

13 October 2022

Outstanding step-out drilling delivers 6m @ 2.95% Cu at Lady Colleen

Highlights:

- Further and final assay results from the current diamond drilling program at the Lady Colleen prospect, a copper sulphide resource at the Mt Kelly operation include:
 - MTKCD087 (70m step-out along strike and 30m down-dip to the NW).
 - 49m @ 1.27% Cu (from 173m downhole) including;
 - 6m @ 2.95% Cu (from 189m downhole)
 - 4m @ 2.54% Cu (from 199m downhole)
 - 5m @ 2.18% Cu (from 217m downhole)
 - MTKCD088 (15m step-out along strike and 77m down-dip to the NW).
 - 48m @ 1.00% Cu (from 132m downhole) including;
 - 3m @ 2.85% Cu (from 169m downhole)
 - 3m @ 2.69% Cu (from 178m downhole)
- Results confirm the presence of a continuous high-grade core to mineralisation at Lady Colleen which remains open along strike and down plunge to the north-west
- Focus on understanding the controls on high-grade mineralisation to target the next phase of drilling exploring the potential continuation along strike and down plunge
- Drilling has consistently intersected higher-grade zones within a broader envelope of lowergrade mineralisation ⁽¹⁾
- On schedule with the extensive program of work which is underway at the Lady Colleen deposit to provide with consistent news flow expected this calendar year including the updated Mineral Resource Estimate in early Q4 2022
- Austral has announced a Scoping Study to assess the potential of the Lady Colleen Mineral Resource to support an open cut mining project at Mt Kelly⁽²⁾

¹ Appendix 1, ASX release 27 September 2022

² Appendix 1, ASX release 16 September 2022

Copper producer Austral Resources Australia Ltd (ASX:ARI) (**"Austral"** or the **"Company"**) is pleased to announce further and final assay results from the diamond drilling hole (**"DDH"**) program, part of the current Lady Colleen drilling program that includes Reverse Circulation drilling (**"RC"**).

Dan Jauncey CEO said:

"The 2022 drilling campaign at Lady Colleen has been completed safely and effectively with the support of our contracting partners Tulla Drilling, Rural Earthworx, and ALS Global.

The outstanding results have delivered our 2022 exploration strategy at Lady Colleen, to explore for a high-grade core within the large Mineral Resource.

Results have confirmed the presence of a continuous high-grade core at Lady Colleen. Critically, the high-grade core remains open along strike and down plunge.

We are now updating the Mineral Resource Estimate and designing the next drilling campaign.

Following the Mineral Resource Estimate update, Austral will commence a Scoping Study to evaluate all modifying factors and determine the economic potential for open pit mining at Lady Colleen.

We look forward to advising the market with the updated Mineral Resource Estimate at Lady Colleen over the coming weeks."

Lady Colleen ("LC") is located on an existing Mineral Lease (ML90170) and contains a **JORC Mineral Resource Estimate of 7.9MT at 0.84% Cu** - see Table 1 below ⁽³⁾. The quoted resource was calculated in 2013 by the previous mine owner and released by Austral in its IPO prospectus.

DEPOSIT	MATERIAL TYPE	МТ	CU%	CA%	MG%	CONTAINED CU TONNES
	Oxide	0.2	0.58	0.9	0.4	1,160
LADY	Transitional	2.1	0.75	3.8	2.1	15,750
COLLEEN	Sulphide	5.6	0.89	4.4	2.4	49,840
	Total**	7.9	0.84	4.2	2.3	66,750

Table 1. Lady Colleen JORC Mineral Resource Estimate. ** Rounding applied to resource numbers.

³ Appendix 1, ASX release 26 April 2022

As previously announced ⁽⁴⁾, Austral has commenced evaluation of the potential at LC for a lower tonnage, higher-grade sulphide resource that could be economically open pit mined. Progress to date includes.

- Updating of the LC sulphide resource by an independent resource geologist, confirming the continuity of the higher-grade core of the LC resource.
- Pit shell evaluation of the updated LC sulphide resource with positive results warranting further detailed mine design and economic evaluation.
- Integration of both the updated resource model and pit shells were then used to optimise the design of a now completed drilling program with multiple targets being identified
 - Infill of the current LC resource and upgrade portions of the Inferred Resource to Indicated and Measured status
 - Potential extensions of the resource within and immediately outside or adjacent to the Pit shells with step out drilling
 - To the north and northeast of the current resource envelope targeting potential extensions of mineralisation along strike and down plunge, and
 - Evaluation of the oxide and transitional cap over the sulphide resource.

Drilling Update

Austral has now completed the drilling program with a total of 17 RC drill holes for 2,219.1m at LC. The drilling of a total of 6 DDH tails totalling 926.2m has also now been completed. A plan view of collar locations and section lines is displayed in Figure 1, with sections displayed in Figure 2. Drillhole design details are listed in Table 2.

All RC & DDH tail drillholes are sampled on 1m intervals and submitted to ALS Laboratory for analysis. Results to date have been outstanding ⁽⁵⁾ and have;

- Verified the current geologic resource model and validated the targeting strategy applied
- Increased knowledge on the structural and stratigraphic controls on high-grade mineralisation
- Confirmed the continuity of the high-grade core at LC which remains open along strike to the north-west and down plunge to the north-east, as indicated in Figure 3 and Figure 4.

⁴ Appendix 1, ASX release 28 July 2022

⁵ Appendix 1, ASX release 5 September 2022

Assays are detailed in Appendix 2. Significant intersections include;

- MTKCD087
 - o 49m @ 1.27% Cu (from 173m downhole) including;
 - 6m @ 2.95% Cu (from 189m downhole)
 - 4m @ 2.54% Cu (from 199m downhole)
 - 5m @ 2.18% Cu (from 217m downhole)
- MTKCD088
 - o 48m @ 1.00% Cu from 132m, including
 - 3m @ 2.85% Cu (from 169m downhole)
 - 3m @ 2.69% Cu (from 178m downhole)

MTKCD087 is a step-out hole targeting potential extensions of high-grade mineralisation along strike and down plunge.

The intersection in MTKCD087 is a 70m step out along strike to the northwest from MTKCD038 (24m @ 2.08% Cu from 145m & 38m @ 3.28% Cu from 206m), and a 30m step back down dip from MTKCD086 (30m @ 2.35% Cu from 201m).

Importantly, the intersection from MTKCD087 confirms that the LC high-grade core remains open along strike and down plunge to the Northwest. (Figures 3 & 4).

MTKCD088 is an infill hole drilled to increase resource certainty and evaluate grade continuity between existing intersections.

The intersection in MTKCD088 is a 77m step back down dip from MTKC0626 (4m @ 3.16% Cu from 107m and 6m @ 1.75% Cu from 120m) and adds 15m strike extension to the northwest of MTKCD038 (grades listed above).

Further drilling will be designed and completed to evaluate the potential continuation along strike and down plunge of the high-grade mineralisation, as indicated in Figures 3 & 4.

