

Triumph Update - New Targets Identified

- Orientation bedrock sampling (aircore) has defined new gold targets under shallow cover
- These encouraging results confirm the undercover prospectivity of the Triumph project highlighted by the recent high grade gold drill results intersected under 4m of cover at the Bald Hill prospect
- Updated geological model based on new data provides strong indicators for bulk tonnage gold potential
- Drilling to date creates a solid platform for the rapid delineation of high grade gold resources near surface
- Additional drilling is scheduled for Bald Hill in the near term

Metal Bank Limited (ASX: MBK) (**MBK** or the **Company**) is pleased to provide the following update on the Triumph project, eastern Australia following an aircore bedrock drilling programme combined with a project-wide review.

A total of 107 aircore drill holes (715m) were completed on wide spaced traverses to enable sampling of the concealed basement beneath <5m of cover sediments. This programme represents the first drilling completed through the shallow cover and has been successful in identifying three large scale zoned gold targets with strongly anomalous pathfinder elements Au (max 0.43g/t), Ag-As-Bi. The three new targets of Harmony, Handbrake Hill and interpreted western extension of Bald Hill provide over 2.5km of additional strike potential beneath shallow cover.

In conjunction with the bedrock drilling results, a revision of the geological model for the Triumph gold camp now provides strong indication for a bulk tonnage gold target. Large intrusion related gold systems in eastern Australia (and around the world) are commonly zoned in both hydrothermal alteration and multi-element geochemistry patterns. Improved understanding of the zoning patterns within the >15km² Triumph gold camp has directly contributed to the recent near surface high grade gold drilling success at both Bald Hill and New Constitution prospects and underpins the Company's confidence in the other high priority targets in the project pipeline yet to be tested.

Additional drilling on near surface high grade mineralisation at Bald Hill is planned for August subject to rig availability.

Metal Bank Limited ABN: 51 127 297 170

Telephone: +61 2 8268 8691 Facsimile: +61 2 8268 8699 Email: info@metalbank.com.au

Suite 2508, Level 25, 31 Market St, SYDNEY NSW 2000 | GPO Box 128 Queen Victoria Building NSW 1230 Australia www.metalbank.com.au

Inés Scotland, Chair of MBK said:

"This is the first time we have focused our drilling on concealed targets at Triumph and it has confirmed that excellent gold prospectivity exists beneath the shallow cover. Our aim now is to prove up near-surface high grade gold resources particularly at Bald Hill. We are also excited by the prospect that the high grade mineralisation intersected to date may represent gold leakage from a significant bulk tonnage gold system.

Intrusion related gold systems like Triumph are well represented in Eastern Australia and have formed the basis for significant gold production in the region."

Figure 1: Location of Triumph project.

Triumph high grade gold targets are presented in Figure 2 and are displayed as a schematic cross section in Figure 3.

Figure 2: Triumph gold camp and priority targets.

Figure 3: Schematic section showing the Triumph project geological model.

Table 1: Priority gold targets within the Triumph gold camp.

	Target	Attributes	Highlights		
ANCED	Bald Hill	Resource definition	Up to 15m @ 10.3g/t Au, 76g/t Ag, 0.5% Cu from 9m in drilling		
	New Constitution	Combined 3km strike potential	Up to 18m @ 2.0g/t Au, 8g/t Ag from surface in drilling		
ADV	Advance	Historical gold camp	4500 oz Au at 94g/t Au historical production		
	Big Hans	Interpreted extension of Bald Hill	Up to 4m @ 3.67g/t Au from 22m historical drilling		
	Harmony	>1km strike potential	Up to 62.8g/t Au and 161g/t Ag in rockchip		
SQ	Handbrake Hill	>1km strike potential	4m @ 10.55g/t Au from historical drilling		
WNFIEL	Super Hans	100m x >500m long shear zone	Up to 20.1g/t Au in rockchip		
BRC	Old Welcome	>800m long shear zone	Up to 32.7g/t Au in rockchip		
	Cattle Creek	>1km long shear zone	Up to 53.5g/t Au in rockchip		
S	Bonneville	>1km strike potential	Up to 255g/t Au in float rockchip		
GREENFIELD	Rands	Southern extension of Bald Hill	Up to 20.3g/t Au in historical stream sediment		
	NE Regional 5km ²		Untested area within fertile intrusive, masked by shallow cover		

Figure 4: Location of bedrock aircore drilling and summary of bedrock results.

Figure 5: Intrusion related gold systems model showing the Triumph gold system.

