1,550/oz (Gold/silver: 50:1)	
		- Lead & zinc price:	\$US 2,200/t	
		- Silver & gold recoverable and payable:	80% of head grade	
		- Lead & zinc recoverable and payable:	55% of head grade	
	•	Argent Minerals and the Competent Person have a consistency with the basis for previous estimates, estimate. Whereas the fundamentals of the Minera 2012 estimate, a reduction in the silver price in the apparent increase in the number of resource tonna increase in the silver equivalent ounces ('Ag Eq'), w	elected to maintain the above assumptions for and to maintain a conservative basis for the current Il Resource estimate have not changed from the April above equivalence formula would have resulted in an es in the primary material, as well as an apparent which could be potentially misleading.	
Mining factors or assumptions	•	The mining method is currently assumed to be all dilution, in that the parent block size is $5 \times 12.5 \times 1200$ resources more selectively than this.	open pit. The estimates include allowance for mining 10 metres and it may be possible to mine the	
Metallurgical factors or assumptions	•	The metallurgical recovery assumptions are based gold, and flotation for lead and zinc. Based on me silver and gold recoveries of 80%, and payable lead both achievable and have been employed as the b Metallurgical recoveries from test work are provide	on carbon in leach (CIL) processing for silver and tallurgical testing to date, Argent is of the opinion that d and zinc recoveries at 55% of the head grade, are basis for Mineral Resource estimation.	
Environmental factors or assumptions	•	In April 2013, Argent submitted an Environmental Kempfield Project to the NSW Government Depart project is a relatively compact heap leach design will be underlain with an impermeable layer, and as electronic sensors, and monitoring systems. Arger in the design of the heap leach pad. The environm assessed by twelve specialist consultancies. In all the relevant criteria, capable of being offset throug submitted project includes a proposed biodiversity medium and long-term biodiversity benefits within community need to ensure that agricultural land re Argent Minerals has also undertaken environmenta polymetallic project with a mine life of up to 20 year feasibility toward feasibility, and was based on min designed as an open cut mine with CIL/flotation pr disposal and waste rock emplacement. The relevant Argent Minerals is satisfied that the environmental can be successfully managed to the satisfaction of	Impact Statement for an initial heap leach phase of the timent of Planning & Infrastructure. The submitted with no tailings dam for this phase. The heap leach pad dditional safeguards will be provided by underdrainage, it has incorporated extreme rainfall event assumptions ental impacts associated with the project have been cases, the impacts were determined to be less than h licencing, or not significant. Additionally, the v offset strategy that Argent contends will provide and surrounding the site, while balancing the smains productive.	
Bulk density	•	Density measurements were determined on site by immersion method – 292 samples were tested. Of checking by unsealed and waxed immersion metho measurements on core from the Jones Mining and unsealed water immersion measurements. A comparison of the Argent site measurements an Since all these samples appear to be fresh rock, lit	y Argent personnel in 2011 using an unsealed water these, 10 samples were submitted to ALS Orange for ods. There are a further 45 historical density d Golden Cross core – these are believed to be d 10 ALS waxed values show no significant difference. ttle variation would be expected.	

ASX/MEDIA RELEASE

	•	Dry bulk density at Kempfield is primarily controlled by the concentration of heavy minerals, as there is limited variation in the density of the unmineralised rock. The concentration of heavy minerals (galena, sphalerite and barite) can be calculated from assays, although not all samples are assayed for lead, zinc and barium. Unfortunately, samples were not systematically assayed for iron or sulphur, so pyrite content cannot be calculated but sulphide content is generally low. A set of density formulas based on heavy mineral concentration and oxidation were derived from available data and used to estimate density in the resource models.
Classification	• The resource classification is essentially based on an ordinary Kriging three search pass meth which Pass 1 was classified as Measured, Pass 2 as Indicated, and Pass 3 as Inferred categor search details see "Resource estimation and modelling techniques' Criteria above.	
	•	Appropriate account has been taken of all relevant factors, including the relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data.
	•	The geological and grade continuity of the deposit has been demonstrated and the quality of the assay data is adequate as shown by the quality control analysis.
	•	The reported Mineral Resources appropriately reflect the Competent Person's view of the Kempfield deposits.
Audits or reviews	•	Internal H&SC peer review has been undertaken and no material issues were identified.
Discussion of relative accuracy/ confidence	•	The relative accuracy and confidence level in the Mineral Resource estimates are considered to be in line with the generally accepted accuracy and confidence of the nominated Mineral Resource categories. This has been determined on a qualitative, rather than quantitative, basis, and is based on the Competent Person's experience with similar VMS deposits around the world. The factors that could affect the relative accuracy and confidence of the estimate include:
		- The completeness and accuracy of the database; and
		- The accuracy of the historic assay methods.
		The Competent Person is of the opinion that the scope for variations is minimal, and if any, the impact on the Mineral Resource estimate is unlikely to be significant.
	•	The estimates are local, in the sense that they are localised to model blocks of a size considered appropriate for local grade estimation. The tonnages relevant to technical and economic analysis are those classified as Measured and Indicated Mineral Resources.
	•	No production data is available as the deposit currently remains unmined.

COMPETENT PERSON STATEMENTS

Mineral Resources – Kempfield

The information in this Report that relates to Mineral Resources for the Kempfield deposit (Appendix A) is based on information compiled by Mr. Arnold van der Heyden, who is a Member and Chartered Professional (Geology) of the Australian Institute of Mining and Metallurgy and a Director of H&S Consultants Pty Ltd. Mr. van der Heyden has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. van der Heyden consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

Exploration Results

The information in this report that relates to Exploration Results is based on information compiled by Dr. Vladimir David who is a member of the Australian Institute of Geoscientists, an employee of Argent Minerals, and who has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activities being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Dr. David consents to the inclusion in this report of the matters based on the information in the form and context in which it appears.

JORC 2012

The Company confirms it is not aware of any new information or data that materially affects the information included in market announcements referred to in this announcement relating to exploration activities carried out at the Kempfield Project and all material assumptions and technical parameters underpinning the exploration activities in those market announcements continue to apply and have not been changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcements.

DISCLAIMER

Certain statements contained in this announcement, including information as to the future financial or operating performance of Argent Minerals and its projects, are forward-looking statements that:

- may include, among other things, statements regarding targets, estimates and assumptions in respect of mineral reserves and mineral resources and anticipated grades and recovery rates, production and prices, recovery costs and results, capital expenditures, and are or may be based on assumptions and estimates related to future technical, economic, market, political, social and other conditions;
- are necessarily based upon a number of estimates and assumptions that, while considered reasonable by Argent Minerals, are inherently subject to significant technical, business, economic, competitive, political and social uncertainties and contingencies; and,
- involve known and unknown risks and uncertainties that could cause actual events or results to differ materially from estimated or anticipated events or results reflected in such forward-looking statements.

Argent Minerals disclaims any intent or obligation to update publicly any forward-looking statements, whether as a result of new information, future events or results or otherwise. The words 'believe', 'expect', 'anticipate', 'indicate', 'contemplate', 'target', 'plan', 'intends', 'continue', 'budget', 'estimate', 'may', 'will', 'schedule' and similar expressions identify forward-looking statements.

All forward looking statements made in this announcement are qualified by the foregoing cautionary statements. Investors are cautioned that forward-looking statements are not guarantees of future performance and accordingly investors are cautioned not to put undue reliance on forward-looking statements due to the inherent uncertainty therein.

The images in the header of this announcement are not Argent Minerals Limited assets.