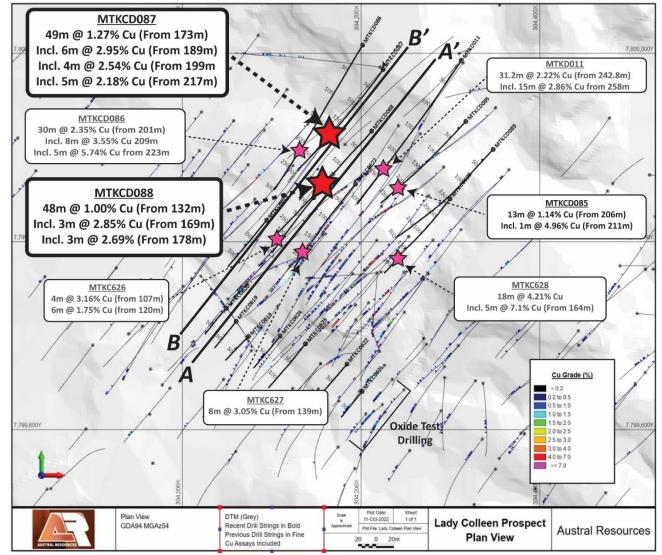


Figure 1. Lady Colleen 2022 drilling collars, drill traces, significant intersections report and section lines. Newly announced results in large font & symbol, previously announced results in small font & symbol

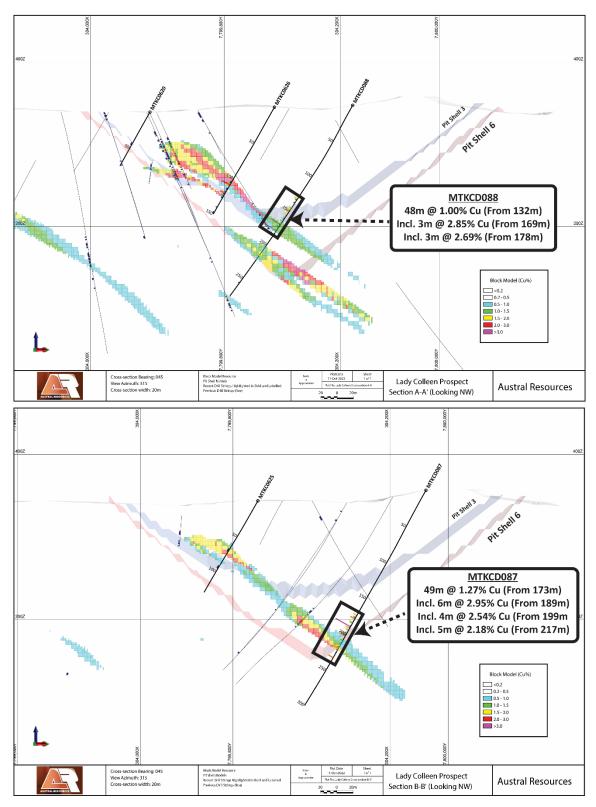


Figure 2. Lady Colleen Sections A-A & B-B. Heavy black lines are recent actual and planned drilling, purple line is base pit shell and pink line is pit shell +5% RF (pit shell as per announcement 28 July 2022).

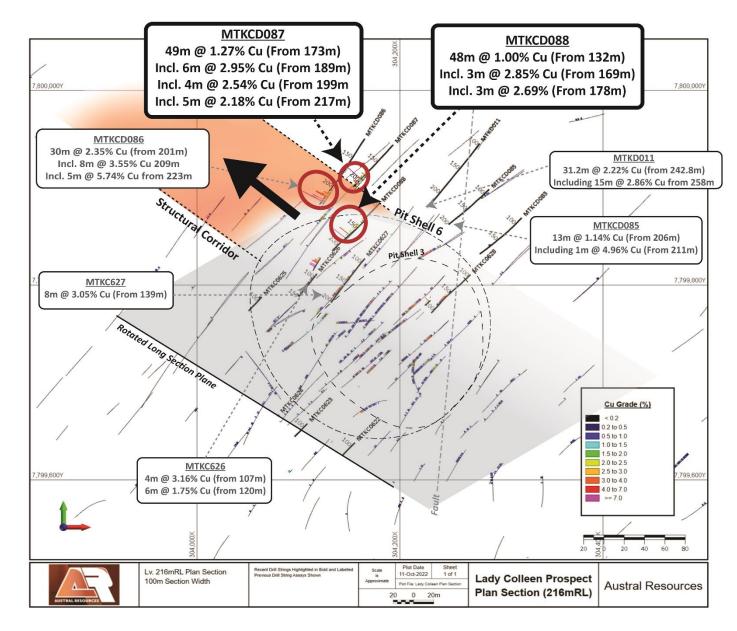


Figure 3. Lady Colleen 216mRL Level plan. Heavy black lines are recent actual and planned drilling. Newly announced results in large font & symbol, previously announced results in small font & symbol

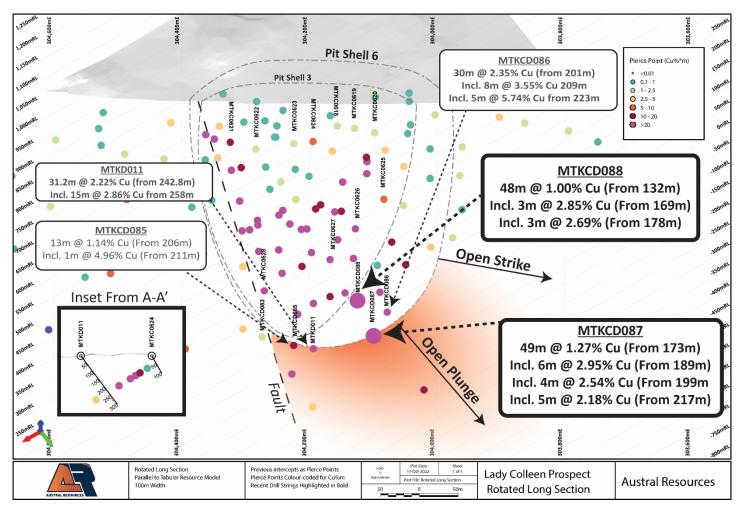


Figure 4. Lady Colleen Long Section along plane of controlling structure. Line of section shown on Figure 3. Newly announced results in large font & symbol, previously announced results in small font & symbol

Program of Work

The extensive program of further work includes;

- The evaluation, identification and design of required further drilling to evaluate the potential strike extent of the high-grade core, as indicated in Figures 3 & 4 by end October.
- Geological evaluation (including structure and mineralogy), updating the LC resource model, pit shell evaluation of the updated resource model, evaluation and classification of an updated MRE reported in accordance with the JORC Code by end October.
- Following update of the MRE, commencement of a Scoping Study evaluating the potential for extraction of LC sulphide resource through open pit mining of a lower-tonnage higher-grade portion of the existing sulphide Mineral Resource, including all costs relevant to having the material transported and processed at an appropriate sulphide concentrator. This includes;

• Drill core from the current drilling program will be utilised to generate a composite that is representative of the LC deposit that will be used for floatation test work and to the evaluate the metallurgical characteristics of the high-grade mineralisation.

This ongoing evaluation of LC is a first step in assessing the potential to begin commercialising Austral's 210,000t of contained copper in sulphides to augment the Company's current 40,000t Anthill Mine copper production from the Anthill copper oxide mine.