MBK has defined a large zoned hydrothermal gold system at Triumph. Bulk tonnage gold is interpreted to be associated with the core of the system and high grade gold zones occur both proximal to and distal to the core zone.

The Triumph gold camp is an intrusion related gold system of the type encountered in a number of large systems in Queensland (refer Figure 5) such as Kidston (3.7Moz Au), Mt Leyshon (3.5Moz Au) and Ravenswood (3Moz Au). All large intrusion related gold system exhibit zonation patterns with respect to alteration and associated metal zoning. MBK's understanding of zoning patterns within the Triumph gold system will contribute significantly to reducing exploration risk in targeting high grade gold mineralisation as well as targeting the causative mineralising intrusive that may host a bulk tonnage gold system.

Previous exploration focus (including the historical goldfield) has centred on the topographic high areas of outcrop. MBK's findings now highlight that the highest grade gold results to date

on the entire Triumph project occur in the topographic low areas exposed as small windows through the shallow cover sediments. It is believed that this could be due to the sulphide rich and silica poor nature of the high grade gold mineralisation which could weather more readily to form a topographic low rather than a resistant topographic high (or hill).

The Triumph project is located 80km from the industrial hub of Gladstone and 200km from Evolution Mining's Mt Rawdon gold mine producing 100,000oz Au pa¹ with over 1.4Moz of Au produced since 2001.

Mt Mackenzie Project Update

Limited soil and rock chip geochemical sampling was completed on the Mt Mackenzie project over a Cu-Mo porphyry system identified in historical data and overlooked by modern gold exploration. The sampling by MBK did not identify anomalous gold associated with the mineral system. A review of the project will be conducted however the exploration focus will be directed towards MBK's other gold projects of Triumph and Eidsvold.

For further information contact:

Tony Schreck - Executive Director +61 419 683 196 tony@metalbank.com.au Tim Duncan – Hintons +61 408 441 122 tduncan@hintons.com.au

About Metal Bank

Metal Bank Limited is an ASX-listed minerals exploration company (ASX: MBK).

Metal Bank's core focus is creating value through a combination of exploration success and quality project acquisition. The company's key projects are the Triumph, Eidsvold and Mt Mackenzie Gold Projects situated in the northern New England Fold Belt of central Queensland, which also hosts the Cracow (3Moz Au), Mt Rawdon (2Moz Au), Mt Morgan (8Moz Au, 0.4Mt Cu) and Gympie (5Moz Au) gold deposits.

The company has an experienced Board and management team that brings regional knowledge, expertise in early stage exploration and development, relevant experience in the mid cap ASX-listed resource sector and a focus on sound corporate governance.

¹ Source Evolution Mining web site

Board of Directors and Management	Registered Office
Inés Scotland (Non-Executive Chairman)	Metal Bank Limited
Guy Robertson (Executive Director)	31 Market Street Sydney NSW 2000 AUSTRALIA
Tony Schreck (Executive Director)	Phone: +61 2 8268 8691 Facsimile: +61 2 8268 8699
	www.metalbank.com.au
Company Secretary	Share Registry
Sue-Ann Higgins	Advanced Share Registry Services 110 Stirling Highway Nedlands WA 6009 AUSTRALIA
	Phone: (+61) (8) 9389 8033 Facsimile: (+61) (8) 9262 3723 <u>www.advancedshare.com.au</u> Please direct all shareholding enquiries to the share registry.

Competent Persons Statement

The information in this report that relates to Exploration Results is based on information compiled or reviewed by Mr Tony Schreck, who is a Member of The Australasian Institute of Geoscientists. Mr Schreck is an employee of the Company. Mr Schreck has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Schreck consents to the inclusion in the report of the matters based on his information in the form and context in which it applies.

The Exploration Targets described in this report are conceptual in nature and there is insufficient information to establish whether further exploration will result in the determination of Mineral Resources. Any resources referred to in this report are not based on estimations of Ore Reserves or Mineral Resources made in accordance with the JORC Code and caution should be exercised in any external technical or economic evaluation.

JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Aircore drilling (AC) drilling was used to obtain samples for geological logging and assaying. Aircore drilling utilizes the reverse circulation drilling technique with an aircore drill bit to drill through the sedimentary cover profile and collect bedrock sample composites of 1 to 4m from the basement rocks. Bedrock holes were terminated once basement rocks were clearly intersected and a composite sample of the basement rock collected. The drill holes were completed on traverses based on airborne magnetics data. Generally holes along the traverses were 25m to 50m spaced. Traverse spacing was variable and utilized existing access tracks to complete traverses. AC samples were submitted to the laboratory and sample preparation consisted of the drying of the sample, the entire sample being crushed to 70% passing 6mm and pulverized to 85% passing 75 microns in a ring and puck pulveriser. AC samples are assayed for gold by 50g fire assay with AAS finish. Multielement analysis is completed using an ICPAES analysis. Note that only preliminary gold results have been received at this time. Rock chip samples shown in figures may represent float or outcrop grab samples.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	 AC drilling used a 3" aircore bit with samples return via a reverse circulation drilling method.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 For AC sample recoveries of less than approximately 80% are noted in the geological/sampling log with a visual estimate of the actual recovery. Very few samples were recorded with recoveries of less than 80%. No wet samples were encountered. No relationship has been observed between sample recovery and grade.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography. The total length and percentage of the relevant intersections logged. 	 Geological logging was carried out on all AC chips. This included lithology, alteration, sulphide percentages and vein percentages. Geological logging of alteration type, alteration intensity, vein type and textures, % of veining, and sulphide composition. Bottom of hole representative AC chips are retained in chip trays and photographed. All drill holes are logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 AC samples were tube sampled and no wet samples were encountered with duplicated samples collected at a frequency of at least 1 in 20. QAQC samples (standards / blanks) were submitted at a frequency of at least 1 in 20. Regular reviews of the sampling were carried out by the Technical Director to ensure all procedures were followed and best industry practice carried out. Sample sizes and preparation techniques are considered appropriate. The sample sizes are considered to be appropriate for the nature of mineralisation within the project area. Duplicate sampling concentrated on potentially mineralised intervals.

Criteria	JORC Code explanation	Commentary
Quality of data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 AC samples were assayed using 50g fire assay for gold which is considered appropriate for this style of mineralisation. Fire assay is considered total assay for gold. No geophysical tools have been used to determine assay results for any elements. Monitoring of results of blanks and standards is conducted regularly. Aircore drill data is not included in Resource estimates and is generally used to collect geochemical samples.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections are routinely monitored through review of drill chip and by site visits by the Technical Director. Data is verified and checked in Micromine software. No drill holes have been twinned. Primary data is collected on field sheets and then compiled on standard Excel templates. Data is subsequently uploaded into a corporate database for validation and data management. All field sheets originals are scanned as a digital record. No other adjustments have been applied to assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations are initially set out (and reported) using a hand held GPS with a location error of +/- 5m. All holes are pegged and will be accurately surveyed (x,y,z) at a later date. No down hole surveys have been completed. All drilling is conducted on the MGA94 Zone 56 grid. A topographic survey of the project area has not been conducted.
Data Spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill holes were sited to test surface geochemical targets and were not conducted in a regular grid type pattern. The current drill hole spacing is not of sufficient density to establish geological and grade continuity appropriate for a Mineral Resource. No sample compositing has been applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The drill holes were orientated to test interpreted alteration and structures interpreted from the airborne magnetics geophysical data. Not enough drilling information to make this assessment on the best orientation of drilling to intersect the mineralisation at this time.
Sample security	The measures taken to ensure sample security.	 Samples were stored in sealed polyweave bags on site and transported to the laboratory at regular intervals by MBK staff.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 The sampling techniques are regularly reviewed.

Section 2 – Reporting of Exploration Results

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Triumph project is within EPM18486 and EPM19343, both 100% owned by Roar Resources Pty Ltd a wholly owned subsidiary of Metal Bank Limited. The tenements are in good standing and no known impediments exist. ML80035 (covering an area of 0.2km²) is located within the project area and is excluded from the Metal Bank tenure. Exploration is prohibited within a small area of Category B environmentally protected area as well as a Nation Park shown in Figure 2. The current approved Environmental Authority (EA) does not allow for advanced exploration activities to occur with 300m of the National Park (NP) boundary. A higher EA can be applied for to allow advanced exploration activities to occur with 300m of the NP boundary.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Historical Exploration data was compiled via open file reports including drilling data including AMOCO (1987) and Norton Goldfields 2007. All rock chip data shown was collected by Roar Resources Pty Ltd (100% subsidiary of Metal Bank Limited) The prospect contains 12 historical drill holes (RAB hammer) completed by AMOCO in 1987 as well as shallow historical underground mining completed in the early 1900's. No historical production records are available.
Geology	 Deposit type, geological setting and style of mineralisation. 	 EPM18486 and EPM19343 overlaps the Calliope and Miriam Vale 1:100,000 map sheets. The style of mineralisation intersected is intrusion related gold mineralisation within the northern New England Orogen.
Drill hole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• Refer Table 2
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No averaging of data has been applied No metal equivalent values have been used for reporting exploration results. Aircore bedrock drilling is a geochemical sampling method similar to collecting rock chip samples via a drill rig to sample under the shallow cover. This method or sampling is not used in drill resources and is effective in showing geochemical anomalism in the basement rock which will require followup drilling to access.