HoleID	Status	EAST	NORTH	RL	Dip	Azi (TN)	Depth (m)	RC (m)	HQ (m)	Comment
MTKC0618	Drilled	304080	7799700	340	-60	220	75	75		Trace malachite
MTKC0619	Drilled	304062	7799716	340	-60	220	75	75		Trace malachite
MTKC0620	Drilled	304042	7799734	339	-60	220	75	75		Trace malachite
MTKC0621	Drilled	304205	7799643	342	-60	220	75	75		Trace malachite
MTKC0622	Drilled	304184	7799669	345	-60	220	129	120		Trace malachite
MTKC0623	Drilled	304140	7799692	350	-60	220	129	130		Trace malachite
MTKC0624	Drilled	304116	7799701	345	-60	220	93	100		Trace to minor malachite
MTKC0625	Drilled	304094	7799823	344	-60	220	129	120		Dissiminated & veins
MTKC0626	Drilled	304146	7799843	346	-60	220	150	150		Disseminated to semi-massive
MTKC0627	Drilled	304199	7799861	345	-60	220	231	250		Disseminated & veins
MTKC0628	Drilled	304304	7799844	351	-60	220	225	220		Disseminated & veins
MTKCD083	Drilled	304350	7799898	345	-55	227	298.7	173.7	125	Disseminated & veins
										Disseminated to semi-massive
MTKD011	Drilled	304314	7799990	347	-53	222	306.4		306.4	Redrill (from surface) of MTKCD084
MTKCD085	Drilled	304318	7799926	339	-60	225	270.4	149.7	120.7	Disseminated & veins
MTKCD086	Drilled	304200	7800005	355	-55	213	300.3	176.7	123.6	Disseminated to semi-massive
MTKCD087	Drilled	304224	7799980	356	-60	216	300.3	179.3	121	Disseminated & veins
MTKCD088	Drilled	304212	7799918	347	-60	220	279.2	149.7	129.5	Disseminated & veins
								2219.1	926.2	

Table 2. Lady Colleen 2022 Drilling Program.

This announcement is authorised for market release by the Board of Directors

FOR FURTHER INFORMATION PLEASE CONTACT:

Jane Morgan Investor and Media Relations Manager +61 (0) 405 555 618 jm@janemorganmanagement.com.au Company contact: Level 9, 60 Edward Street Brisbane City Qld 4000 +61 (0) 73520 2500

About Austral Resources

Austral Resources Australia Ltd is an ASX listed copper cathode producer operating in the Mt Isa region, Queensland, Australia. Its Mt Kelly copper oxide heap leach and solvent extraction electrowinning (SXEW) plant has a nameplate capacity of 30,000tpa of copper cathode. Austral has developed its Anthill oxide copper mine which has an Ore Reserve of 5.06Mt at 0.94% Cu. The Company expects to produce 40,000t of copper cathode over a four-year period from mid-2022.

Austral also owns a significant copper inventory with a JORC compliant Mineral Resource Estimate of 60Mt@ 0.7% Cu (420,000t of contained copper) and 2,100km² of highly prospective exploration tenure in the heart of the Mt Isa district, a world class copper and base metals province. The Company is implementing an intensive exploration and development programme designed to extend the life of mine, increase its resource base and then review options to commercialise its copper resources.

Competent Persons' Statement

The information in this announcement that relates to Mineral Assets, Exploration Targets, Exploration Results, Mineral Resources and Ore Reserves is based on and fairly reflects information compiled and conclusions derived by Mr Andrew Beaton and Mr Ben Coutts, Competent Persons who are Members of the Australasian Institute of Mining and Metallurgy. Mr Beaton is the Site General Manager at Austral and Mr Coutts is Exploration Manager at Austral. Mr Coutts and Mr Beaton are geologists and have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results and Ore Reserves (2012 JORC Code). Mr Coutts and Mr Beaton consent to the inclusion in this announcement of the matters based on this information in the form and context in which it appears. The Company confirms that it is not aware of any new information or data that materially affects the information as cross referenced in this release.

Ore Reserve and Mineral Resource Estimate Statements

Detailed information that relates to Ore Reserves and Mineral Resource Estimates is provided in Austral Resources Prospectus, Section 7, Independent Technical Assessment Report. This document is available on Austral's website: <u>www.australres.com</u> and on the ASX released as "Prospectus" on 1 November 2021. The Company confirms that it is not aware of any new information or data that materially affects the estimates of Mineral Resources and Ore Reserves as cross referenced in this release and that all material assumptions and technical parameters underpinning the estimates continue to apply and have not changed.

Appendix 1. Key Austral ASX announcements

DATE	TITLE
1 Nov 2021	Austral Prospectus
3 Nov 2021	Austral lists on ASX
9 Nov 2021	Anthill and Mt Kelly development underway
17 Nov 2021	Anthill blasting commences
7 Dec 2021	Thiess signing
14 Dec 2021	Updated Company presentation
11 Jan 2022	Mining commences at Anthill
30 Jan 2022	December Quarter Report
3 Feb 2022	Offtake and Prepayment Agreement secured with Glencore
31 Mar 2022	Austral's Anthill Mine Ore Shipments Commence
26 Apr 2022	Exploration update
28 Apr 2022	March Quarter Report
4 May 2022	RIU Conference presentation
6 Jun 2022	Austral exploration update
8 Jun 2022	Glencore (MIM) JV
8 Jun 2022	Resources Rising Stars Presentation
14 Jun 2022	First Anthill Copper Cathode Plated
21 Jun 2022	Austral Appoints Exploration Manager
27 Jun 2022	Change of Management
27 Jul 2022	Austral June 2022 Quarterly Update
28 Jul 2022	Lady Colleen Drilling Update
2 Aug 2022	Drilling at Flying Horse confirms 14m @ 2.39% Cu
9 Aug 2022	Maiden Mineral Resource at Enterprise
11 Aug 2022	Austral successfully completes \$17M placement
26 Aug 2022	Operational and Strategic Update
29 Aug 2022	Austral Resource Appendix 4 and half-year report
5 Sep 2022	New drilling Results at Lady Colleen include 5m @ 7.10% Cu
16 Sep 2022	Austral Board Approves Scoping Study for Lady Colleen
27 Sep 2022	Lady Colleen assays confirm 5m @ 5.74% Cu in step-out drilling

Appendix 2. Newly reported assays from Lady Colleen 2022 Drilling Program

											Cu-OG46 +	
				Sample	Sample			ME-ICP49			Cu-OG62	Intersections (External Dilution > 0.24% Cu + Maximum Internal Dilution)
Hole_ID	From	То	SampleID	Method	Туре	Cu (%)	Ca (%)	Fe (%)	Mg (%)	S (%)	Cu (%)	
MTKCD087	0	4	D104107	Half Core	HQ Core	0.001	0.32	0.77	0.16	0.04		
MTKCD087	4		D104108	Half Core	HQ Core	0		0.4	0.06	0.03		
MTKCD087	8		D104109	Half Core	HQ Core	0		0.2	0.1	0.05		
MTKCD087	12		D104110	Half Core	HQ Core	0		0.15	0.08			
MTKCD087	16		D104111	Half Core	HQ Core	0.001	0.03	0.09	0.02			
MTKCD087	20		D104112	Half Core	HQ Core	0.002	0.02	0.07	0.02			
MTKCD087	24		D104113	Half Core	HQ Core	0.002	0.04	0.1	0.03			
MTKCD087	28		D104114	Half Core	HQ Core	0.002	0.03	0.1	0.02			
MTKCD087	32		D104115	Half Core	HQ Core	0.013	0.06	1.82	0.05			
MTKCD087	36		D104116	Half Core	HQ Core	0.007	0.04	0.51	0.03			
MTKCD087	40		D104117	Half Core	HQ Core	0.035	0.02	2.23	0.02			
MTKCD087 MTKCD087	44		D104118 D104119	Half Core Half Core	HQ Core HQ Core	0.075	8.66	6.94 4.64	0.04 4.68			
MTKCD087	52		D104119 D104120	Half Core		0.049	9.29	1.92	4.08			
MTKCD087 MTKCD087	52		D104120 D104121	Half Core	HQ Core HQ Core	0.03	9.29	1.92	4.96	0.03		
MTKCD087	60		D104121 D104122	Half Core	HQ Core	0.010	8.56		4.71			
MTKCD087	64		D104122 D104123	Half Core	HQ Core	0.012	9.17	2.14	4.54			
MTKCD087	68		D104123 D104124	Half Core	HQ Core	0.004	9.17	2.14	5.06			
MTKCD087	72		D104124	Half Core	HQ Core	0.004	8.09	1.84	4.23	0.22		
MTKCD087	72		D104120 D104127	Half Core	HQ Core	0.003	9.42	1.84	4.23			
MTKCD087	80		D104127	Half Core	HQ Core	0.002	10.15	2.29	5.33			
MTKCD087	84		D104120	Half Core	HQ Core	0.003	9.66	2.33	5.03			
MTKCD087	88		D104130	Half Core	HQ Core	0.001	8.91	2.06	4.66			
MTKCD087	92		D104131	Half Core	HQ Core	0.002	8.83	2.02	4.64			
MTKCD087	96	100	D104132	Half Core	HQ Core	0.001	8.52	2.32	4.36	0.43		
MTKCD087	100	104	D104133	Half Core	HQ Core	0.001	10.05	2.33	5.23	0.32		
MTKCD087	104	108	D104134	Half Core	HQ Core	0.001	8.83	2.18	4.54	0.38		
MTKCD087	108	112	D104135	Half Core	HQ Core	0.001	10.65	2.3	5.52	0.34		
MTKCD087	112	116	D104136	Half Core	HQ Core	0.001	9.57	2.33	4.96	0.28		
MTKCD087	116	120	D104137	Half Core	HQ Core	0.001	11.1	2.81	5.56	0.3		
MTKCD087	120	124	D104138	Half Core	HQ Core	0.003	9.75	2.52	5.06	0.34		
MTKCD087	124		D104139	Half Core	HQ Core	0.001	10.45	2.64	5.32			
MTKCD087	128		D104140	Half Core	HQ Core	0.001	11.5	2.96	5.75			
MTKCD087	132		D104141	Half Core	HQ Core	0.001	10.4	2.54	5.32	0.36		
MTKCD087	136		D104142	Half Core	HQ Core	0.001	9.52	1.9	4.98			
MTKCD087	140		D104143	Half Core	HQ Core	0.001	11.1	2.5	5.72			
MTKCD087	144		D104144	Half Core	HQ Core	0.001	11.35	2.54	5.77	0.25		
MTKCD087	148		D104145	Half Core	HQ Core	0.002	10.1	2.18	5.22			
MTKCD087	152		D104146	Half Core	HQ Core	0.002	10.45	1.89	5.52			
MTKCD087	156		D104147	Half Core	HQ Core	0.003	9.76	2.01	5.03			
MTKCD087 MTKCD087	160		D104148 D104149	Half Core Half Core	HQ Core	0.002	10.3 10.2	1.99 2.15	5.38			
MTKCD087 MTKCD087	164 168		D104149 D104151	Half Core	HQ Core HQ Core	0.004	10.2	2.15	5.33 5.47	0.35		
MTKCD087 MTKCD087	168		D104151 D104152	Half Core	HQ Core	0.007	10.4	2.3	5.47			
MTKCD087	172		D104152	Half Core	HQ Core	>1	5.6	3.85	2.92	3.11	2.62	
MTKCD087	173		D104153	Half Core	HQ Core	0.426	9.35	2.45	4.79	0.88		
MTKCD087	175		D104155	Half Core	HQ Core	0.136	11.45	2.48	5.94	0.49		
MTKCD087	175			Half Core		>1	4.09		2.09			
MTKCD087	170		D104157		HQ Core	0.854	7.45		3.91			
MTKCD087	178			Half Core	HQ Core	>1	2.58		1.3			
MTKCD087	179			Half Core	HQ Core	0.505	6.86		3.63			
MTKCD087	179.6		D104777	Half Core	HQ Core	0.03	7.7	1.74	4.03			
MTKCD087	180	181	D104778	Half Core	HQ Core	0.23	5.68	1.82	3.05			
MTKCD087	181	182	D104779	Half Core	HQ Core	0.43	5.01	1.63	2.74	0.85		
MTKCD087	182	183	D104780	Half Core	HQ Core	0.22	7.32	1.78	3.86	0.59		49m @ 1.27% Cu (From 173m)
MTKCD087	183	184	D104781	Half Core	HQ Core	>1	4.8	3.62	2.53	3.01	2.49	4911 @ 1.27% CU (FIOIII 1731)
MTKCD087	184	185		Half Core	HQ Core	>1	5.6	3.27	3.04	2.41	1.93	
MTKCD087	185	186	D104783	Half Core	HQ Core	0.05	10.85	2.3	5.63	0.36		
MTKCD087	186	187	D104784	Half Core	HQ Core	0.02	9.55	1.84	5.01	0.39		
MTKCD087	187			Half Core	HQ Core	0.38			4.68	0.83		
MTKCD087	188			Half Core	HQ Core	0.51	6.15	1.94	3.42	1.09		
MTKCD087	189		D104787	Half Core	HQ Core	>5	2.32	10.2	1.16			
MTKCD087	190		D104788	Half Core	HQ Core	0.63	5.5	2.14	3.09			
MTKCD087	191		D104789	Half Core	HQ Core	>1	4.69		2.48			
	100	102	D104790	Half Core	HQ Core	0.16	7.52	1.76	4.05	0.79		
MTKCD087 MTKCD087	192 193			Half Core	HQ Core	>1	4.37	3.67	2.38		2.43	