Criteria	JORC Code explanation	Commentary
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 The geometry of the mineralisation is not known in enough detail to determine the true width of the mineralisation. The drill method is used to identify bedrock geochemical anomalies similar to rock chip sampling.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Refer to figures contained within this report.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All results are presented in figures contained within this report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Detailed airborne magnetics data was used to plan aircore drill traverses in order to access interpreted structures and alteration features. Majority of the multi-element anomalism is coincident with interpreted structures and zones of magnetite destruction.
Further Work	 The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work is justified on all priority targets that are presented.

Table 2: Drill Hole Details

	Hole		North	UTM	UTM		
Hole ID	Туре	East UTM	UTM	Grid_ID	Azimuth	Collar Dip	Depth m
TB001	AC	334045	7308738	AGD94_56S	0	-90	9
TB002	AC	334035	7308761	AGD94_56S	0	-90	10
TB003	AC	334029	7308786	AGD94_56S	0	-90	6
TB004	AC	334025	7308808	AGD94_56S	0	-90	10
TB005	AC	334098	7308887	AGD94_56S	0	-90	6
TB006	AC	334054	7308858	AGD94_56S	0	-90	12
TB007	AC	334056	7308897	AGD94_56S	0	-90	6
TB008	AC	334029	7308903	AGD94_56S	0	-90	6
TB009	AC	334003	7308904	AGD94_56S	0	-90	6
TB010	AC	333974	7308912	AGD94_56S	0	-90	5
TB011	AC	333945	7308916	AGD94_56S	0	-90	6
TB012	AC	333893	7308930	AGD94_56S	0	-90	9
TB013	AC	333848	7308928	AGD94_56S	0	-90	16
TB014	AC	335134	7310939	AGD94_56S	0	-90	5
TB015	AC	335115	7310946	AGD94_56S	0	-90	5
TB016	AC	335087	7310955	AGD94_56S	0	-90	4
TB017	AC	335044	7310972	AGD94_56S	0	-90	7
TB018	AC	335025	7310987	AGD94_56S	0	-90	5
TB019	AC	335002	7310984	AGD94_56S	0	-90	4
TB020	AC	334950	7310980	AGD94_56S	0	-90	5
TB021	AC	334899	7310981	AGD94_56S	0	-90	3
TB022	AC	334856	7310984	AGD94_56S	0	-90	9
TB023	AC	334828	7310981	AGD94_56S	0	-90	6
TB024	AC	334805	7310972	AGD94_56S	0	-90	4
TB025	AC	334774	7310970	AGD94_56S	0	-90	6