										Cu-OG46 +	Intersections (External Dilution > 0.24% Cu
	From	To CompleiD	Sample	Sample	C++ (0/)	Co (0()	ME-ICP49	$M_{2}(0/)$	C (0()	Cu-OG62	+ Maximum Internal Dilution)
Hole_ID MTKCD087	From 194	To SampleID 195 D104792	Method Half Core	Type HQ Core	Cu (%) >1	Ca (%) 6.22	Fe (%) 3.02	Mg (%) 3.42	<mark>S (%)</mark> 2.19	Cu (%) 1.44	
MTKCD087	194	196 D104793	Half Core	HQ Core	0.08	9.54	1.93	5.11	0.62		
MTKCD087	196	197 D104794	Half Core	HQ Core	0.03	8.23	1.64	4.38	0.52		
MTKCD087	197	198 D104795	Half Core	HQ Core	0.04	9.09	1.96	4.8	0.61		
MTKCD087	198	199 D104796	Half Core	HQ Core	0.63	6.21	1.98	3.42			
MTKCD087	199	200 D104797	Half Core	HQ Core	>1	1.76	2.47	0.82	2.32	1.58	
MTKCD087 MTKCD087	200 201	201 D104798 202 D104799	Half Core Half Core	HQ Core HQ Core	>1 >1	1.21 5.61	4.43	0.46	4.16 1.58		
MTKCD087	201	203 D104800	Half Core	HQ Core	>1	3.6	4.44	1.86		3.5	
MTKCD087	203	204 D104801	Half Core	HQ Core	0.2	7.41	1.84	4.11	0.54		
MTKCD087	204	205 D104803	Half Core	HQ Core	0.06	9.28	1.81	4.91	0.46		
MTKCD087	205	206 D104804	Half Core	HQ Core	0.04	9.5	1.92	4.96			(From previous page)
MTKCD087	206 207	207 D104805 208 D104806	Half Core	HQ Core	0.34	11.3	2.41	5.94	0.7		
MTKCD087 MTKCD087	207	208 D104806 209 D104807	Half Core Half Core	HQ Core HQ Core	>1	11 6.45	3.01	5.71 3.53	0.35	1.64	49m @ 1.27% Cu (From 173m)
MTKCD087	200	210 D104808	Half Core	HQ Core	0.15	8.91	1.8	4.78	-	1.04	
MTKCD087	210	211 D104809	Half Core	HQ Core	0.12	8.63	1.74	4.58			
MTKCD087	211	212 D104810	Half Core	HQ Core	0.18	8.91	2.09	4.64	0.77		
MTKCD087	212	213 D104811	Half Core	HQ Core	0.4	10.75	2.8	5.51	0.87		
MTKCD087	213	214 D104812	Half Core	HQ Core	>1	6.97	2.51	3.63	1.6		
MTKCD087 MTKCD087	214 215	215 D104813 216 D104814	Half Core Half Core	HQ Core HQ Core	>1 0.08	6.17 10.55	3.9 2.35	3.31 5.34	2.94 0.64	2.4	
MTKCD087	215	216 D104814 217 D104815	Half Core	HQ Core	0.08	10.55	2.35	5.34			
MTKCD087	217	218 D104816	Half Core	HQ Core	0.96	6.52	2.28	3.56			
MTKCD087	218	219 D104817	Half Core	HQ Core	>1	4.05	4.23	2.12	3.56	3.24	
MTKCD087	219	220 D104818	Half Core	HQ Core	>1	7.49	5.22	3.72	3.74	3.27	
MTKCD087	220	221 D104819	Half Core	HQ Core	>1	8.18	4.35	4.16			
MTKCD087	221	222 D104820 223 D104821	Half Core	HQ Core	0.81	7.19 9.28	2.42	3.96 4.75			
MTKCD087 MTKCD087	222 223	223 D104821 224 D104822	Half Core Half Core	HQ Core HQ Core	-0.01	9.28	2.11	4.75	0.5		
MTKCD087	223	225 D104823	Half Core	HQ Core	-0.01	9.1	2.1	4.66			
MTKCD087	225	226 D104824	Half Core	HQ Core	0.41	8.86	2.76	4.55			
MTKCD087	226	227 D104825	Half Core	HQ Core	0.09	9.07	2.2	4.65			
MTKCD087	227	228 D104826	Half Core	HQ Core	0.01	8.61	2.25	4.46			
MTKCD087 MTKCD087	228 229	229 D104827 230 D104829	Half Core Half Core	HQ Core	-0.01 0.01	7.24	1.92 2.64	3.7 5.63	0.7		
MTKCD087 MTKCD087	229	230 D104829 231 D104830	Half Core	HQ Core HQ Core	0.01	10.75	2.64	5.63			
MTKCD087	231	232 D104831	Half Core	HQ Core	0.13	10.75	2.77	5.45			
MTKCD087	232	233 D104832	Half Core	HQ Core	>1	7.92	6.54	4.01	5.74	3.26	1m @ 3.26% Cu (From 232m)
MTKCD087	233	234 D104833	Half Core	HQ Core	0.08	8.31	2.1	4.29	0.68		
MTKCD087	234	235 D104834	Half Core	HQ Core	0.01	6.95	1.72	3.57	0.47		
MTKCD087 MTKCD087	235 236	236 D104835 237 D104836	Half Core Half Core	HQ Core HQ Core	0.09	7.79	2.5 1.73	4.02			
MTKCD087 MTKCD087	230	237 D104836 238 D104837	Half Core	HQ Core	0.01	12.2	3.31	6.25	0.85		
MTKCD087	238	239 D104838	Half Core	HQ Core	0.03	5.94	2.3	3.21	1.04		
MTKCD087	239	240 D104839	Half Core	HQ Core	0.01	8.33	2.77	3.94	0.83		
MTKCD087	240	241 D104840	Half Core	HQ Core	-0.01	5.81	2.02	2.89			
MTKCD087	241	242 D104841		HQ Core	0.01	1.58	1.44	0.6			
MTKCD088 MTKCD088	0		Half Core Half Core	HQ Core HQ Core	0.016	0.2	1.7 4.75	0.17			
MTKCD088	8	12 D104161	Half Core	HQ Core	0.023	0.03	4.75	0.04			
MTKCD088	12		Half Core	HQ Core	0.003	0.05	0.37	0.05			
MTKCD088	16		Half Core	HQ Core	0.002	0.03	0.13	0.03			
MTKCD088	20	24 D104165		HQ Core	0.004		0.38	0.03			
MTKCD088	24		Half Core	HQ Core	0.15		14.25	0.05			
MTKCD088 MTKCD088	28 32	32 D104167 36 D104168		HQ Core HQ Core	0.127	0.02	7.36	0.07	0.01		
MTKCD088	32	40 D104169		HQ Core	0.091		1.85	3.87	0.03		
MTKCD088	40		Half Core	HQ Core	0.0014		1.66	4.82			
MTKCD088	44	48 D104171	Half Core	HQ Core	0.004	9.13	1.87	4.84			
MTKCD088	48		Half Core	HQ Core	0.004	9.13	2.2	4.62			
MTKCD088	52	56 D104173	Half Core	HQ Core	0.008	9.51	2.31	4.96			
MTKCD088 MTKCD088	56	60 D104174 64 D104176	Half Core	HQ Core	0.005	10.1	2.39	5.24			
MTKCD088	60 64	68 D104176		HQ Core HQ Core	0.004	10.35 11.25	2.29	5.3 5.81	0.21		
MTKCD088	68	72 D104178	Half Core	HQ Core	0.003	9.23	2.03	4.87	0.22		
MTKCD088	72			HQ Core	0.002	10.5	2.32	5.41	0.23		
MTKCD088	76	80 D104180	Half Core	HQ Core	0.002	10.8	2.33	5.53	0.31		

										Cu-OG46 +	Intersections (External Dilution > 0.24% Cu
Hole ID	From	To SampleID	Sample Method	Sample Type	Cu (%)	Ca (%)	ME-ICP49 Fe (%)	Mg (%)	S (%)	Cu-OG62 Cu (%)	+ Maximum Internal Dilution)
MTKCD088	80	84 D104181	Half Core	HQ Core	0.001	11.35	2.39	5.82	0.26	Cu (76)	
MTKCD088	84	88 D104182	Half Core	HQ Core	0.002	9.17	1.94	4.72	0.33		
MTKCD088 MTKCD088	88 92	92 D104183 96 D104184	Half Core Half Core	HQ Core HQ Core	0.002	11.05 10	2.24	5.71 5.22	0.26		
MTKCD088	96	100 D104185	Half Core	HQ Core	0.004	8.69	1.93	4.57	0.3		
MTKCD088	100	104 D104186	Half Core	HQ Core	0.004	9.69	2.11	5	0.25		
MTKCD088 MTKCD088	104 108	108 D104187 112 D104188	Half Core Half Core	HQ Core HQ Core	0.01	8.91 9.51	2.09	4.77 5.18	0.3		
MTKCD088	100	116 D104189	Half Core	HQ Core	0.006	10.25	1.89	5.75	0.13		
MTKCD088	116	120 D104190	Half Core	HQ Core	0.004	9.19	1.63	5	0.2		
MTKCD088 MTKCD088	120 124	124 D104191 128 D104192	Half Core Half Core	HQ Core HQ Core	0.005	10.55 11.85	1.93 1.95	5.59 6.31	0.34		
MTKCD088	124	132 D104192	Half Core	HQ Core	0.004	11.03	1.85	5.38	0.35		
MTKCD088	132	133 D104194	Half Core	HQ Core	>1	4.5	2.05	2.31	1.78	2.19	
MTKCD088 MTKCD088	133 134	134 D104195 135 D104196	Half Core Half Core	HQ Core HQ Core	>1 0.355	6.76 9.57	3.02 2.05	3.41 4.91	2.06 0.63	2.21	
MTKCD088	134	135 D104190	Half Core	HQ Core	0.04	10.85	2.03	5.57	0.03		
MTKCD088	136	137 D104198	Half Core	HQ Core	0.026	11.95	2.32	6.29	0.34		
MTKCD088 MTKCD088	137 138	138 D104199 139 D104201	Half Core Half Core	HQ Core	0.117	10.6 8.56	2.23	5.55 4.49	0.43		-
MTKCD088	138	139 D104201 140 D104202	Half Core	HQ Core HQ Core	0.061	8.56	2.47	6.36	0.3		
MTKCD088	140	141 D104203	Half Core	HQ Core	0.044	12.35	2.18	6.6	0.26		
MTKCD088	141	142 D104204	Half Core	HQ Core	0.019	10.95	1.84	5.88	0.28		-
MTKCD088 MTKCD088	142 143	143 D104205 144 D104206	Half Core Half Core	HQ Core HQ Core	0.033	10.95 11.75	1.98 2.22	5.82 6.12	0.3		-
MTKCD088	144	145 D104207	Half Core	HQ Core	0.17	9.89	1.96	5.24	0.46		
MTKCD088	145	146 D104208	Half Core	HQ Core	>1	4	2.86	2.04	2.39	2.05	
MTKCD088 MTKCD088	146 147	147 D104209 148 D104210	Half Core Half Core	HQ Core HQ Core	>1 0.07	6.33 8	2.92 1.52	3.35 4.24	2.45 0.55	1.34	
MTKCD088	147	148 D104210	Half Core	HQ Core	>1	1.7	2.92	0.76	2.92	2.42	
MTKCD088	149	149.7 D104212	Half Core	HQ Core	>1	1.24	3.21	0.56	3.15	2.83	
MTKCD088	149.7	150.5 D104844	Half Core	HQ Core	0.07	10.7	2.05	5.51	0.35		-
MTKCD088 MTKCD088	150.5 151	151 D104845 152 D104846	Half Core Half Core	HQ Core HQ Core	0.31	6.24 2.98	1.54 3.23	3.45 1.49	0.74 2.76	2.58	-
MTKCD088	152	153 D104847	Half Core	HQ Core	0.17	10.8	2.36	5.5	0.7		
MTKCD088	153	154 D104848	Half Core	HQ Core	0.04	10.7	2.23	5.4	0.47		-
MTKCD088 MTKCD088	154 155	155 D104849 156 D104850	Half Core Half Core	HQ Core HQ Core	0.03	10.7 12.2	2.12 2.36	5.43 6.18	0.37		-
MTKCD088	155	157 D104851	Half Core	HQ Core	>1	5.82	3.57	3.09	2.4	2.47	48m @ 1.00% Cu (from 132m)
MTKCD088	157	158 D104852	Half Core	HQ Core	0.37	5.12	1.58	2.71	0.56		
MTKCD088 MTKCD088	158 159	159 D104853 160 D104854	Half Core Half Core	HQ Core HQ Core	0.11	8.56 7.74	1.93 2.77	4.43 3.92	0.51	1.26	
MTKCD088	160	161 D104855	Half Core	HQ Core	0.17	10.65	2.33	5.46	0.46		
MTKCD088	161	162 D104856	Half Core	HQ Core	0.75	11.05	3.03	5.61	1.14		
MTKCD088 MTKCD088	162 163	163 D104857 164 D104858	Half Core Half Core	HQ Core	>1 0.65	2.28 2.61	2.97 1.74	1.06 1.23	2.51 1.3	2.25	-
MTKCD088	165	165 D104859	Half Core	HQ Core HQ Core	0.05	10.65	2.22	5.44	0.42		
MTKCD088	165	166 D104860	Half Core	HQ Core	>1	6.27	3.29	3.23	1.97	1.74	
MTKCD088	166	167 D104861	Half Core	HQ Core	0.1	10.15	2.34	5.07	0.51		-
MTKCD088 MTKCD088	167 168	168 D104862 169 D104863	Half Core	HQ Core HQ Core	0.05	6.11 8.77	2.37	3.25 4.54	1.37 0.45		-
MTKCD088	169	170 D104864	Half Core	HQ Core	>1	3.72	2.84	1.89	2.35		
MTKCD088	170	171 D104865	Half Core	HQ Core	>5	3.08	6.86	1.48	5.54	6.69	
MTKCD088 MTKCD088	171 172	172 D104866 173 D104867	Half Core Half Core	HQ Core HQ Core	0.57	7.5 8.58	2.34 2.17	3.73 4.23	1.01 0.42		-
MTKCD088	172	174 D104868	Half Core	HQ Core	>1	5.13	3.22	2.64	2.2	1.9	
MTKCD088	174	175 D104870	Half Core	HQ Core	>1	7.04	2.73	3.52	1.45	1.02	
MTKCD088 MTKCD088	175 176	176 D104871 177 D104872	Half Core Half Core	HQ Core	0.76	11.1 9.76	2.78 2.16	5.6 5.03	0.99		
MTKCD088	170	178 D104873	Half Core	HQ Core HQ Core	0.15	10.25	2.10	5.32	0.49		
MTKCD088	178	179.3 D104874	Half Core	HQ Core	>1	1.77	3.52	0.82	3.4	1.5	
MTKCD088	179.3	180 D104875	Half Core	HQ Core	>5	0.68	12.2	0.28			
MTKCD088 MTKCD088	180 181	181 D104876 182 D104877	Half Core Half Core	HQ Core HQ Core	0.55	10.5 9.62	3.39 2.46	5.42 4.97	1.6 0.87		
MTKCD088	181	182 D104877	Half Core	HQ Core	0.06	10	2.40	5.1	0.94		
MTKCD088	183	184 D104879	Half Core	HQ Core	0.02	6.97	1.91	3.79			
MTKCD088 MTKCD088	184 255	185 D104880 256 D104881	Half Core Half Core	HQ Core HQ Core	0.05	8.79 0.35	2.48 0.95	4.51 0.13	0.89		
MTKCD088	255	257 D104881	Half Core	HQ Core	0.02	0.33	1.14	0.13	1.1		
MTKCD088	257	258 D104883	Half Core	HQ Core	0.87	0.33	2.85	0.17	2.94		
MTKCD088	258	259 D104884	Half Core	HQ Core	0.09	0.18	1.27	0.07	1.3		
MTKCD088	259	260 D104885	Half Core	HQ Core	0.02	0.46	1.12	0.19	1.06		