	Hole		North	UTM	UTM		
Hole ID	Туре	East UTM	UTM	Grid_ID	Azimuth	Collar Dip	Depth m
TB026	AC	334760	7310955	AGD94_56S	0	-90	7
TB027	AC	334747	7310906	AGD94_56S	0	-90	6
TB028	AC	334718	7310877	AGD94_56S	0	-90	6
TB029	AC	334675	7310850	AGD94_56S	0	-90	6
TB030	AC	334632	7310833	AGD94_56S	0	-90	6
TB031	AC	334610	7310818	AGD94_56S	0	-90	4
TB032	AC	334586	7310802	AGD94_56S	0	-90	5
TB033	AC	334561	7310794	AGD94_56S	0	-90	4
TB034	AC	334539	7310792	AGD94_56S	0	-90	6
TB035	AC	334511	7310787		0	-90	6
TB036	AC	334479	7310785		0	-90	6
TB037	AC	334348	7310734		0	-90	3
TB038	AC	334338	7310684		0	-90	4
TB039	AC	334369	7310633		0	-90	10
TB040	AC	334384	7310594	AGD94_56S	0	-90	5
TB041	AC	334387	7310547	AGD94_56S	0	-90	4
TB042	AC	334397	7310498	AGD94 56S	0	-90	5
TB043	AC	334389	7310456	AGD94 56S	0	-90	12
TR044		334474	7310593	AGD94 565	0 0	-90	4
TB045		334424	7310831	AGD94_569	0	-90	ب ۵
TB045		334301	7310859	AGD94_565	0	-90	7
TR040		22////2	7310964		0	-90	6
TD047	AC	334442	7310804	AGD94_303	0	-90	12
16048 TR040	AC	334472	7310803	AGD94_565	0	-90	12
TB049	AC	334487	7310859	AGD94_565	0	-90	6
	AC	334506	7310873	AGD94_565	0	-90	6
18051	AC	334523	7310891	AGD94_565	0	-90	0
TB052	AC	334547	7310909	AGD94_56S	0	-90	9
TB053	AC	334576	/31091/	AGD94_56S	0	-90	4
1B054	AC	334603	7310926	AGD94_56S	0	-90	6
TB055	AC	334632	7310922	AGD94_56S	0	-90	5
TB056	AC	334651	7310918	AGD94_56S	0	-90	6
TB057	AC	334684	7310924	AGD94_56S	0	-90	6
TB058	AC	334705	7310920	AGD94_56S	0	-90	6
TB059	AC	334730	7310919	AGD94_56S	0	-90	6
TB060	AC	334712	7310802	AGD94_56S	0	-90	3
TB061	AC	334716	7310757	AGD94_56S	0	-90	4
TB062	AC	334706	7310716	AGD94_56S	0	-90	5
TB063	AC	334697	7310683	AGD94_56S	0	-90	3
TB064	AC	334691	7310661	AGD94_56S	0	-90	3
TB065	AC	334775	7310781	AGD94_56S	0	-90	3
TB066	AC	334815	7310779	AGD94_56S	0	-90	3
TB067	AC	334836	7310768	AGD94_56S	0	-90	3
TB068	AC	334862	7310762	AGD94_56S	0	-90	3
TB069	AC	334881	7310749	AGD94_56S	0	-90	5
TB070	AC	334905	7310738	AGD94_56S	0	-90	8
TB071	AC	334552	7309817	AGD94_56S	0	-90	14
TB072	AC	334581	7309824	AGD94_56S	0	-90	10
TB073	AC	334616	7309817	AGD94_56S	0	-90	6
TB074	AC	334654	7309841	AGD94_56S	0	-90	6
TB075	AC	334675	7309861	AGD94_56S	0	-90	8
TB076	AC	334696	7309883	AGD94_56S	0	-90	9
TB077	AC	334713	7309905	AGD94_56S	0	-90	11
TB078	AC	334733	7309927	AGD94_56S	0	-90	9
TB079	AC	334752	7309946	AGD94 56S	0	-90	12
TB080	AC	334772	7309961	AGD94 56S	0	-90	12
TB081	AC	334792	7309974	AGD94 56S	0	-90	10
TB082	AC	334815	7309994	AGD94 565	0	-90	9
TB083	AC	334841	7310011	AGD94 565	0	-90	4
TB084	AC	334859	7310026	AGD94 565	Ő	-90	6
TB085	AC	334869	7310056	AGD94 565	õ	-90	6
TBOSS		334005	7310084	AGD94_569	0	-90	q
10000		334002	, 310004	~~ <u>~</u> _J05	0	-50	2

		r					
Hole ID	Hole Type	East UTM	North UTM	UTM Grid_ID	UTM Azimuth	Collar Dip	Depth m
TB087	AC	334912	7310097	AGD94_56S	0	-90	9
TB088	AC	334941	7310091	AGD94_56S	0	-90	6
TB089	AC	334976	7310026	AGD94_56S	0	-90	12
TB090	AC	334999	7310037	AGD94_56S	0	-90	6
TB091	AC	335021	7310049	AGD94_56S	0	-90	7
TB092	AC	335047	7310070	AGD94_56S	0	-90	9
TB093	AC	335086	7310078	AGD94_56S	0	-90	11
TB094	AC	335122	7310087	AGD94_56S	0	-90	12
TB095	AC	335155	7310101	AGD94_56S	0	-90	9
TB096	AC	335183	7310101	AGD94_56S	0	-90	9
TB097	AC	335211	7310105	AGD94_56S	0	-90	6
TB098	AC	335269	7310123	AGD94_56S	0	-90	5
TB099	AC	335323	7310100	AGD94_56S	0	-90	3
TB100	AC	334722	7310089	AGD94_56S	0	-90	6
TB101	AC	334695	7310068	AGD94_56S	0	-90	9
TB102	AC	334670	7310046	AGD94_56S	0	-90	3
TB103	AC	334646	7310026	AGD94_56S	0	-90	3
TB104	AC	334620	7310002	AGD94_56S	0	-90	6
TB105	AC	334596	7309956	AGD94_56S	0	-90	10
TB106	AC	334556	7309930	AGD94_56S	0	-90	8
TB107	AC	334429	7310785	AGD94_56S	0	-90	6