Appendix 3. JORC Code Table 1

Section 1: Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling	Nature and quality of sampling (e.g. cut channels,	RC drilling was sampled on 1 m intervals to collect 2 to 3 kg samples.
techniques	random chips, or specific specialised industry	
	standard measurement tools appropriate to the	The splitter was cleaned at the end of each rod, the cyclone was cleaned
	minerals under investigation, such as downhole	at the start of each hole.
	gamma sondes, or handheld XRF instruments, etc).	
	These examples should not be taken as limiting the	Diamond core drilling was used to sample half core in 1 m lengths based
	broad meaning of sampling.	on mineralisation.
	Include reference to measures taken to ensure	
	sample representivity and the appropriate calibration of any measurement tools or systems	Samples were sent to ALS lab for sample preparation and analysis. The laboratory conforms to Australian Standards ISO 9001 and ISO 17025.
	used.	laboratory comornis to Australian Standards 150 5001 and 150 17025.
	Aspects of the determination of mineralisation that	
	are Material to the Public Report.	
	In cases where 'industry standard' work has been	
	done this would be relatively simple (e.g. 'reverse	
	circulation drilling was used to obtain 1 m samples	
	from which 3 kg was pulverised to produce a 30 g	
	charge for fire assay'). In other cases, more	
	explanation may be required, such as where there is	
	coarse gold that has inherent sampling problems.	
	Unusual commodities or mineralisation types (eg	
	submarine nodules) may warrant disclosure of	
D :=:	detailed information.	
Drilling	Drill type (e.g. core, reverse circulation, open-hole	Reverse circulation and percussion methods were used to test near
techniques	hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard	surface oxide mineralisation while diamond drilling (HQ and NQ) was used for evaluating deeper sulphide mineralisation.
	tube, depth of diamond tails, face-sampling bit or	RC drilling used standard face sampling hammers, high pressure
	other type, whether core is oriented and if so, by	compressor and a riffle splitter.
	what method, etc).	Diamond drilling was HQ & NQ size using standard/triple tubing.
		Drill holes considered unreliable such as water bore, percussion holes,
		RAB holes, were excluded from the resource estimate
Drill sample	Method of recording and assessing core and chip	For RC samples the weight of the recovered sample was recorded as high,
recovery	sample recoveries and results assessed.	medium or low or as a number from 1 to 5. The drill hole database
	Measures taken to maximise sample recovery and	indicates that 35% of the samples have a high sample recovery weight
	ensure representative nature of the samples.	and 51% with medium sample recovery weights.
	Whether a relationship exists between sample	For diamond drilling, the historical sample recovery averages 95%.
	recovery and grade and whether sample bias may	RC and diamond sampling methods are appropriate for the style of
	have occurred due to preferential loss/gain of	mineralisation. Current AR1 drilling procedures include adequate
	fine/coarse material.	measures to control sample contamination and minimise sample loss.
Logging	Whether core and chip samples have been	Geological logging entered into a Microsoft Access database includes
	geologically and geotechnically logged to a level of	lithology, oxidation, grain size, colour, rock texture, dominant copper
	detail to support appropriate Mineral Resource	minerals, fracture angle and bedding angle (DD).
	estimation, mining studies and metallurgical studies.	
	Whether logging is qualitative or quantitative in	
	nature. Core (or costean, channel, etc) photography.	

Criteria	JORC Code explanation	Commentary
	The total length and percentage of the relevant	
	intersections logged.	
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Diamond core is sawn longitudinally with half core taken for sampling. The RC drilling has an attached cyclone and riffle splitter from which 2 to 3 kg samples were collected. Field duplicates were collected for the RC samples from a bucket
Quality of	For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. The nature, quality and appropriateness of the	containing the rejects using a spear. Duplicates for diamond core samples were taken from the crushed rejects at ALS laboratory. Standards and blanks were inserted at a rate of 1 in 25 and a minimum of
assay data and laboratory tests	assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining	2 standards per batch. Standards were picked to match the expected grade of the mineralised interval. Blanks were inserted immediately after the standard. Field duplicates were inserted with the blanks and standards.
	the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been	Prior to 2008 there was minimal QAQC, but some check sampling and production reconciliation indicated no material problems with assaying. Available QAQC data was assessed and there were no significant sampling and assaying issues noted. The frequency of standards, blanks and duplicates is considered adequate. 2022 XRF sampling protocols are being established to statistically
	established.	determine levels of accuracy compared to laboratory assay methods.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data.	At the LC deposit, there has not yet been any twinning program or other verification of significant intersections. Current drilling is designed to test and validate predicted grades, estimated and interpolated from prior drilling assay results. The AR1 drill hole database (including LC) is maintained on site in digital (Microsoft SQL database) and hard-copy format. A designated database administrator maintains the database and is tasked with adding data and making any corrections to the database. Negative assay values indicate half detection limit (typically 0.005). Unsampled intervals within the mineralised envelope were assigned a value of 0.01% Cu.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control.	Across AR1 (including LC) the majority of the drill hole locations are reported to be by differential GPS which provides sub-metre accuracy for regional AMG coordinates. All drilling is in Australian Map Grid (AMG84) coordinates Zone 54. Down hole surveys were collected using a range of methods with the majority of the drill holes surveyed using a single-shot or multi-shot camera on approximately 30 m intervals. 16% of samples at Lady Annie were surveyed by compass and 3% were vertical. For 34% of the Lady Annie drill holes the survey method is not recorded in the database. Topography is provided by a detailed survey by Austral, which is continuously updated with sub metre accuracy. The current topography surfaces have been updated to the end of January 2021.

Criteria	JORC Code explanation	Commentary
Data spacing	Data spacing for reporting of Exploration Results.	Lady Colleen: drill spacing varies from 20 m to over 100 m and averages
and	Whether the data spacing and distribution is	approximately 30 m by 40 m.
distribution	sufficient to establish the degree of geological and	Drill hole data was composited to 3 m intervals by mineralisation domain
	grade continuity appropriate for the Mineral	for Lady Colleen.
	Resource and Ore Reserve estimation procedure(s)	The drill spacing is sufficient to capture the salient geological features
	and classifications applied.	controlling the mineralisation and is sufficient, in places, to define
	Whether sample compositing has been applied.	Measured and Indicated Mineral Resources.
Orientation of	Whether the orientation of sampling achieves	Lady Colleen: drilling is oriented 60 toward azimuths of 220 ; copper
data in	unbiased sampling of possible structures and the	mineralisation is flat dipping near surface oxide and steeper
relation to	extent to which this is known, considering the	mineralisation is dipping 35 to 40 with a strike of 120 to 160.
geological	deposit type.	
structure	If the relationship between the drilling orientation	Drilling is appropriately oriented to intersect the mineralisation across dip
	and the orientation of key mineralised structures is	to avoid any sampling bias.
	considered to have introduced a sampling bias, this	
	should be assessed and reported if material.	
Sample	The measures taken to ensure sample security.	Sample numbers are recorded on the sample sheet and the data is later
security		entered into the corresponding drill log. Once the hole/log is complete
		the file is sent to the database manager and checked by a geologist.
		Samples are placed in numbered samples dispatch bins, prior to being
		sent to the laboratory. The sample number, bin and date-time are
		recorded in the sample dispatch sheet which is signed by the operating
		field technician.
		Each sample bin or approximately every 300 samples are allocated a
		batch number and a separate laboratory submission sheet. Samples were
		dispatched by truck to the ALS Townsville laboratory weekly.
		The assay results were sent from the Laboratory directly to the database
		The assay results were sent from the laboratory directly to the manager
		and geologist by email.
Audits or	The results of any audits or reviews of sampling	FinOre Mining Consultants undertook an audit of the drill hole QAQC
reviews	techniques and data.	including an audit of the laboratory in 2005 for the CopperCo Lady Annie
		Feasibility Study.
		In 2007 and 2008 Maxwell GeoServices assessed the CopperCo QAQC
		data.
		Snowden in 2010 assessed the QAQC data collected since 2008.
		Golder completed a high-level database review in 2012, including
		undertaking a small number of checks of the hard-copy data with the
		digital data and rudimentary checks of the drill hole database.
		No major issues with the sampling and assaying were identified by the
		reviews. The RC and diamond drilling data are appropriate for Mineral
		Resource estimation.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral	Type, reference name/number, location and	Lady Colleen is located on ML90170
tenement and	ownership including agreements or material	Austral Resources Lady Annie Pty Ltd holds 15 Mining Leases (ML) and 14
land tenure	issues with third parties such as joint ventures,	Exploration Permit for Minerals (EPM) around the Lady Annie Copper
status	partnerships, overriding royalties, native title	Project. Mineral Resources, Ore Reserves and all mining and processing
	interests, historical sites, wilderness or national	infrastructure are located on ML's.
	park and environmental settings.	A further 18 EPM's are held by Austral Resources Exploration Pty Ltd, a 100%
	The security of the tenure held at the time of	subsidiary of Austral Resources.
	reporting along with any known impediments to	subsidiary of Austral Resources.
	obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Buka Minerals Limited (Buka) purchased the Lady Annie and Lady Loretta deposits in 1996 and commissioned a pre-feasibility study into the development of a standalone cathode copper operation at Lady Annie. In June 2004, Avon Resources was renamed to CopperCo Limited (CopperCo) and acquired 100% of the Lady Annie Project from Buka. The Lady Annie Project was developed by CopperCo and mining commenced at Mount Clarke with pre-stripping in April 2007 and at Lady Annie in October 2008. The Mount Kelly process plant was commissioned in October 2007. Exploration primarily utilised RC and diamond drilling to test the Lady Annie, Mt Kelly and Anthill areas. Drilling at Lady Annie and Mt Kelly was conducted from 1964 to present-day with the majority of the drilling completed in 2004 using predominantly modern reverse circulation (61% of drilling) and diamond drilling (11% of drilling) methods. The rest of the drilling is predominately rotary air blast (RAB 12% of drilling) and unspecified drilling methods (10%).
Geology	Deposit type, geological setting and style of mineralisation.	The Mount Kelly mining area, where Lady Colleen Deposit is located, is dominated by early to mid-Proterozoic siltstones and dolomitic siltstones of the McNamara Group. Copper mineralisation occurs within units of the McNamara Group and is reportedly related to the north-west-trending Mount Kelly and Spinifex Faults, which intersect and cut the McNamara Fault. The known mineralisation is associated with multiple phases of brecciation and veining along the fault zones. The copper oxide mineralisation appears to be shear and fault controlled.
Drillhole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drillhole information is considered to be of a good standard.

Criteria	JORC Code explanation	Commentary
Data	In reporting Exploration Results, weighting	No data aggregation methods have been applied.
aggregation	averaging techniques, maximum and/or	
methods	minimum grade truncations (e.g. cutting of high	
	grades) and cut-off grades are usually Material	
	and should be stated.	
	Where aggregate intercepts incorporate short	
	lengths of high grade results and longer lengths	
	of low grade results, the procedure used for such	
	aggregation should be stated and some typical	
	examples of such aggregations should be shown	
	in detail.	
	The assumptions used for any reporting of metal	
Relationship	equivalent values should be clearly stated. These relationships are particularly important in	Drill intersections are reported as downhole intersections and may not reflect
between	the reporting of Exploration Results.	true widths.
mineralisation	If the geometry of the mineralisation with	
widths and	respect to the drillhole angle is known, its nature	
intercept	should be reported.	
lengths	If it is not known and only the down hole lengths	
	are reported, there should be a clear statement	
	to this effect (e.g. 'downhole length, true width	
	not known').	
Diagrams	Appropriate maps and sections (with scales) and	All diagrams contained in this document are generated from spatial data
	tabulations of intercepts should be included for	displayed in industry standard mining and GIS packages.
	any significant discovery being reported These should include, but not be limited to a plan view	
	of drill hole collar locations and appropriate	
	sectional views.	
Balanced	Where comprehensive reporting of all	Balanced reporting principles are being applied.
reporting	Exploration Results is not practicable,	
	representative reporting of both low and high	
	grades and/or widths should be practiced to	
	avoid misleading reporting of Exploration	
	Results.	
Other	Other exploration data, if meaningful and	Historic geophysical data was reprocessed late 2021 to confirm projections
substantive	material, should be reported including (but not	and apply new processing methods where possible
exploration data	limited to): geological observations; geophysical survey results; geochemical survey results; bulk	
uata	samples – size and method of treatment;	
	metallurgical test results; bulk density,	
	groundwater, geotechnical and rock	
	characteristics; potential deleterious or	
	contaminating substances.	
Further work	The nature and scale of planned further work	The evaluation, identification, design and completion of required further
	(e.g. tests for lateral extensions or depth	drilling, including evaluation of the potential strike extent of the high-grade
	extensions or large-scale step-out drilling).	core, as indicated in Figure 3. By end-September.
	Diagrams clearly highlighting the areas of	
	possible extensions, including the main geological interpretations and future drilling	Completion of the drilling program at LC, receipt of all assays, geological
	areas, provided this information is not	evaluation (including mineralogy) and updating the LC resource model to enable generation of a new Mineral Resource. By mid-October.
	commercially sensitive.	Enable generation of a new Mineral Resource. By MiG-OCCODER.
		Completion of a pre-feasibility study (PFS) of the potential for extraction of LC
		sulphide resource through open pit mining, including all costs relevant to having
		the material transported and processed at an appropriate sulphide
1		concentrator. By mid-November.

AUSTRAL RESOURCES

Criteria	JORC Code explanation	Commentary
		Evaluation of the appropriate Mineral Resource and Ore Reserve (dependent on the PFS outcomes) classification and reporting in accordance with the JORC Code. By mid-November.